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Abstract
Finding the genetic factors of complex diseases such as can-
cer, currently a major effort of the international community,
will potentially lead to better treatment of these diseases.
One of the major difficulties in these studies, is the fact that
the genetic components of an individual not only depend on
the disease, but also on its ethnicity. Therefore, it is crucial
to find methods that could reduce the population structure
effects on these studies. This can be formalized as a cluster-
ing problem, where the individuals are clustered according
to their genetic information.

Mathematically, we consider the problem of clustering
bit “feature” vectors, where each vector represents the ge-
netic information of an individual. Our model assumes that
this bit vector is generated according to a prior probability
distribution specified by the individual’s membership in a
population. We present methods that can cluster the vec-
tors while attempting to optimize the number of features
required. The focus of the paper is not on the algorithms,
but on showing that optimizing certain objective functions
on the data yields the right clustering, under the random
generative model. In particular, we prove that some of the
previous formulations for clustering are effective.

We consider two different clustering approaches. The
first approach forms a graph, and then clusters the data
using a connected components algorithm, or a max cut algo-
rithm. The second approach tries to estimate simultanously
the feature frequencies in each of the populations, and the
classification of vectors into populations. We show that us-
ing the first approach Θ(log N/γ2) data (i.e., total number
of features times number of vectors) is sufficient to find the
correct classification, where N is the number of vectors of
each population, and γ is the average "22 distance between
the feature probability vectors of the two populations. Us-
ing the second approach, we show that O(log N/α4) data
is enough, where α is the average "1 distance between the
populations.

We also present polynomial time algorithms for the
resulting max margin which, for now, needs only slightly
more data than stated above. Our methods can also be
used to give a simple combinatorial algorithm for finding a
bisection in a random graph that matches Boppana’s convex
programming approach (and McSherry’s spectral results).
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1 Introduction
Recent technology permits large-scale association stud-
ies, in which a complex disease such as cancer or
Alzheimer’s disease is associated with some genetic fac-
tors. One of the main difficulties in these studies is to
filter out the population effects from the data, so that
the studied disease will be the main property affected by
the genetic information (this is called population strat-
ification, or population substructure). Mathematically,
this boils down to a classification problem, in which a
set of bit vectors are classified into clusters. Each vector
corresponds to an individual participating in the study,
and each bit corresponds to a position in the genome
(known as a SNP - single nucleotide polymorphism).

In this paper, we consider a specific scenario of
population stratification, in which the population at
hand is known to be composed of two sub-populations.
We assume a random generative model for the two
populations. Each population is represented by a
vector, in which every coordinate represents the prior
probability of the bit vector to be 1 in that position
for this population. We assume that each bit vector
is generated according to the population’s probability
vector. Moreover, we assume the features are chosen
independently. 1 We note that similar models have
been proposed for many other problems, including, for
example, clustering users according to their preferences
[13, 14, 6].

The ability to classify the vectors clearly depends
on the difference between the probability vectors of the
two populations. We therefore measure the difference
between populations according to two measures. If !p1

and !p2 are the two probability vectors, we denote by
γ and α the average $22 and $1 distances respectively
between !p1 and !p2. In particular, we define γ =
Ef [(p1(f) − p2(f))2] and α = Ef [|p1(f) − p2(f)|].

Here, we focus on minimizing the amount of data
required to cluster these vectors into two clusters. We
have two approaches; one is graph-based and one is
model-based. For our graph based approach, we use

1This independence assumption has been referred to as the
naive Bayes model.



the fact that humans are diploid, that is, in each
position, each individual has two bits, representing the
two copies of the chromosome (corresponding to the
two parents).2 We define a dissimilarity function on
pairs of individuals which is based on the diploidy
of the human DNA data, and build an associated
dissimilarity graph. We assume the scenario where each
of the clusters contains N individuals. We show that
the optimal solution to a balanced max-cut problem
in the dissimilarity graph gives the correct partition
with k bits, where Nk = Θ(log N/γ2). We note
that it is quite straightforward to show that k =
O(log N/γ2) bits are sufficient using a simple connected
components algorithm. Our analysis for the max-cut
corresponds better to how things work in practice. In
particular, some state of the art methods for population
stratification (i.e., STRUCTURE [19], and spectral
based clustering [18]), and our implementations achieve
good results when Nk is approximately 1/γ2 even when
k is much smaller than 1/γ2. We note, however, that this
is a structural result; we do not provide a polynomial
time algorithm for finding the best cut. Still, we believe
it is important to set a rigorous and analytical reasoning
for why our method and previous methods [19, 18] work
with such little data.

Our second set of algorithms is based on a model-
based approach where one simultaneously estimates the
probabilities of the features and the partition. In
this case, we can prove that finding the partition that
maximizes the $1 difference in number of features yields
the correct partition with high probability when Nk =
Θ(log N/α4). When all the features have the same
difference γ = α2, and this gives the same bound as
the graph-based methods, but for varying features the
graph-based method is much better.

On the other hand, we give a model based polyno-
mial time algorithm which finds the correct partition
with high probability for some Nk = Θ(log2 N/α4).3
That is, we get an algorithm with very nearly the same
data requirements as our structural result for this model
based approach. We suspect that the graph based ap-
proach can be made algorithmic as well.

We note that our algorithms may be of independent
interest. As evidence, we give a simple algorithm for
graph bisection in the planted bisection model that is
competitive with recent results of McSherry [16] and
classical results of Boppana [5] for this problem.

2Zhou [23] has shown that this requirement is unnecessary
using a hamming distance based score along with a max-cut based
optimization function.

3One can argue that N need only be polynomial in 1/α or
1/γ, so the notion of polynomial should be interpreted in terms
of these quantities.

1.1 Related Work Over the last couple of years, a
few methods have been suggested for population strati-
fication. The most widely used method, STRUCTURE
[19], uses a Bayesian model, and an MCMC algorithm
to find the correct clustering based on the model. Their
method works very well in practice, although it is some-
what inefficient, and there is no rigorous proof that
it converges to the correct classification. Recently, a
method which is based on spectral analysis was sug-
gested (EigenStrat [18]). This method can be viewed as
a graph-based method, where the distance measure used
is the covariance between the bit vectors. This method
performs well on many instances in practice, but it has
not been shown rigorously that it will work well under
our model.

In general, clustering is a very well studied problem.
In particular, there is a large body of work on correlation
clustering, [4, 2, 8, 21], where the graph and the
optimization problems are given. Unlike these works,
we start with a problem and its underlying data and
define the graph and the optimization problem based
on the characteristics of our data - the challenge is to
show that the resulting clustering solves our original
problem.

There is ample work on learning mixtures of
Gaussians[10, 3, 1, 11, 22] as opposed to the types of
distributions we learn. Perhaps the most closely related
are the algorithms of Arora and Kannan[3] which can
actually learn overlapping Gaussians.

Surprisingly, we observe that the algorithms used in
this work are very related to algorithms for collaborative
filtering (in which internet users are recommended items
for purchase). Previous works on collaborative filtering
[13, 14, 15], cluster the items and use the clustering to
infer the preferences of the individuals. In contrast, one
could view our technique as a way of clustering users
according to their preferences.

In fact, Kleinberg and Sandler[13] give an algo-
rithm that uses a quartet based dissimilarity function
and computes connected components in a thresholded
graph. Our first graph-based approach is highly similar
to their method, when the users are viewed as the DNA
bits, and the items as the individual vectors.

Another related problem is planted bisection. We
note that it is very different in the following respect from
our setting. The edges there are essentially generated
independently whereas all the edges for a node in our
graph are dependent on the feature bits associated with
that node, which makes the analysis very different.
For the planted bisection problem, there have been a
number of results since Boppana’s original result [5]
which used the ellipsoid method. Many others have
since done related work both to understand commonly



used heuristics [12, 7], to produce simpler algorithms
[9, 16], or to solve related problems [20, 16].

There is also related work on approximation algo-
rithms for dense instances of graph partitioning as well
as more general higher degree polynomial optimization
problems. For example, Arora et.al. [3] give algorithms
for a broad class of such problems. Here too, the meth-
ods appear related to the methods we use here for clus-
tering.

2 Graph Based Clustering: Diploid Setup
In this section, we consider the case where each indi-
vidual consists of two samples for each feature that are
known to be drawn from the same population. As noted
in the introduction, this is the case for the population
inference problem. The data there has the property that
an individual has the feature value of both its parents
encoded in its DNA (indeed, it’s “own” feature value is
unknown.)

In this section, we present a dissimilarity measure
for this setup and show a simple connected components
algorithm that separates the populations given enough
features for each individual.

2.1 The Dissimilarity Score The dissimilarity
score between individuals is the difference between the
average agreement among the internal feature bits and
the average agreement among the feature bits across the
pair. For example, if individual 1 has 00 for its diploid
value and individual 2 has 11, then the internal bits
both agree and the cross bits neither agree. For the
case where one individual has feature bit values 01, and
the other also has 01 the internal bits do not agree and
the cross bits depending on the pairing agree by 2 or
by 0, so we give an average score of -1. This is how we
define the scores in the table 2.1. For two individuals
with feature bit values X and Y , we define score(X, Y ),
as the sum of the diploid dissimilarities (defined in ta-
ble 2.1) over the values of the pairs of features bits.

00 11 01
00 0 2 0
11 2 0 0
01 0 0 -1

Table 1: We only define 01 values since 10 is symmetric.

The following lemma is straightforward.

Lemma 2.1. The expected score for two individuals
from the same population for a feature (which consists
of a bit for each parent) is 0, and the expected score
for two individuals from γ-different populations is 2γk

(Technically, there is a distribution of values of γ for
different features whose average is γ.)

The above lemma along with a Chernoff/Hoeffding
bound can be used to prove that the following lemma
which gives a trivial algorithm for clustering the popu-
lations.

Lemma 2.2. If k = Ω(log N/γ2, ) all the dissimilarity
scores between different population individuals are larger
than those between same population individuals by at
least γk/3 with high probability.

In this case, a connected components algorithm on
a thresholded subgraph will yield the proper partition.
Indeed, we remark that this connected components
algorithm works even for several populations and for
varying numbers of individuals.

In practice, and in our biological application in
particular, this could result in a large set of features.
We show in the next section that one can reduce the
number of features by trading it for extra individuals.

3 Graph Based Partitioning
In this section, we look at input data which has N indi-
viduals from population 1 and N individuals from pop-
ulation 2. The connected components algorithm of the
previous section did not require this condition. We sus-
pect that other partitioning functions and methodolo-
gies could be used to relax this condition.

3.1 Some Notation We use the notation (P ,P) to
denote the correct partition and (S, S) to denote an
arbitrary cut. In our notation, S always denotes the side
of the cut which has at least as many individuals from
population 1 as from population 2. We say that a cut
(S, S) with N nodes on both sides has L swapped nodes
if S has N − L nodes from population 1 and L nodes
from population 2. The nodes in S from population 1
and the nodes in S from population 2 are called the
unswapped nodes. All cuts we consider in this section
are balanced, that is, they have N nodes on either side
unless otherwise specified.

We take the score f(S, S) of a cut to be the sum of
the edge scores in the cut, where an edge score is the
dissimilarity score defined in the previous section. We
show that when the number of features k is sufficient,
out of all balanced cuts (S, S), (P ,P) has the maximum
score with high probability. We also look at diff(S, S)
which is difference between the value of f on (S, S) and
the value of f on the perfect partition. In other words,
diff(S, S) = f(S, S) − f(P ,P).

Recall that we use the notation γ to denote
Ef [(p(f)

1 − p(f)
2 )]2. Thus the expected score difference



between edges connecting two nodes belonging to dif-
ferent populations is 2γk, and the expected score on an
edge connecting two nodes belonging to the same pop-
ulation is 0.

We sometimes use the notation P1 to denote the set
of individuals in population 1 and P2 to denote the set of
individuals in population 2. We use the term feature to
denote the data bits available for a single individual and
the term sample to mean the total feature bits across
all individuals.

3.2 Our Results Our main result in this section can
be summarized by the following theorem.

Theorem 3.1. Suppose we have data for the presence
or absence of k independent features for individuals
belonging to two populations. Also suppose that we
have this data for N individuals in each population. If
k ≥ max(220 log N log log N

Nγ2 , 1024 log N
γ ), the correct parti-

tion (P ,P) has the highest score with probability at least
1 − 1

N .

A more optimized calculation shows that the con-
stants in the theorem are at most 40 in both expres-
sions. In this paper, we present the proof with higher
constants. A complete proof is given in [23]. We provide
the main ideas here.

Our proof strategy works roughly as follows. We
first show in Lemma 3.1 that with high probability, the
average score between any individual and an individual
in its own population is lower than the average score
between the same individual and an individual in a
different population. We then show in Theorem 3.2
that if this event happens for all individuals in the data
set, any arbitrary cut (S, S) has a higher value of f
than the perfect partition with at most exponentially
low probability. The union bound over all cuts in the
graph gives us Theorem 3.1.

We begin with Lemma 3.1. Given an individual u
belonging to population 1, let E(u) denote the following
event:

D = Ex∈P1 [score(u, x)] − Ey∈P2 [score(u, y)] ≥ −γk

This random variable D has expectation −2γk. The
event E(u) is the event that it varies (in a bad direction)
by at least γk. That is, this choice of individual u is
not as close to their own population as is desired. The
expectations are taken over random choices of x and y.
We define the notion of event E(u) for u in population
2, by reversing the sign in the definition of D above,
and proceeding as above.

Let E = ∪uE(u). We show that if the number of
samples is sufficient, E occurs with low probability.

Lemma 3.1. If k > 72(c+2) log N
γ , none of the events

E(u) occur with probability at least 1 − 1
Nc over the

choice of the feature bits of u for some constant c > 1.

The proof follows by an application of the Method of
Bounded Differences and appears in the full manuscript.

For the rest of our proof, we sometimes assume that
E holds and sometimes that Eu holds for u ∈ V ′ where
V ′ is some subset of V .

We look at cuts (S, S) which contain L swapped
nodes from the perfect partition. Let us denote the
cut by (X ∪ P, Y ∪ Q). Here X and Y are the sets
of unswapped nodes belonging to population 1 and 2
and P and Q are the sets of swapped nodes belonging
to population 2 and 1 respectively. On expectation, any
such cut has a lower value of the score f than the perfect
partition. We would like to show that all such cuts
(S, S) have a lower value of f than the perfect partition
with high probability. One way to do this is to show that
the variance of the value of f on an arbitrary cut (S, S)
is low. Unfortunately, this is not true. What we can
show, however, is that diff(S, S), the difference between
the scores of cut (S, S) and the perfect partition has
low variance compared to its expectation; the perfect
partition therefore has the highest objective value of all
cuts with high probability.

Theorem 3.2. Suppose that the event E does not oc-
cur. If k ≥ max(220 log N log log N

Nγ2 , 1024 log N
γ ) for an arbi-

trary cut (S, S) with L swapped nodes, Pr[diff(S, S) ≥
0] ≤ 3

N2L+2 .

Proof:
The goal of the proof is to look at the function

diff(S, S) as a martingale. Unfortunately, we cannot
get a good bound on the deviation if we do so right
away.

The proof therefore proceeds in four main steps.
Given the cut (S, S) = (X ∪ P, Y ∪ Q), we first fix
a configuration of the feature bits of the individuals
in P and Q such that they satisfy certain properties:
essentially, that the sum, over featuers, of the deviations
from the expected value of the number of individuals in
P and Q is small. Lemma 3.3 shows that this fails to
happen with only exponentially small probability. Now
the function f is a random function of the features of the
unswapped nodes. Now we would like to show that if the
event E does not occur, the function f is a martingale
which has low deviation compared to its expectation.
However, doing so is a bit complicated.

To simplify the calculations, we define another event
ES : ES = ∪u∈P∪QE(u).

The event ES occurs when one of the individuals
in the set of swapped nodes is further from the average



individual in its own population than from the average
individual in a different population. The proof of
Lemma 3.1 implies that for all possible subsets of
swapped nodes, ES does not occur with high probability
since it is really just a condition on each individual node
which holds individually with high probability.

We proceed in the following by conditioning on
ES . We will complete the proof by showing that the
probability is essentially the same in the event that we
condition on E which is required in Theorem 3.2.

We next show in Corollary 1 that if ES does not
occur, the expectation of f(S, S) is much less than
the expectation of the score f evaluated on the perfect
partition. Note that this expectation is taken over the
random feature bits of the individuals in X and Y . In
Lemma 3.4, we look at the function f as a martingale
and show a deviation bound conditioned on ES . Finally
we demonstrate how this implies a deviation bound on
diff(S, S) conditioned on E.

Lemma 3.2. Suppose event ES does not occur. Then
for any node u in population 1, Ex∈Q[score(u, x)|ES ]−
Ey∈P [score(u, y)|ES ] ≤ −γk

2

The lemma says that conditioning on the event ES

does not change the expected score difference between
an individual u and individuals x and y in different
populations.

This follows from the fact that the event ES occurs
with very low probability so that excluding it from the
sample space does not change the expectation of this
random variable by much. The proof is an the full
manuscript.

The following corollary follows from the fact that
diff(S, S) is the sum over all nodes in X and Y of
the quantity in Lemma 3.2, along with linearity of
expectation. The proof is in the full manuscript.

Corollary 1. Suppose that the event ES does not
occur. Then, E[diff(S, S)] ≤ − 1

2γkL(N − L).

We also use the notation q(f)
1 = 1 − p(f)

1 and
q(f)
2 = 1 − p(f)

2 . Let the number of nodes in P with a
00 value for feature f be (q(f)

1 )2L + t00f

√
L. We impose

the condition that

∑

f

(t00f )2 ≤ 4L logN + 2k log log N + O(k)(3.1)

Similarly let t01f and t11f be the corresponding de-
viations in the number of individuals in P with value
01 and 11 for feature f , and s00

f , s01
f and s11

f be the
corresponding deviations in the number of individuals
in Q with value 00, 01 and 11 for feature f . We also

impose the same constraints on these other deviations.
Let F denote the event that not all these constraints
are satisfied. We show that the probability of F is very
low.

Lemma 3.3. Pr[F |ES ] ≤ 1
N2L+2

The proof is in the full manuscript. The idea is that
the probability that the number of 00’s for a feature f
varies from its expectation by tf

√
L is at most e−t2f .

Assuming independence of the features (which is not
quite true under the condition that ES does not hold),
the probability that overall, the features vary according
to t1, . . . , tk is at most e−

P
t2f . This probability is small

enough to tolerate a union bound over configurations
for t1, . . . , tk, as well as the conditioning on ES .

The next lemma shows a bound on the deviation of
diff(S, S) from its expected value, given that ES and F
hold.

Lemma 3.4. Let (S, S) be an arbitrary cut with L
swapped nodes, and let
t = max(8L

√
LNγk log N, 256L

√
kN log N log log N).

Then,
Pr[|diff(S, S) − E[diff(S, S)]| > t|ES ∩ F ] ≤ 1

N2L+2 .

Proof:
We use the Method of Average Bounded Differ-

ences [17], as restated in Theorem 3.3.

Theorem 3.3. [17] Let X1, . . . , Xn be an arbitrary set
of random variables and let φ be a function satisfying the
property that for each i ∈ [n], there is a non-negative ci

such that
|E[φ|Xi] − E[φ|Xi−1]| ≤ ci

Then,
Pr[|φ− E[φ]| > t] ≤ 2e−t2/2C

where C =
∑

i≤n c2
i

We apply this lemma to E[diff(S, S)|ES ] which we
estimate in Corollary 1. This function depends on the
choice of the feature bits of the individuals in X and
Y. Note that E[diff(S, S)|ES , F ] does not differ very
much from E[diff(S, S)|ES ] as F occurs with very low
probability.

Now, we let Bu,f be the choice of feature f for
individual u. We choose these bits in lexicographic order
for the sake of using the Method of Bounded differences.
We proceed to give an upper bound on cu,f by bounding
the maximum change in f given the conditions F and
ES on the choice of P and Q.

Note that if we conditioned on E, the feature
bits of an unswapped individual u would not vary
independently. Conditioning on ES instead ensures



that the feature bits of an individual u in X ∪ Y are
independent and allows us to compute cu,f .

When the state of the feature f changes from 11 to
00 in an unswapped individual u, cu,f can be bounded
as follows. Note that diff(S, S̄) is precisely the scores
of the following edges:

∑

u∈X




∑

q∈Q

score(u, q) −
∑

p∈P

score(u, p)



 +

∑

v∈Y




∑

p∈P

score(v, p) −
∑

q∈Q

score(v, q)





From the way we set the feature bits in P and Q,
there are (p(f)

1 )2L+ t11f

√
L nodes in Q with value 11 for

feature f , and (q(f)
1 )2L + t00f

√
L nodes in Q with value

00 for feature f . Each edge between u and any of the
former set of nodes now contribute 2 extra to diff(S, S̄),
and each edge between u and each of the nodes in the
latter set now no longer contribute 2 to diff(S, S̄). A
similar calculation can be done for the edges between u
and the nodes in P . In summary, we can bound cu,f as:

cu,f ≤ 2((p(f)
1 )2 − (q(f)

1 )2 − (p(f)
2 )2 + (q(f)

2 )2)L

+ 2t00f

√
L + 2t11f

√
L + 2s00

f

√
L + 2s00

f

√
L

≤ 2(p(f)
1 − p(f)

2 )L + 2
√

L

(t00f + t11f + s00
f + s11

f )

The other cases are similar. For any change in
u’s feature bits, we can bound cu,f to be at most
2(p(f)

1 − p(f)
2 )L + 2

√
L(t00f + t01f + t11f + s00

f + s01
f + s11

f ).
The total deviation C can be bounded as

C =
∑

f

∑

u∈X∪Y

c2
u,f

≤ 8L2Nγk +

8LN
∑

f

(t00f + t01f + t11f + s00
f + s01

f + s11
f )2

≤ 16L2Nγk +
384LN(4L logN + 2k log log N + O(k))

If the first term dominates the sum, for t =
8L

√
LNγk log N , t2

2c ≥ (2L + 2) log N and the lemma
holds by the method of bounded differences (Theo-
rem 3.3.) If the second term dominates, for t =
256L

√
kN log N log log N , t2

2c ≥ (2L + 2) log N and the
lemma holds by Theorem 3.3. !

Lemma 3.4 and Corollary 1 show that conditioned
on ES and F for any cut (S, S), diff(S, S) is at most

− 1
2γkNL + t with high probability, where t is defined

as in Lemma 3.4. If k is large enough, namely, if k ≥
max(220 log N log log N

Nγ2 , 1024 log N
γ ), t is at most 1

2γkNL.
Let B be the bad event that diff(S, S) > 0. So

far we have shown that the probability of B is at most
1

N2L+2 conditioned on ES and F . As event E implies
ES , Pr[B|ES , F ] ≥ Pr[B|E, F ] Pr[E|ES , F ]. Thus,
Pr[B|E, F ] is less than 2

N2L+2 since Pr[E|ES , F ] is close
to 1 (bigger than 1/2 is sufficient.) Since Pr[F ] <
1/N2L+2 is so small, we can conclude that Pr[B|E]
remains less than 3

N2L+2 which proves Theorem 3.2. !

4 Model-Based Partitioning
In this section, we consider partitioning using a model-
based approach. A model-based approach is one in
which we use the data to simultaneously estimate the
probability of occurrence of each feature in the two
populations as well as assign individuals to populations.

We consider two model-based approaches. First, we
present a simple combinatorial algorithm which runs in
polynomial time and finds the perfect partition when k
and N are large enough. Next, we define a model-based
score g on the partitions of the individuals. We show
that the partition which maximizes the score g is the
correct partition with high probability, provided k and
N are large enough. However we do not know how to
compute this partition efficiently.

4.1 Preliminaries We use the following notation,
some of which we defined in Section 3. We use p(f)

1

and p(f)
2 to denote the probabilities of occurrence of

feature f in populations 1 and 2 respectively. For a
specific feature f , we let αf = |p(f)

1 − p(f)
2 | and we let

α = Ef [|p(f)
1 − p(f)

2 |], so that
∑

f αf = αk.
For the rest of the section, we only look at partitions

which have N nodes on either side. The algorithm
of this section, iteratively produces better and better
partitions. We always assume without loss of generality
that S has at least as many individuals from population
1 as does S̄. A partition (S, S̄) has advantage ε if S has
(1
2 + ε)N individuals from population 1.

Given a partition (S, S̄) with positive advantage,
let p̃(f)

S and p̃(f)
S̄

denote the fraction of individuals with
feature f in S and S̄ respectively. We say that feature
f is in the right order if p̃(f)

S and p̃(f)
S̄

are in the same
order as p(f)

1 and p(f)
2 .

We now show an useful lemma, which, given a parti-
tion (S, S̄) with advantage ε, determines the probability
with which a feature f is in the right order in this par-
tition.



Lemma 4.1. (Ordering Lemma) Let f be a feature
such that p(f)

1 < p(f)
2 and (S, S̄) be a partition of 2N

individuals with advantage ε. If 2εαf < 1√
N

,

Pr[p̃(f)
S < p̃(f)

S̄
] ≥ 1

2
+ 2εc2αf

√
N

Otherwise,
Pr[p̃(f)

S < p̃(f)
S̄

] ≥ 1 − e−ε2α2
f N

where c is a constant.
Proof: Let Nf (S) and Nf (S̄) be the number of people
with feature f in S and S̄ respectively. Then, Nf(S)
and Nf (S̄) are sums of N independent 0/1 random
variables, with E[Nf (S)] = [(1

2 + ε)p(f)
1 + (1

2 − ε)p(f)
2 ]N

and E[Nf (S̄)] = [(1
2 + ε)p(f)

2 + (1
2 − ε)p(f)

1 ]N .
The difference between the expectations of the

two distributions is 2εαfN . When 2εαf ≤ 1√
N

, we
can apply Lemma 4.2 to get the first bound. When
2εαf > 1√

N
, the lemma follows by an application of the

Hoeffding Bound. !

Lemma 4.2. Let W1 and W2 be sums of n 0/1 indepen-
dent random variables with 0 < E[W2] − E[W1] <

√
n.

Then,

Pr[W2 ≥ W1] ≥
1
2

+
c2G√

n

where G = E[W2] − E[W1] and c is a constant.

We defer the proof of this lemma to the full version
of the paper. We use the following version of the
Hoeffding Bound in a later part of the section.

Theorem 2. (Hoeffding Bound) [17] Let
X1, . . . , Xn be independent random variables such
that Xi lies between ai and bi, and let X =

∑n
i=1 Xi.

Then,
Pr[|X − E[X ]| > t] ≤ 2e−t2/2σ

where σ =
∑

i(ai − bi)2.

4.2 A Model-Based Algorithm In this section, we
describe our model-based algorithm.

The intuition of our algorithm is as follows. Sup-
pose we were given the correct classification of a con-
stant fraction of the nodes. Then we could estimate with
reasonable accuracy the probability of the presence of
each feature in either population and use a simple scor-
ing function to find the correct side for each unclassified
individual. In reality, we start with a random (though
slightly biased) partition and repeatedly (re)classify to
get more and more correct partitions.

In the beginning, we divide the set of all individuals
randomly into two equally large sets, which we call the
training set T and the test set T ′. Let 2n = N be

the size of each such set. We begin with a random
partition of the individuals in the training set into two
equal sized sets S0 and S̄0. Notice that with at least
constant probability, the two sides are biased toward one
population or another by an additive

√
n individuals.

We estimate the probabilities for a fixed subset of the
features in each of S0 and S̄0. Using these probabilities,
we estimate using a simple scoring function which side
each individual in the test set is more likely to have come
from.4 We use this score to form a new partition (S1, S̄1)
of the test set and repeat the learning and partitioning
process on alternative halves for Θ(logn) iterations as
shown below. At this point, the classification would
be approximately correct and it is easy to now find a
correct classification.

In each subsequent learning/categorization phase,
we use a separate set of features to maintain indepen-
dence between the phases. We randomly divide the set
of all features into Θ(log n) groups, and use a new group
for each round. Standard techniques can be used to
show that the value of α and γ when restricted to each
of these groups is within a constant factor of α and γ;
for ease of exposition we simply assume from now on
that they are equal. We also abuse notation and use
k to denote the number of features in each round; the
total number of features we need is thus Θ(k log n).

We compute our scoring function as follows. We
initialise the score of an individual to 0 and look at
each feature in order. For each feature f ,
• if p̃(f)

1 > p̃(f)
2 , add 1 to the score if the feature is

present, and otherwise subtract 1.

• if p̃(f)
1 < p̃(f)

2 , subtract 1 from the score if the
feature is present, and otherwise add 1

We denote the result by score(x) for an individual
x. The following theorem summarises the main result
of this section.

Theorem 4.1. Suppose we have data on the presence
or absence of k̃ features in N individuals. Then, with
probability at least 1− 1

N , our algorithm finds the correct
partition in Θ(log N) rounds if k̃ > Θ( log2 N

α2 ) and
Nk̃ > Θ( log2 N

α4 ).

If x and y are individuals from populations 1 and
2 respectively, the goal of the algorithm is to tell x
and y apart based on their scores. For this, we would
like to estimate how the quantity score(x) − score(y)
behaves. Note that this quantity is not only a function
of the randomness in the features of x and y but it
also depends on the randomness in the feature bits
of the individuals in the training set. The next two

4We do not, use the technical notion of likelihood, though.



lemmas ensure that with high probability over the
randomness in the training set, the expected value of
score(x) − score(y) is high, where the expectation is
taken only over the feature bits of x and y.

For a given advantage ε, we call a feature f a low
feature if 2εαf < 1√

n
, and a high feature otherwise. For

the rest of the section, we use L and H to denote the
set of low and high features respectively. We also say
that the low features dominate when

∑
f∈L αf ≥ αk

2 ;
otherwise, we say that the high features dominate.

Lemma 4.3. Let Zf be a random variable such that
Zf = αf if the feature f is in the right order and −αf

otherwise, and let Z =
∑

f Zf . Also let ε
√

n > c′,
where c′ is a constant and k > Θ( log n

α2 ). When the high
features dominate,

Pr[Z <
βαk

4
] ≤ 1

n

Otherwise,

Pr[Z <
εc2α2k

√
n

4
] ≤ 1

n

Here c is the constant in Lemma 4.2 and β is a
constant.

The proof uses Lemma 4.1 along with Theorem 2.
We omit the details here.

Lemma 4.4. Let x be a node belonging to population 1
and y be a node belonging to population 2. Let (Si, S̄i)
be a partition with advantage ε. If the low features
dominate, with probability at least 1− 1

n over the feature
bits of the individuals in the training set,

E[score(x)] − E[score(y)] ≥ εc2α2k
√

n

4

Otherwise,

E[score(x)] − E[score(y)] ≥ βαk

4

where c′ is a constant, c is the constant in Lemma 4.2
and β is the constant in Lemma 4.3. The expectation
here is taken over the choice of the feature bits for nodes
x and y.

The basic idea is to observe that the difference
between the scores is basically twice the score Z in
Lemma 4.3. We omit the details.

Lemma 4.5. Let (Si, S̄i) be a partition with advantage
at least ε where ε

√
n > c′, and let k > Θ( log n

α2 ) and
nk > Θ( log n

α4 ). Then, with probability at least 1 − 1
n ,

(Si+1, S̄i+1) has advantage at least min[2ε, C0], where
C0 is a constant.

We leave the proof of this lemma to the full
manuscript. For now, we observe Lemma 4.3 holds with
high probability for every step of the algorithm. Then,
for each node in the test set, we have a lower bound on
its expected score. Moreover, we know that the vari-
ance is at most

√
k. Using Lemma 4.2, we can infer a

lower bound on the probability of categorizing a test
node correctly. If we are in the first case of Lemma 4.3,
this lower bound becomes 1

2 +2ε. This yields a new par-
tition with the required 2ε advantage. In the other case
of Lemma 4.3, we can get a constant advantage.

The correctness of our algorithm is ensured by the
following final lemma, the proof of which we defer to
the full version of the paper.

Lemma 4.6. Let (Si, S̄i) be a partition of the training
set which has advantage at least C0 where C0 is a
constant. If k > Θ( log n

α2 ), we can correctly classify every
node in the test set with probability at least 1 − 1

n .

4.3 A Model-Based Optimization Function We
now introduce our model-based optimization function.
Let Nf (S) denote the number of individuals with fea-
ture f in the set of individuals S. Given a partition
(S, S̄) of the individuals, our score g(S, S̄) is defined as
follows:

g(S, S̄) =
∑

f

∣∣Nf (S) − Nf (S̄)
∣∣

We also define diffg(S, S̄), which is the difference
between g(P , P̄) and g(S, S̄). The main result of the
section can be summarised by the following theorem.
Theorem 4.2. Suppose we are given data for the pres-
ence or absence of k features in N individuals from two
populations. If k > Θ( log N

α2 ) and N > Θ( log N
α2 ), the par-

tition (S, S̄) with N nodes on each side that maximizes
the value of the score g(S, S̄) =

∑
f

∣∣Nf (S)−Nf (S̄)
∣∣ is

the correct partition with probability at least 1 − 1
N .

Proving Theorem 4.2 is easy when L is comparable to
N , say L > N/4. When N > Θ( log N

α2 ), we can show
that the expected difference between the values of the
perfect partition and an arbritrary partition (S, S̄) with
L swapped nodes is at least αkL/5. We omit the details
here. Now the difference in the scores is a function of
Nk = Θ(Lk) bits, and if we change the value of each
of these bits, the score changes by at most 2. Therefore
the probability that this difference is less than 0 is at
most the probability that it differs from its expected
value by Θ(L

√
k log N), and by the Method of Bounded

Differences, this value is exponentially small in N .
We cannot use this argument directly when L ≤

N/4 because now the expected value of the difference is
Θ(αkL) which can be much smaller than the standard
deviation

√
Nk. What we can do however, is show that



the difference behaves well for most configurations of
the feature bits of the unswapped individuals.

For the rest of the section, we focus on proving
theorem 4.2 when L < N/4. Using notation from
Section 3, let (S, S̄) be the partition (X ∪ P, Y ∪ Q),
where all nodes in X and Q are in population 1 and all
nodes in Y and P are in population 2. The main idea
behind the proof is to look at only a region of the total
probability space on which a certain condition holds.
Let p̃(f)

X and p̃(f)
Y be the fraction of individuals who have

feature f in the sets X and Y respectively. Let Sf be
a random variable which is 1 when p̃(f)

X and p̃(f)
Y are in

the right order and when |p̃(f)
X − p̃(f)

Y | > αf

2 , and −1
otherwise. The condition we need is the following:

(4.2)
∑

f

Sfαf ≥ 8αk

10

The following lemma shows that this condition
holds with probability at least 1 − max[ 1

N2L , 1
2N ] when

N and k are large enough.

Lemma 4.7. Let N > Θ( log N
α2 ) and k > Θ( log N

α2 ) and
L < N

4 . Then, condition 4.2 holds with probability
at least 1 − max[ 1

N2L , 1
2N ] over the feature bits of the

individuals in X and Y .

The basic idea of the proof is to use Lemma 3.3
which bounds the sum of squares of the deviation of
the number of individuals with feature f from their
expected value. An application of the conditions on
N and k then completes the proof. The following
lemma shows that E[diffg] is high when Condition (1)
is satisfied.

Lemma 4.8. Let L < N/4 and let C be a configuration
of the feature bits of the individuals in X and Y such
that condition 4.2 holds. Then, E[diffg(S, S̄)|C] ≥ αkL

8 .

Proof: Let ∆f denote the contribution of feature f
to diffg(S, S̄). We make the following two claims, the
proofs of which we defer to the full version of the paper.

Claim 3. Let f be a feature such that αf ≥ α
20 and

suppose that Xf and Yf are fixed so that Sf = 1. Then,
E[∆f ] ≥ αf L

2 , where the expectation is taken over the
randomness in the feature bits of P and Q.

Claim 4. Let Xf and Yf be fixed to any values.
Then,E[∆f ] ≥ −αfL, where the expectation is taken
over the randomness in the feature bits of the individu-
als in P and Q.

Let B be the set of features such that Sf = 1 and
αf ≥ α

20 . Then, the expectation of diffg(S, S̄) can be
written as follows.

E[diffg(S, S̄)] = E[
∑

f

∆f ] =
∑

f∈B
E[∆f ] +

∑

f /∈B

E[∆f ]

A feature f is in B if both αf > α
20 and Sf = 1.

Condition (1) tells us that
∑

{f |Sf=1} αf is at least 8αk
10

and the total contribution from the features which have
αf < α

20 can be at most αk
20 . Therefore

∑
f∈B αf ≥∑

{f |Sf=1} αf − αk
20 ≥ 15αk

20 . Again, a feature is not in
B if either Sf = −1 or αf < α

20 .
∑

{f |Sf=−1} αf ≤ 2αk
10

by Condition (1), and therefore
∑

f /∈B αf ≤ 2αk
10 + αk

20 ≤
5αk
20 .

Applying Claims 4 and 3, for a fixed C such that
Condition (1) holds, we can estimate E[diffg(S, S̄)|C]
to be at least 15αk

20 · L
2 − 5αk

20 · L = αkL
8 .

!
The next lemma shows that diffg(S, S̄) < 0 with

probability at most max[ 2
N2L , 2

2N ] when (S, S̄) is a cut
with L swapped nodes.
Lemma 4.9. Let L ≤ N/4 and let (S, S̄) be a cut with
L swapped nodes. Then

Pr[diffg(S, S̄) ≤ 0] ≤ max[
2

2N
,

2
N2L

]

The basic idea behind the proof is as follows. If the
feature bits of the individuals in X and Y are fixed,
diffg(S, S̄) is a random function of the features of the
individuals in P and Q, and there are only 2Lk such
bits. When the feature bits of the individuals in X and
Y are fixed such that condition (1) holds, Lemma 4.8
shows that the expectation of diffg(S, S̄) is also high.
Finally, since condition (1) holds with high probability,
we have Lemma 4.9.

Theorem 4.2 now follows by taking an union bound
over all cuts. We omit the details here.

5 Bisection
The techniques of the previous section can be used to
give a simple algorithm for bisection in the randomized
model introduced by Bui. This matches the result of
Boppana which used convex programming. We note
that McSherry also matched this result using spectral
methods. Our algorithm is a local improvement method
of a sort. It is related to the approach of Condon
and Karp, or an improved version due to Carson and
Impagliazzo.

Suppose we are given a random graph generated
as follows. The graph has 2n nodes and m edges, and
the nodes can be partitioned into two sets of equal size.
Each node chooses m

2n neighbors at random as follows:
it selects each node on the same side of the partition
with probability 1

2 + δ and each node on the opposite
side with probability 1

2 − δ where δ = β
√

n
2m log n and

β is a constant.



Given a partition (S, S̄), we always assume that
S has at least as many nodes from the first side as
from the second side of the partition. We say that
(S, S̄) has imbalance ε if S contains (1

2 + ε)n nodes
from the first side. Our algorithm starts with a random
partition of the nodes. Note that this partition has
imbalance at least 1√

n
with constant probability. We

iteratively reclassify the nodes and produce partitions
with increasing imbalance up to a constant imbalance.

For each node we examine the next d = m
2n log n

unexamined (in any previous iteration of the algorithm)
edges. We place the node on the side with the majority
of neighbors, breaking ties at random. The following
lemma shows that when ε < c′, where c′ is a constant,
the imbalance increases by at least a constant factor
every round.
Lemma 5.1. Let (S, S̄) be a partition of the nodes with
imbalance ε. If ε < c′, a node is classified correctly with
probability at least 1

2 + 4ε. Here c′ is a constant.
The proof uses ideas similar to the proof of Lemma 4.1.

Since we start with imbalance 1√
n
, we get a partition

with constant imbalance after at most 1
2 log n rounds.

We now use Lemma 5.2 and the remaining m
4n unexam-

ined edges per node to classify each nodes correctly with
high probability.

Lemma 5.2. Suppose we have a partition (S, S̄) with
constant imbalance, and m

4n unexamined edges for each
node. Then, we can classify each node correctly with
probability at least 1 − 1

n .

The proof is very similar to the proof of Lemma 4.6
and we defer it to the full version of the paper.
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