
Stochastic Direct Reinforcement:
Application to Simple Games with Recurrence

John Moody*, Yufeng Liu*, Matthew Saffell* and Kyoungju Youn†
{moody, yufeng, saffell}@icsi.berkeley.edu, kjyoun@yahoo.com

*International Computer Science Institute, Berkeley
†OGI School of Science and Engineering, Portland

Abstract

We investigate repeated matrix games with stochastic players
as a microcosm for studying dynamic, multi-agent interac-
tions using the Stochastic Direct Reinforcement (SDR) pol-
icy gradient algorithm. SDR is a generalization of Recur-
rent Reinforcement Learning (RRL) that supports stochas-
tic policies. Unlike other RL algorithms, SDR and RRL
use recurrent policy gradients to properly address tempo-
ral credit assignment resulting from recurrent structure. Our
main goals in this paper are to (1) distinguish recurrent mem-
ory from standard, non-recurrent memory for policy gradi-
ent RL, (2) compare SDR with Q-type learning methods for
simple games, (3) distinguish reactive from endogenous dy-
namical agent behavior and (4) explore the use of recurrent
learning for interacting, dynamic agents.
We find that SDR players learn much faster and hence outper-
form recently-proposed Q-type learners for the simple game
Rock, Paper, Scissors (RPS). With more complex, dynamic
SDR players and opponents, we demonstrate that recurrent
representations and SDR’s recurrent policy gradients yield
better performance than non-recurrent players. For the It-
erated Prisoners Dilemma, we show that non-recurrent SDR
agents learn only to defect (Nash equilibrium), while SDR
agents with recurrent gradients can learn a variety of interest-
ing behaviors, including cooperation.

1 Introduction
We are interested in the behavior of reinforcement learning
agents when they are allowed to learn dynamic policies and
operate in complex, dynamic environments. A general chal-
lenge for research in multi-agent systems is for agents to
learn to leverage or exploit the dynamic properties of the
other agents and the overall environment. Even seemingly
simple repeated matrix games can display complex behav-
iors when the policies are reactive, predictive or endoge-
nously dynamic in nature.

In this paper we use repeated matrix games with stochas-
tic players as a microcosm for studying dynamic, multi-
agent interactions using the recently-proposed Stochastic
Direct Reinforcement (SDR) policy gradient algorithm.
Within this context, we distinguish recurrent memory from
standard, non-recurrent memory for policy gradient RL
(Section 2), compare policy gradient with Q-type learning
methods for simple games (Section 3), contrast reactive with

non-reactive, endogenous dynamical agent behavior and ex-
plore the use of recurrent learning for addressing temporal
credit assignment with interacting, dynamic agents (Section
4).

Most studies of RL agents in matrix games use Q-
Learning, (Littman 1994; Sandholm & Crites 1995; Claus
& Boutilier 1998; Hu & Wellman 1998; Tesauro & Kephart
2002; Bowling & Veloso 2002; Tesauro 2004). These meth-
ods based on Markov Decision Processes (MDPs) learn a Q-
value for each state-action pair, and represent policies only
implicitly. Though theoretically appealing, Q-Learning can
not easily be scaled up to the large state or action spaces
which often occur in practice.

Direct reinforcement (DR) methods (policy gradient and
policy search) (Williams 1992)(Moody & Wu 1997)(Moody
et al. 1998)(Baxter & Bartlett 2001) (Ng & Jordan 2000)
represent policies explicitly and do not require that a value
function be learned. Policy gradient methods seek to im-
prove the policy by using the gradient of the expected av-
erage or discounted reward with respect to the policy func-
tion parameters. More generally, they seek to maximize an
agent’s utility, which is a function of its rewards. We find
that direct representation of policies allows us handle mixed
strategies for matrix games naturally and efficiently.

Most previous work with RL agents in repeated matrix
games has used static, memory-less opponents, meaning that
policy inputs or state-spaces for Q-tables do not encode pre-
vious actions. (One exception is the work of (Sandholm &
Crites 1995).) In order to exhibit interesting temporal be-
haviors, a player with a fixed policy must have memory. We
refer to such players as dynamic contestants. We note the
following properties of the repeated matrix games and play-
ers we consider:

1. Known, stationary reward structure.

2. Simultaneous play with immediate rewards.

3. Mixed policies: stochastic actions.

4. Partial-observability: players do not know each others’
strategies or internal states.

5. Standard Memory: dynamic players may have policies
that use memory of their opponents’ actions, which is rep-
resented by non-recurrent inputs or state variables.



6. Recurrent Memory: dynamic players may have policies
that depend upon inputs or state variables representing
their own previous actions.

While the use of standard memory in Q-type RL agents has
been well studied (Lin & Mitchell 1992; McCallum 1995)
and applied in other areas of AI, the importance of distin-
guishing between standard memory and recurrent memory
within a policy gradient context has not previously been rec-
ognized.

With dynamic contestants, the game dynamics are recur-
rent. Dynamic contestants can be reactive or predictive of
opponents’ actions and can also generate endogenous dy-
namic behavior by using their own past actions as inputs (re-
currence). When faced with a predictive opponent, a player
must have recurrent inputs in order to predict the predic-
tive responses of its opponent. The player must know what
its opponent knows in order to anticipate the response and
thereby achieve best play.

The feedback due to recurrent inputs gives rise to learning
challenges that are naturally solved within a non-Markovian
or recurrent learning framework. The SDR algorithm de-
scribed in Section 2 is well-matched for use in games with
dynamic, stochastic opponents of the kinds we investigate.
In particular, SDR uses recurrent policy gradients to prop-
erly address temporal credit assignment that results from re-
currence in games.

Section 3 provides a baseline comparison to traditional
value function RL methods by pitting SDR players against
two recently-proposed Q-type learners for the simple game
Rock, Paper, Scissors (RPS). In these competitions, SDR
players learn much faster and thus out-perform their Q-type
opponents. The results and analysis of this section raise
questions as to whether use of a Q-table is desirable for sim-
ple games.

Section 4 considers games with more complex SDR play-
ers and opponents. We demonstrate that recurrence gives
rise to predictive abilities and dynamical behaviors. Recur-
rent representations and SDR’s recurrent policy gradients
are shown to be yield better performance than non-recurrent
SDR players when competing against dynamic opponents in
the zero sum games. Case studies include Matching Pennies
and RPS.

For the Iterated Prisoners Dilemma (a general sum game),
we consider SDR self-play and play against fixed oppo-
nents. We find that non-recurrent SDR agents learn only
the Nash equilibrium strategy “always defect”, while SDR
agents trained with recurrent gradients can learn a variety
of interesting behaviors. These include the Pareto-optimal
strategy “always cooperate”, a time-varying strategy that ex-
ploits a generous opponent and the evolutionary stable strat-
egy Tit-for-Tat.

2 Stochastic Direct Reinforcement
We summarize the Stochastic Direct Reinforcement (SDR)
algorithm, which generalizes the recurrent reinforcement
learning (RRL) algorithm of (Moody & Wu 1997; Moody
et al. 1998; Moody & Saffell 2001) and the policy gradient
work of (Baxter & Bartlett 2001). This stochastic policy

gradient algorithm is formulated for probabilistic actions,
partially-observed states and non-Markovian policies. With
SDR, an agent represents actions explicitly and learns them
directly without needing to learn a value function. Since
SDR agents represent policies directly, they can naturally
incorporate recurrent structure that is intrinsic to many po-
tential applications. Via use of recurrence, the short term
effects of an agent’s actions on its environment can be cap-
tured, leading to the possibility of discovering more effective
policies.

Here, we describe a simplified formulation of SDR appro-
priate for the repeated matrix games with stochastic players
that we study. This formulation is sufficient to (1) compare
SDR to recent work on Q-Learning in games and (2) inves-
tigate recurrent representations in dynamic settings. A more
general and complete presentation of SDR will be presented
elsewhere.

In the following subsections, we provide an overview of
SDR for repeated, stochastic matrix games, derive the batch
version of SDR with recurrent gradients, present the stochas-
tic gradient approximation to SDR for more efficient and on-
line learning, describe the model structures used for SDR
agents in this paper and relate recurrent representations to
more conventional “memory-based” approaches.

2.1 SDR Overview
Consider an agent that takes action at with probability p(at)
given by its stochastic policy function P

p(at) = P (at; θ, . . .) , (1)

The goal of the SDR learning algorithm is to find parameters
θ for the best policy according to an agent’s expected utility
UT accumulated over T time steps. For the time being, let
us assume that the agent’s policy (e.g. game strategy) and
the environment (e.g. game rules, game reward structure,
opponent’s strategy) are stationary. The expected total utility
of a sequence of T actions can then be written in terms of
marginal utilities ut(at) gained at each time:

UT =

T
∑

t=1

∑

at

ut(at)p(at). (2)

This simple additive utility is a special case of more general
path-dependent utilities as described in (Moody et al. 1998;
Moody & Saffell 2001), but is adequate for studying learn-
ing in repeated matrix games.

More specifically, a recurrent SDR agent has a stochastic
policy function P

p(at) = P (at; θ, I
(n)
t−1, A

(m)
t−1). (3)

Here A
(m)
t−1 = {at−1, at−2..., at−m} is a partial history of m

recent actions (recurrent inputs), and the external informa-
tion set I

(n)
t−1 = {it−1, it−2..., it−n} represents n past obser-

vation vectors (non-recurrent, memory inputs) available to
the agent at time t. Such an agent has recurrent memory of
order m and standard memory of length n As described in
Section 4, such an agent is said to have dynamics of order
(m, n).



We refer to the combined action and information sets as
the observed history. Note that the observed history is not
assumed to provide full knowledge of the state St of the
world. While probabilities for previous actions A

(m)
t−1 depend

explicitly on θ, we assume here that components of I
(n)
t−1

have no known direct θ dependence, although there may be
unknown dependencies of I

(n)
t−1 upon recent actions A

(m)
t−1

1. For lagged inputs, it is the explicit dependence on pol-
icy parameters θ that distinguishes recurrence from standard
memory. Within a policy gradient framework, this distinc-
tion is important for properly addressing the temporal credit
assignment problem.

The matrix games we consider have unknown opponents,
and are hence partially-observable. The SDR agents in this
paper have knowledge of their own policy parameters θ,
the history of play, or the pay-off structure of the game
u. However, they have no knowledge of the opponent’s
strategy or internal state. Denoting the opponent’s action
at time t as ot, a partial history of n opponent plays is
I
(n)
t−1 = {ot−1, ot−2..., ot−n}, which are treated as non-

recurrent, memory inputs. The marginal utility or pay-off
at time t depends only upon the most recent actions of the
player and its opponent: ut(at) = u(at, ot). For the game
simulations in this paper, we consider SDR players and op-
ponents with (m, n) ∈ {0, 1, 2}.

For many applications, the marginal utilities of all possi-
ble actions ut(at) are known after an action is taken. When
trading financial markets for example, the profits of all pos-
sible one month trades are known at the end of the month.2
For repeated matrix games, the complete reward structure is
known to the players, and they act simultaneously at each
game iteration. Once the opponent’s action is observed,
the SDR agent knows the marginal utility for each possible
choice of its prior action. Hence, the SDR player can com-
pute the second sum in Eq.(2). For other situations where
only the utility of the action taken is known (e.g. in games
where players alternate turns), then the expected total reward
may be expressed as UT =

∑T

t=1 ut(at)p(at).

2.2 SDR: Recurrent Policy Gradients
In this section, we present the batch version of SDR with
recurrent policy gradients. The next section describes the
stochastic gradient approximation for on-line SDR learning

UT can be maximized by performing gradient ascent on
the utility gradient

∆θ ∝
dUT

dθ
=

∑

t

∑

at

ut(at)
d

dθ
p(at). (4)

1In situations where aspects of the environment can be mod-
eled, then It−1 may depend to some extent in a known way on
At−1. This implicit dependence on policy parameters θ introduces
additional recurrence which can be captured in the learning algo-
rithm. In the context of games, this requires explicitly modeling
the opponent’s responses. Environment and opponent models are
beyond the scope of this short paper.

2For small trades in liquid securities, this situation holds well.
For very large trades, the non-trivial effects of market impact must
be considered.

In this section, we derive expressions for the batch policy
gradient dp(at)

dθ
with a stationary policy. When the policy

has m-th order recurrence, the full policy gradients are ex-
pressed as m-th order recursions. These recurrent gradients
are required to properly account for temporal credit assign-
ment when an agent’s prior actions directly influence its cur-
rent action. The m-th order recursions are causal (propagate
information forward in time), but non-Markovian.

For the non-recurrent m = 0 case, the policy gradient is
simply:

dp(at)

dθ
=

dP (at; θ, I
(n)
t−1)

dθ
. (5)

For first order recurrence m = 1, the probabilities of
current actions depend upon the probabilities of prior ac-
tions. Note that A

(1)
t−1 = at−1 and denote p(at|at−1) =

P (at; θ, I
(n)
t−1, at−1). Then we have

p(at) =
∑

at−1

p(at|at−1)p(at−1) (6)

The recursive update to the total policy gradient is

dp(at)

dθ
=

∑

at−1

{

∂p(at|at−1)

∂θ
p(at−1)

+p(at|at−1)
dp(at−1)

dθ

}

(7)

where ∂
∂θ

p(at|at−1) is calculated as ∂
∂θ

P (at; θ, I
(n)
t−1, at−1)

with at−1 fixed.
For the case m = 2, A

(2)
t−1 = {at−1, at−2}. Denoting

p(at|at−1, at−2) = P (at; θ, I
(n)
t−1, at−1, at−2), we have the

second-order recursion

p(at) =
∑

at−1

p(at|at−1)p(at−1)

p(at|at−1) =
∑

at−2

p(at|at−1, at−2)p(at−2) (8)

The second-order recursive updates for the total policy gra-
dient can be expressed with two equations. The first is

d

dθ
p(at) =

∑

at−1

{

∂

∂θ
p(at|at−1)p(at−1)

+p(at|at−1)
d

dθ
p(at−1)

}

. (9)

In contrast to Eq.(7) for m = 1, however, the first gradient
on the RHS of Eq.(9) must be evaluated using

d

dθ
p(at|at−1) =

∑

at−2

{

∂

∂θ
p(at|at−1, at−2)p(at−2)

+p(at|at−1, at−2)
d

dθ
p(at−2)

}

.(10)

In the above expression, both at−1 and at−2 are
treated as fixed and ∂

∂θ
p(at|at−1, at−2) is calculated as

∂
∂θ

P (at; θ, I
(n)
t−1, at−1, at−2). These recursions can be ex-

tended in the obvious way for m ≥ 3.



2.3 SDR with Stochastic Gradients
The formulation of SDR of Section 2.2 provides the exact
recurrent policy gradient. It can be used for learning off-line
in batch mode or for on-line applications by retraining as
new experience is acquired. For the latter, either a complete
history or a moving window of experience may be used for
batch training, and policy parameters can be estimated from
scratch or simply updated from previous values.

We find in practice, though, that a stochastic gradient for-
mulation of SDR yields much more efficient learning than
the exact version of the previous section. This frequently
holds whether an application requires a pre-learned solution
or adaptation in real-time.

To obtain SDR with stochastic gradients, an estimate
g(at) of the recurrent policy gradient for time-varying pa-
rameters θt is computed at each time t. The on-line SDR
parameter update is then the stochastic approximation

∆θt ∝
∑

at

ut(at)gt(at). (11)

The on-line gradients gt(at) are estimated via approximate
recursions. For m = 1, we have

gt(at) ≈
∑

at−1

{

∂pt(at|at−1)

∂θ
pt−1(at−1)

+pt(at|at−1)gt−1(at−1)} . (12)

Here, the subscripts indicate the times at which each quan-
tity is evaluated. For m = 2, the stochastic gradient is ap-
proximated as

gt(at) ≈
∑

at−1

{

∂pt(at|at−1)

∂θ
pt−1(at−1)

+pt(at|at−1)gt−1(at−1)} , with (13)

dpt(at|at−1)

dθ
≈

∑

at−2

{

∂

∂θ
pt(at|at−1, at−2)pt−2(at−2)

+pt(at|at−1, at−2)gt−2(at−2)} . (14)

Stochastic gradient implementations of learning algo-
rithms are often referred to as “on-line”. Regardless of
the terminology used, one should distinguish the number of
learning iterations (parameter updates) from the number of
events or time steps of an agent’s experience. The compu-
tational issues of how parameters are optimized should not
be limited by how much information or experience an agent
has accumulated.

In our simulation work with RRL and SDR, we have used
various types of learning protocols based on stochastic gra-
dient parameter updates: (1) A single sequential learning
pass (or epoch) through a history window of length τ . This
results in one parameter update per observation, action or
event and a total of τ parameter updates. (2) n multiple
learning epochs over a fixed window. This yields a total of
nτ stochastic gradient updates. (3) Hybrid on-line / batch
training using history subsets (blocks) of duration b. With
this method, a single pass through the history has τ/b pa-
rameter updates. This can reduce variance in the gradient

estimates. (4) Training on N randomly resampled blocks
from the a history window. (5) Variations and combinations
of the above. Note that (4) can be used to implement bag-
ging or to reduce the likelihood of being caught in history-
dependent local minima.

Following work by other authors in multi-agent RL, all
simulation results presented in this paper use protocol (1).
Hence, the number of parameter updates equals the length
of agent’s history. In real-world use, however, the other
learning protocols are usually preferred. RL agents with
limited experience typically learn better with stochastic gra-
dient methods when using multiple training epochs n or a
large number parameter updates N >> τ .

2.4 Model Structures
In this section we describe the two model structures we use
in our simulations. The first model can be used for games
with binary actions and is based on the tanh function. The
second model is appropriate for multiple-action games and
uses the softmax representation. Recall that the SDR agent
with memory length n and recurrence of order m takes an
action with probability, p(at) = P (at; θ, I

(n)
t−1, A

(m)
t−1). Let

θ = {θ0, θI , θA} denote the bias, non-recurrent, and recur-
rent weight vectors respectively. The binary-action recurrent
policy function has the form P (at = +1; θ, I

(n)
t−1, A

(m)
t−1) =

(1+ft)/2, where ft = tanh(θ0 +θI ·I
(n)
t−1 +θA ·A

(m)
t−1) and

p(−1) = 1 − p(+1). The multiple-action recurrent policy
function has the form

p(at = i) =
exp(θi0 + θiI · I

(n)
t−1 + θiA · A

(m)
t−1)

∑

j exp(θj0 + θjI · I
(n)
t−1 + θjA · A

(m)
t−1)

.

(15)

2.5 Relation to “Memory-Based” Methods
For the repeated matrix games with dynamic players that we
consider in this paper, the SDR agents have both memory of
opponents’ actions I

(n)
t−1 and recurrent dependencies on their

own previous actions A
(m)
t−1. These correspond to standard,

non-recurrent memory and recurrent memory, respectively.
To our knowledge, we are the first in the RL community to
make this distinction, and to propose recurrent policy gradi-
ent algorithms such as RRL and SDR to properly handle the
temporal dependencies of an agent’s actions.

A number of “memory-based” approaches to value func-
tion RL algorithms such as Q-Learning have been dis-
cussed (Lin & Mitchell 1992; McCallum 1995). With these
methods, prior actions are often included in the observation
It−1 or state vector St. In a policy gradient framework, how-
ever, simply including prior actions in the observation vector
It−1 ignores their dependence upon the policy parameters θ.
As mentioned previously, the probabilities of prior actions
A

(m)
t−1 depend explicitly on θ, but components of I

(n)
t−1 are

assumed to have no known or direct dependence on θ.3

3Of course, agents do influence their environments, and game
players do influence their opponents. Such interaction with the en-



A standard memory-based approach of treating A
(m)
t−1 as

part of It−1 by ignoring the dependence of A
(m)
t−1 on θ

would in effect truncate the gradient recursions above. This
would replace probabilities of prior actions p(at−j) with
Kronecker δ’s (1 for the realized action and 0 for all other
possible actions) and setting d

dθ
p(at−1) and d

dθ
p(at−2) to

zero. When this is done, the m = 1 and m = 2 recurrent
gradients of equations (7) to (10) collapse to:

d

dθ
p(at) ≈

∂

∂θ
p(at|at−1), m = 1

d

dθ
p(at) ≈

∂

∂θ
p(at|at−1, at−2), m = 2.

These equations are similar to the non-recurrent m = 0 case
in that they have no dependence upon the policy gradients
computed at times t − 1 or t − 2. When total derivative
are approximated by partial derivatives, sequential depen-
dencies that are important for solving the temporal credit
assignment problem when estimating θ are lost.

In our empirical work with RRL and SDR, we have found
that removal of the recurrent gradient terms can lead to fail-
ure of the algorithms to learn effective policies. It is be-
yond the scope of this paper to discuss recurrent gradients
and temporal credit assignment further or to present unre-
lated empirical results. In the next two sections, we use
repeated matrix games with stochastic players as a micro-
cosm to (1) compare the policy gradient approach to Q-type
learning algorithms and (2) explore the use of recurrent rep-
resentations, and interacting, dynamic agents.

3 SDR vs. Value Function Methods for a
Simple Game

The purpose of this section is to compare simple SDR agents
with Q-type agents via competition in a simple game.

Nearly all investigations of reinforcement learning in
multi-agent systems have utilized Q-type learning meth-
ods. Examples include bidding agents for auctions (Kephart,
Hansen, & Greenwald 2000; Tesauro & Bredin 2002), au-
tonomic computing (Boutilier et al. 2003), and games
(Littman 1994; Hu & Wellman 1998), to name a few.

However, various authors have noted that Q-functions can
be cumbersome for representing and learning good policies.
Examples have been discussed in robotics (Anderson 2000),
telecommunications (Brown 2000), and finance (Moody &
Saffell 1999; 2001). The latter papers provide comparisons
of trading agents trained with the RRL policy gradient algo-
rithm and Q-Learning for the real-world problem of allocat-
ing assets between the S&P 500 stock index and T-Bills. A
simple toy example that elucidates the representational com-
plexities of Q-functions versus direct policy representations
is the Oracle Problem described in (Moody & Saffell 2001).

To investigate the application of policy gradient methods
to multi-agent systems, we consider competition between
SDR and Q-type agents playing Rock-Paper-Scissors (RPS),

vironment results in implicit dependencies of I
(n)
t−1 on θ. We de-

scribe a more general formulation of SDR with environment mod-
els that capture such additional recurrence in another paper.

a simple two-player repeated matrix game. We chose our
opponents to be two recently proposed Q-type learners with
mixed strategies, WoLF-PHC (Bowling & Veloso 2002) and
Hyper-Q (Tesauro 2004). We selected RPS for the non-
recurrent case studies in this section in order to build upon
the empirical comparisons provided by Bowling & Veloso
and Tesauro. Hence, we use memory-less Q-type players
and follow key elements of these authors’ experimental pro-
tocols. To enable fair competitions, the SDR players have
access to only as much information as their PHC and Hyper-
Q opponents. We also use the on-line learning paradigms of
these authors, whereby a single parameter update (learning
step) is performed after each game iteration (or “throw”).

Rather than consider very long matches of millions of
throws as previous authors have,4 we have chosen to limit
all simulations in this paper to games of 20,000 plays or
less. We believe that O(104) plays is more than adequate
to learn a simple matrix game.The Nash equilibrium strat-
egy for RPS is just random play, which results in an average
draw for both contestants. This strategy is uninteresting for
competition, and the discovery of Nash equilibrium strate-
gies in repeated matrix games has been well-studied by oth-
ers. Hence, the studies in this section emphasize the non-
equilibrium, short-run behaviors that determine a player’s
viability as an effective competitor in plausible matches.
Since real tournaments keep score from the beginning of a
game, it is cumulative wins that count, not potential asymp-
totic performance. Transient performance matters and so
does speed of learning.

3.1 Rock-Paper-Scissors & Memory-Less Players
RPS is a two-player repeated matrix game where one of
three actions {(R)ock, (P)aper, (S)cissors} is chosen by each
player at each iteration of the game. Rock beats Scissors
which beats Paper which in turn beats Rock. Competitions
are typically sequences of throws. A +1 is scored when your
throw beats your opponent’s throw, a 0 when there is a draw,
and a −1 when your throw is beaten. The Nash equilibrium
for non-repeated play of this game is to choose the throw
randomly.

In this section we will compare SDR players to two Q-
type RPS opponents: the Policy Hill Climbing (PHC) vari-
ant of Q-Learning (Bowling & Veloso 2002) and the Hyper-
Q algorithm (Tesauro 2004). The PHC and Hyper-Q play-
ers are memory-less, by which we mean that they have no
encoding of previous actions in their Q-table state spaces.
Thus, there is no sequential structure in their RPS strategies.
These opponents’ mixed policies are simple unconditional
probabilities for throwing rock, paper or scissors, and are
independent of their own or their opponents’ recent past ac-
tions. These Q-type agents are in essence three-armed ban-
dit players. When learning rates are zero, their memory-less
strategies are static. When learning rates are positive, com-
peting against these opponents is similar to playing a “rest-
less” three-armed bandit.

4See the discussion of RPS tournaments in Section 4.2. Com-
puter RoShamBo and human world championship tournaments
have much shorter games.



For the RPS competitions in this section, we use non-
recurrent SDR agents. Since the Q-type players are
memory-less and non-dynamic, the SDR agents do not re-
quire inputs corresponding to lagged actions of their own or
their opponents to learn superior policies. Thus, the policy
gradient players use the simple m = 0 case of the SDR al-
gorithm.

The memory-less SDR and Q-type players have time-
varying behavior due only to their learning. When learning
rates are zero, the players policies are static unconditional
probabilities of throwing {R,P,S}, and the games are station-
ary with no sequential patterns in play. When learning rates
are non-zero, the competitions between the adaptive RL
agents in this section are analogous to having two restless
bandits play each other. This is also the situation for all em-
pirical results for RL in repeated matrix games presented by
(Singh, Kearns, & Mansour 2000; Bowling & Veloso 2002;
Tesauro 2004).

SDR vs. PHC PHC is a simple extension of Q-learning.
The algorithm, in essence, performs hill-climbing in the
space of mixed policies toward the greedy policy of its cur-
rent Q-function. The policy function is a table of three un-
conditional probabilities with no direct dependence on re-
cent play. We use the WoLF-PHC (win or learn fast) variant
of the algorithm.

For RPS competition against WoLF-PHC, an extremely
simple SDR agent with no inputs and only bias weights is
sufficient. The SDR agent represents mixed strategies with
softmax: p(i) = ewi

∑

j
e

wj
, for i, j = R, P, S. SDR with-

out inputs resembles Infinitesimal Gradient Ascent (Singh,
Kearns, & Mansour 2000), but assumes no knowledge of
the opponent’s mixed strategy.

For the experiments in this section, the complexities of
both players are quite simple. SDR maintains three weights.
WoLF-PHC updates a Q-table with three states and has three
policy parameters.

At the outset, we strove to design a fair competition,
whereby neither player would have an obvious advantage.
Both players have access to the same information, specifi-
cally just the current plays and reward. The learning rate for
SDR is η = 0.5, and the weight decay rate is λ = 0.001.
The policy update rates of WoLF-PHC for the empirical re-
sults we present are δl = 0.5 when losing and δw = 0.125
when winning. The ratio δl/δw = 4 is chosen to correspond
to experiments done by (Bowling & Veloso 2002), who used
ratios of 2 and 4. We select δl for PHC to equal SDR’s learn-
ing rate η to achieve a balanced baseline comparison. How-
ever, since δw = η/4, PHC will not deviate from winning
strategies as quickly or as much as will SDR. (While learn-
ing, some policy fluctuation occurs at all times due to the
randomness of plays in the game.)

Figure 1 shows a simulation result with PHC’s Q-learning
rate set to 0.1, a typical value used by many in the RL com-
munity. Some might find the results to be surprising. Even
with well-matched policy learning parameters for SDR and
PHC, and a standard Q learning rate, the Q function of PHC
does not converge. Both strategies evolve continuously, and

0 0.5 1 1.5 2
x 10

4

0

0.5

1
simple SDR (no input) vs PHC

R
P
S

0 0.5 1 1.5 2
x 10

4

0

0.5

1
Wins:0.486
Draws:0.349
Losses:0.165

Figure 1: The dynamic behavior of the SDR player when
playing Rock-Paper-Scissors against the WoLF-PHC player
with Q learning rate 0.1. The top panel shows the chang-
ing probabilities of the SDR players strategy over time. The
bottom panel shows the moving average of the percentage
of wins, losses, and draws against WoLF-PHC. Although
chaotic limit cycles in play develop, SDR achieves a consis-
tent advantage.

SDR dominates WoLF-PHC.
Upon investigation, we find that the behavior apparent in

Figure 1 is due to PHC’s relative sluggishness in updating
its Q-table. The role of time delays (or mis-matched time-
scales) in triggering such emergent chaotic behavior is well-
known in nonlinear dynamical systems. The simple version
of SDR used in this experiment has learning delays, too; it
essentially performs a moving average estimation of its op-
timal mixed strategy based upon PHC’s actions. Even so,
SDR does not have the encumbrance of a Q-function, so it
always learns faster than PHC. This enables SDR to exploit
PHC, while PHC is left to perpetually play “catch-up” to
SDR. As SDR’s strategy continuously evolves, PHC plays
catch-up, and neither player reaches the Nash equilibrium
strategy of random play with parity in performance.5

To confirm this insight, we ran simulated competitions
for various Q learning rates while keeping the policy update
rates for PHC and SDR fixed. We also wished to explore
how quickly WoLF-PHC would have to learn to be compet-
itive with SDR. Figure 2 shows performance results for a
range of Q learning rates from 1/32 to 1. WoLF-PHC is
able to match SDR’s performance by achieving net wins of
zero (an average draw) only when its Q learning rate is set
equal to 1.6

5In further experiments, we find that the slowness of Q-function
updates prevents PHC from responding directly to SDR’s change
of strategy even with hill-climbing rates δl approaching 1.0.

6In this limit, the Q learning equations simplify, and Q-table el-
ements for stochastic matrix games equal recently received rewards
plus a stochastic constant value. Since the greedy policy depends
only upon relative Q values for the possible actions, the Q-function
can be replaced by the immediate rewards for each action. Hence,
PHC becomes similar to a pure policy gradient algorithm, and both



1/32 1/16 1/8 1/4 1/2 1

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
A

ve
ra

ge
 W

in
s 

− 
Lo

ss
es

 fo
r P

H
C

PHC Q−learning rate

Figure 2: Average wins minus losses for PHC versus its Q
learning rate. The Tukey box plots summarize the distribu-
tions of outcomes of 10 matches against SDR opponents for
each case. Each match has 2.5×104 throws, and wins minus
losses are computed for the last 2 × 104 throws. The results
show that PHC loses to SDR on average for all Q learning
rates less than 1, and the dominance of SDR is statistically
significant. With a Q learning rate of 1, PHC considers only
immediate rewards and behaves like a pure policy gradient
algorithm. Only in this case is PHC able to match SDR’s
performance, with both players reaching Nash equilibrium
and achieving an average draw.

SDR vs. Hyper-Q The standard Q-Learning process of
using discrete-valued actions is not suitable for stochastic
matrix games as argued in (Tesauro 2004). Hyper-Q ex-
tends the Q-function framework to joint mixed strategies.
The hyper-Q-table is augmented by a Bayesian inference
method for estimating other agent’s strategies that applies
a recency-weighted version of Bayes’ rule to the observed
action sequence. In Tesauro’s simulation, Hyper-Q took 106

iterations to converge when playing against PHC.
As for PHC, we strove to design a fair competition be-

tween SDR and Hyper-Q, whereby neither player would
have an obvious information advantage. Both players have
access to the same observations, specifically the Bayesian
estimate of its opponent’s mixed strategy and the most re-
cent plays and reward. Following Tesauro’s RPS experi-
ments, our simulation of the Hyper-Q player has a discount
factor γ = 0.9 and a constant learning rate α = 0.01 and
uses a Bayes estimate of the opponent’s strategies. Simi-
larly, the input of SDR is a vector consisting of three proba-
bilities estimating Hyper-Q’s mixed strategy. The estimation
is performed by applying the same recency-weighted Bayes’
rule as used in Hyper-Q on the observed actions of the op-
ponent. The probability p(y|H) that the opponent is using
mixed strategy y given the history H of observed oppo-
nent’s actions can be estimated using Bayes’ rule p(y|H) ∝
p(H |y)p(y). A recency-weighted version of Bayes’ rule
is obtained using p(H |y) =

∏t

k=0 p(ok|y(t))wk , where

SDR and PHC players reach Nash equilibrium.

0 0.5 1 1.5 2
x 10

4

0

100

200

300

400
SDR vs HyperQ

cu
m

ul
at

iv
e 

ne
t w

in
s

Figure 3: SDR vs Hyper-Q in a Rock-Paper-Scissors match.
Following (Tesauro 2004), we plot the cumulative net wins
(the sum of wins minus losses) of SDR over Hyper-Q ver-
sus number of throws. This graphical representation depicts
the outcomes of matches of length up to 20,000 throws. The
curve is on average increasing; SDR beats Hyper-Q more
often than not as play continues. The failure of the curve
to flatten out (which would corresponding to eventual net
draws on average) during the game length demonstrates the
relatively faster learning behavior of the SDR player. Based
upon Tesauro’s empirical work, we anticipate that conver-
gence of both players to the Nash equilibrium of random
play would require on the order of 106 throws. However,
we limited all simulations in this paper to games of 20,000
throws or less.

wk = 1 − µ(t − k). In this simulation, SDR maintains
nine weights, whereas Hyper-Q stores a Q-table of 105625
elements.

Figure 3 shows the cumulative net wins for the SDR
player over the Hyper-Q player during learning. The SDR
player exploits the slow learning of Hyper-Q before the play-
ers reach the Nash equilibrium strategy of random play. Dur-
ing our entire simulation of 2×104 plays, the net wins curve
is increasing and SDR dominates Hyper-Q.

3.2 Discussion
Our experimental results show that simple SDR players
can adapt faster than more complex Q-type agents in RPS,
thereby achieving winning performance. The results sug-
gest that policy gradient methods like SDR may be sufficient
for attaining superior performance in repeated matrix games,
and also raise questions as to when use of a Q-function can
provide benefit.

Regarding this latter point, we make two observations.
First, repeated matrix games provide players with frequent,
immediate rewards. Secondly, the implementations of PHC
used by (Bowling & Veloso 2002) and of Hyper-Q used
by (Tesauro 2004) are non-dynamic and memory-less7 in the
sense that their policies are just the marginal probabilities of
throwing rock, paper or scissors, and current actions are not
conditioned on previous actions. There are no sequential
patterns in their play, so adaptive opponents do not have to

7One can distinguish between “long-term memory” as encoded
by learned parameters and “short-term memory” as encoded by
input variables. Tesauro’s moving average Bayes estimate of the
opponent’s mixed strategy is used as an input variable, but really
captures long-term behavior rather than the short term, dynamical
memory associated with recent play.



solve a temporal credit assignment problem. We leave it to
proponents of Q-type algorithms like WoLF-PHC or Hyper-
Q to investigate more challenging multi-agent systems ap-
plications where Q-type approaches may provide significant
benefits and to explore dynamical extensions to their algo-
rithms.

In the next section, we present studies of SDR in repeated
matrix games with stochastic opponents that exhibit more
complex behaviors. For these cases, SDR agents must solve
a temporal credit assignment problem to achieve superior
play.

4 Games with Dynamic Contestants
Players using memory-less, non-dynamic mixed strategies
as in (Bowling & Veloso 2002; Tesauro 2004) show none
of the short-term patterns of play which naturally occur in
human games. Dynamics exist in strategic games due to
the fact that the contestants are trying to discover patterns
in each other’s play, and are modifying their own strategies
to attempt to take advantage of predictability to defeat their
opponents. To generate dynamic behavior, game playing
agents must have memory of recent actions. We refer to
players with such memory as dynamic contestants.

We distinguish between two types of dynamical behav-
iors. Purely reactive players observe and respond to only the
past actions of their opponents, while purely non-reactive
players remember and respond to only their own past ac-
tions. Reactive players generate dynamical behavior only
through interaction with an opponent, while non-reactive
players ignore their opponents entirely and generate sequen-
tial patterns in play purely autonomously. We call such au-
tonomous pattern generation endogenous dynamics. Reac-
tive players have only non-recurrent memory, while non-
reactive players have only recurrent memory. A general
dynamic player has both reactive and non-reactive capabili-
ties and exhibits both reactive and endogenous dynamics. A
general dynamic player with non-reactive (recurrent) mem-
ory of length m and reactive (non-recurrent) memory of
length n is said to have dynamics of order (m, n). A player
that learns to model its opponent’s dynamics (whether reac-
tive or endogenous) and to dominate that opponent becomes
predictive.

In this section, we illustrate the use of recurrent SDR
learning in competitions between dynamic, stochastic con-
testants. As case studies, we consider sequential structure in
the repeated matrix games, Matching Pennies (MP), Rock-
Paper-Scissors (RPS), and the Iterated Prisoners’ Dilemma
(IPD). To effectively study the learning behavior of SDR
agents and the effects of recurrence, we limit the complexity
of the experiments by considering only non-adaptive oppo-
nents with well-defined policies or self-play.

4.1 Matching Pennies
Matching pennies is a simple zero sum game that involves
two players, A and B. Each player conceals a penny in his
palm with either head or tail up. Then they reveal the pennies
simultaneously. By an agreement made before the play, if
both pennies match, player A wins, otherwise B wins. The

Non−Recurrent Only Recurrent Both Types

0

0.1

0.2

0.3

0.4

0.5
Reward Distributions for Three SDR learners

A
ve

ra
ge

 re
w

ar
d

Figure 4: Matching Pennies with a general dynamic oppo-
nent. Boxplots summarize the average reward (wins minus
losses) of an SDR learner over 30 simulated games. Each
game consists of 2000 rounds. Since the opponent’s play
depends on both its own and its opponents play, both re-
current and non-recurrent inputs are necessary to maximize
rewards.

player who wins receives a reward of +1 while the loser
receives −1.

The matching pennies SDR player uses the softmax func-
tion as described in Section 2.4. and m = 1 recurrence. We
tested versions of the SDR player using three input sets: the
first, “Non-Recurrent” with (m, n) = (0, 1), uses only its
opponent’s previous move ot−1, the second, “Only Recur-
rent” with (m, n) = (1, 0), uses only its own previous move
at−1, and the third, “Both Types” with (m, n) = (1, 1), uses
both its own and its opponent’s previous move. Here, at−1

and ot−1 are represented as vectors (1, 0)T for heads and
(0, 1)T for tails.

To test the significance of recurrent inputs, we design two
kinds of reactive opponents that will be described in the fol-
lowing two sections.

General Dynamic Opponent The general dynamic oppo-
nent makes its action based on both its own previous action
(internal dynamics) and its opponent’s previous action (reac-
tive dynamics). In our test, we construct an opponent using
the following strategy:

V =

(

0.6 0.4 0.2 0.8
0.4 0.6 0.8 0.2

)

p = V(at−1 ⊗ ot−1)

where at−1 ⊗ ot−1 is the outer product of at−1 and ot−1.
The matrix V is constant. p = (pH , pT )T gives the prob-
ability of presenting a head or tail at time t. Softmax is
not needed. SDR players use the softmax representation il-
lustrated in Eq.(15) with I

(1)
t−1 = ot−1 and A

(1)
t−1 = at−1.

The reactive and non-reactive weight matrices for the SDR
player are θI and θA, respectively.

The results in Figure 4 show the importance of including
both actions in the input set to maximize performance.

Purely Endogenous Opponent The purely endogenous
opponent chooses its action based only on its own previous



Non−Recurrent Only Recurrent Both Types

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Reward Distributions for Three SDR learners

A
ve

ra
ge

 re
w

ar
d

Figure 5: Matching Pennies with a purely endogenous oppo-
nent for 30 simulations. Such a player does not react to its
opponent’s actions and cannot learn to directly predict its op-
ponents responses. These features make such opponents not
very realistic of challenging. Boxplots of the average reward
(wins minus losses) of an SDR learner. The results show that
non-recurrent, memory inputs are sufficient to provide SDR
players with the predictive abilities needed to beat a purely
endogenous opponent.

actions. Such a player does not react to its opponent’s ac-
tions, but generates generates patterns of play autonomously.
Since they cannot learn strategies to predict their opponents
responses, endogenous players are neither very realistic nor
very challenging to defeat.

The following is an example of the endogenous dynamic
opponent’s strategy:

V =

(

0.7 0.3
0.3 0.7

)

p = Vot−1 (16)

Figure 5 shows results for 30 games of 2000 rounds of
the three SDR players against the purely endogenous oppo-
nent. The results show that including only the non-recurrent
inputs provides enough information for competing success-
fully against it.

Purely Reactive Opponent The purely reactive opponent
chooses its action based only on its opponents’ previous
actions. The opponent has no endogenous dynamics of
its own, but generates game dynamics through interaction.
Such a player is more capable of learning to predict its op-
ponents’ behaviors and is thus a more realistic choice for
competition than a purely endogenous player. The follow-
ing is an example of the reactive opponent’s strategy:

V =

(

0.7 0.3
0.3 0.7

)

p = Vat−1 (17)

Figure 6 shows results for 30 games of 2000 rounds of
the three SDR players against the purely reactive oppo-
nent. The results show that including only the recurrent
inputs provides enough information for competing success-
fully against a purely reactive opponent.

Non−Recurrent Only Recurrent Both Types
−0.1

0

0.1

0.2

0.3

0.4

Reward Distributions for Three SDR learners

A
ve

ra
ge

 re
w

ar
d

Figure 6: Matching Pennies with a purely reactive oppo-
nent for 30 simulations. Boxplots of the average reward
(wins minus losses) of an SDR learner. The results clearly
show that non-recurrent, memory inputs provide no advan-
tage, and that recurrent inputs are necessary and sufficient to
provide SDR players with the predictive abilities needed to
beat a purely reactive opponent.

4.2 Rock Paper Scissors
Classical game theory provides a static perspective on mixed
strategies in games like RPS. For example, the Nash equilib-
rium strategy for RPS is to play randomly with equal proba-
bilities of {R, P, S}, which is static and quite dull. Studying
the dynamic properties of human games in the real world and
of repeated matrix games with dynamic contestants is much
more interesting. Dynamic games are particularly challeng-
ing when matches are short, with too few rounds for the
law of large numbers to take effect. Human RPS compe-
titions usually consist of at most a few dozens of throws.
The RoShamBo (another name for RPS) programming com-
petition extends game length to just one thousand throws.
Competitors cannot win games or tournaments on average
with the Nash equilibrium strategy of random play, so they
must attempt to model, predict and dominate their oppo-
nents. Quickly discovering deviations from randomness and
patterns in their opponents’ play is crucial for competitors to
win in these situations.

In this section, we demonstrate that SDR players can
learn winning strategies against dynamic and predictive op-
ponents, and that recurrent SDR players learn better strate-
gies than non-recurrent players. For the experiments shown
in this section, we are not concerned with the speed of learn-
ing in game time. Hence, we continue to use the “naive”
learning protocol (1) described in Section 2.3 which takes
one stochastic gradient step per RPS throw. This protocol is
sufficient for our purpose of studying recurrence and recur-
rent gradients. In real-time tournament competition, how-
ever, we would use a learning protocol with many stochastic
gradient steps per throw that would make maximally effi-
cient use of acquired game experience and converge to best
possible play much more rapidly.

Human Champions Dataset & Dynamic Opponent To
simulate dynamic RPS competitions, we need a general dy-
namic opponent for SDR to compete against. We create



this dynamic opponent using SDR by training on a dataset
inspired by human play and then fixing its weights after
convergence. The “Human Champions” dataset consists of
triplets of plays called gambits often used in human world
championship play (http://www.worldrps.com). (One exam-
ple is the “The Crescendo” gambit P-S-R). The so-called
“Great Eight” gambits were sampled at random using prior
probabilities such that the resulting unconditional probabil-
ities of each action {R,P,S} are equal. Hence there were
no trivial vulnerabilities in its play. The general dynamic
player has a softmax representation and uses its opponent’s
two previous moves and its own two previous moves to de-
cide its current throw. It is identical to an SDR player, but
the parameters are fixed once training is complete. Thus the
dynamic player always assumes its opponents are “human
champions” and attempts to predict their throws and defeat
them accordingly. The dynamic player is then used as a
predictive opponent for testing different versions of SDR-
Learners.

Importance of recurrence in RPS Figures 7 and 8 show
performance for three different types of SDR-Learners
for a single match of RPS. The “Non-Recurrent” play-
ers, (m, n) = (0, 2), only have knowledge of their oppo-
nents previous two moves. The “Only Recurrent” players,
(m, n) = (2, 0), know only about their own previous two
moves. The “Both Types” players have dynamics of or-
der (m, n) = (2, 2), with both recurrent and non-recurrent
memory. Each SDR-Learner plays against the same dy-
namic “Human Champions” opponent described previously.
The SDR players adapt as the matches progress, and are
able to learn to exploit weaknesses in their opponents’ play.
While each player is able to learn a winning strategy, the
players with recurrent knowledge are able to learn to predict
their opponents’ reactions to previous actions. Hence, the
recurrent SDR players gain a clear and decisive advantage.

4.3 Iterated Prisoners’ Dilemma (IPD)
The Iterated Prisoners Dilemma IPD is a general-sum game
in which groups of agents can learn either to defect or to
cooperate. For IPD, we consider SDR self-play and play
against fixed opponents. We find that non-recurrent SDR
agents learn only the Nash equilibrium strategy “always de-
fect”, while SDR agents trained with recurrent gradients can
learn a variety of interesting behaviors. These include the
Pareto-optimal strategy “always cooperate”, a time-varying
strategy that exploits a generous opponent, and the evolu-
tionary stable strategy Tit-for-Tat (TFT).

Learning to cooperate with TFT is a benchmark problem
for game theoretic algorithms. Figure 9 shows IPD play
with a dynamic TFT opponent. We find that non-recurrent
SDR agents prefer the static, Nash equilibrium strategy of
defection, while recurrent m = 1 players are able to learn
to cooperate, and find the globally-optimal (Pareto) equi-
librium. Without recurrent policy gradients, the recurrent
SDR player also fails to cooperate with TFT, showing that
recurrent learning and not just a recurrent representation is
required. We find similar results for SDR self-play, where
SDR agents learn to always defect, while recurrent gradient

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.2

0.35

0.5
The fraction of Wins,Draws,and Losses with SDR.

N
on

−R
ec

ur
re

nt

Wins: 0.357
Draws: 0.383
Losses: 0.260

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.2

0.35

0.5

O
nl

y 
R

ec
ur

re
nt

Wins: 0.422
Draws: 0.305
Losses: 0.273

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.2

0.35

0.5

B
ot

h 
Ty

pe
s Wins: 0.463

Draws: 0.298
Losses: 0.239

Figure 7: Learning curves showing fraction of wins, losses
and draws during an RPS match between SDR players and
a dynamic, predictive opponent. The top player has non-
recurrent inputs, the middle player has only recurrent in-
puts, and the bottom player has both types of inputs. Re-
current SDR players achieve higher fractions of wins than
do the non-recurrent players. The length of each match is
20000 throws with one stochastic gradient learning step per
throw. Fractions of wins, draws and losses are calculated us-
ing the last 4000 throws. Note that the learning traces shown
are only an illustration; much faster convergence can be ob-
tained using multiple stochastic gradient steps per game it-
eration.

Non−Recurrent Only Recurrent Both Types

0.1

0.15

0.2

0.25

Performance distributions for three model players

W
in

s 
− 

Lo
ss

es

LossesDraws Wins
0.2

0.35

0.5

Non−Recurrent
LossesDraws Wins

0.2

0.35

0.5
The fraction of Wins,Draws,and Losses with SDR.

Only Recurrent
LossesDraws Wins

0.2

0.35

0.5

Both Types

Figure 8: Performance distributions for SDR learners com-
peting against predictive “human champions” RPS oppo-
nents. Tukey boxplots summarize the results of 30 matches
such as those shown in Figure 7. The SDR players with
recurrent inputs have a clear and decisive advantage.



Figure 9: IPD: SDR agents versus TFT opponent. Plots of
the frequencies of outcomes, for example C/D indicates TFT
“cooperates” and SDR “defects”. The top panel shows that
a simple m = 1 SDR player with recurrent inputs but no re-
current gradients learns to always defect (Nash equilibrium).
This player is unable to solve the temporal credit assignment
problem and fails to learn to cooperate with the TFT player.
The bottom panel shows that an m = 1 SDR player with
recurrent gradients that can learn to cooperate with the TFT
player, thus finding the globally-optimal Pareto equilibrium.

SDR players learn to always cooperate.
A Tit-for-Two-Tat (TF2T) player is more generous than

a TFT player. TF2T considers two previous actions of its
opponent and defects only after two opponent defections.
When playing against TF2T, an m = 2 recurrent SDR agent
learns the optimal dynamic strategy to exploit TF2T’s gen-
erosity. This exploitive strategy alternates cooperation and
defection: C-D-C-D-C-D-C-... . Without recurrent gradi-
ents, SDR can not learn this alternating behavior.

We next consider a multi-agent generalization of IPD in
which an SDR learner plays a heterogeneous population of
opponents. Table 1 shows the mixed strategy learned by
SDR. The SDR player learns a stochastic Tit-for-Tat strat-
egy (sometimes called “generous TFT”). Table 2 shows the
Q-Table learned by a Q-Learner when playing IPD against
a heterogeneous population of opponents. The table shows
that the Q-Learner will only cooperate until an opponent de-
fects, and from then on the Q-Learner will always defect
regardless of the opponent’s actions. The SDR player on the
other hand, has a positive probability of cooperating even if
the opponent has just defected, thus allowing for a switch to
the more profitable cooperate/cooperate regime if the oppo-
nent is amenable.

TFT is called an “evolutionary stable strategy” (ESS),
since its presence in a heterogeneous population of adap-
tive agents is key to the evolution of cooperation through-
out the population. Recurrent SDR’s ability to learn TFT
may thus be significant for multi-agent learning; a recurrent
SDR agent could in principle influence other learning agents

aSDR
t \

(

aSDR
t−1 , aopp

t−1

)

CC CD DC DD
C 0.99 0.3 0.97 0.1
D 0.01 0.7 0.03 0.9

Table 1: The mixed strategy learned by SDR when playing
IPD against a heterogeneous population of opponents. The
elements of the table show the probability of taking an action
at time t given the previous action of the opponent and of
the player itself. The SDR player learns a generous Tit-for-
Tat strategy, wherein it will almost always cooperate after
its opponent cooperates and sometimes cooperate after its
opponent defects.

aQ
t \

(

aQ
t−1, a

opp
t−1

)

CC CD DC DD
C 69 2 -14 -12
D 9.7 4 0 0

Table 2: The Q-Table learned by a Q-Learner when play-
ing IPD against a heterogeneous population of opponents.
The Q-Learner will continue to defect regardless of its oppo-
nent’s actions after a single defection by its opponent. Note
the preference for defection indicated by the Q-values of col-
umn 3 as compared to the SDR player’s strong preference
for cooperation shown in Table 1, column 3.

to discover desirable individual policies that lead to Pareto-
optimal behavior of a multi-agent population.

5 Closing Remarks
Our studies of repeated matrix games with stochastic play-
ers use a pure policy gradient algorithm, SDR, to compete
against dynamic and predictive opponents. These studies
distinguish between reactive and non-reactive, endogenous
dynamics, emphasize the naturally recurrent structure of re-
peated games with dynamic opponents and use recurrent
learning agents in repeated matrix games with stochastic ac-
tions.

Dynamic SDR players can be reactive or predictive of op-
ponents’ actions and can also generate endogenous dynamic
behavior by using their own past actions as inputs (recur-
rence). When faced with a reactive or predictive opponent,
an SDR player must have such recurrent inputs in order to
predict the predictive responses of its opponent. The player
must know what its opponent knows in order to anticipate
the response. Hence, games with predictive competitors
have feedback cycles that induce recurrence in policies and
game dynamics.

The Stochastic Direct Reinforcement (SDR) algorithm
used in this paper is a policy gradient algorithm for proba-
bilistic actions, partially-observed states and recurrent, non-
Markovian policies. The RRL algorithm of (Moody & Wu
1997; Moody et al. 1998) and SDR are policy gradient RL
algorithms that distinguish between recurrent memory and
standard, non-recurrent memory via the use of recurrent gra-
dients during learning. SDR is well-matched to learning in
repeated matrix games with unknown, dynamic opponents.



As summarized in Section 2, SDR’s recurrent gradients
are necessary for properly training agents with recurrent in-
puts. Simply including an agent’s past actions in an observa-
tion or state vector (a standard “memory-based” approach)
amounts to a truncation that neglects the dependence of the
current policy gradient on previous policy gradients. By
computing the full recurrent gradient, SDR captures dynam-
ical structure that is important for solving the temporal credit
assignment problem in RL applications.

While we have focused on simple matrix games in this pa-
per, the empirical results presented in Section 3 support the
view that policy gradient methods may offer advantages in
simplicity, learning efficiency, and performance over value
function type RL methods for certain applications. The im-
portance of recurrence as illustrated empirically in Section
4 may have implications for learning in multi-agent systems
and other dynamic application domains. Of particular inter-
est are our results for the Iterated Prisoners Dilemma which
include discovery of the Pareto-optimal strategy “always co-
operate”, a time-varying strategy that exploits a generous
opponent and the evolutionary stable strategy Tit-for-Tat.

Some immediate extensions to the work presented in this
paper include opponent or (more generally) environment
modeling that captures additional recurrence and incorporat-
ing internal states and adaptive memories in recurrent SDR
agents. These issues are described in another paper. It is not
yet clear whether pure policy gradient algorithms like SDR
can learn effective policies for substantially more complex
problems or in environments with delayed rewards. There
are still many issues to pursue further in this line of research,
and the work presented here is just an early glimpse.

References
Anderson, C. W. 2000. Approximating a policy can be easier
than approximating a value function. Technical Report CS-00-
101, Colorado State University.
Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon gradient-
based policy search. Journal of Artificial Intelligence Research
15:319–350.
Boutilier, C.; Das, R.; Kephart, J. O.; Tesauro, G.; and Walsh,
W. E. 2003. Cooperative negotiation in autonomic systems using
incremental utility elicitation. In UAI 2003.
Bowling, M., and Veloso, M. 2002. Multiagent learning using a
variable learning rate. Artificial Intelligence 136:215–250.
Brown, T. X. 2000. Policy vs. value function learning with vari-
able discount factors. Talk presented at the NIPS 2000 Workshop
entitled “Reinforcement Learning: Learn the Policy or Learn the
Value Function?”.
Claus, C., and Boutilier, C. 1998. The dynamics of reinforcement
learning in cooperative multiagent systems. In AAAI/IAAI, 746–
752.
Hu, J., and Wellman, M. P. 1998. Multiagent reinforcement learn-
ing: Theoretical framework and an algorithm. In Fifteenth Inter-
national Conference on Machine Learning, 242–250.
Kephart, J. O.; Hansen, J. E.; and Greenwald, A. R. 2000.
Dynamic pricing by software agents. Computer Networks
32(6):731–752.
Lin, L. J., and Mitchell, T. 1992. Memory approaches to rein-
forcement learning in non-markovian domains. Technical Report

CMUCS -92-138, Carnegie Mellon University, School of Com-
puter Science.
Littman, M. L. 1994. Markov games as a framework for multi-
agent reinforcement learning. In ICML-94, 157–163.
McCallum, A. 1995. Instance-based utile distinctions for rein-
forcement learning. In Twelfth International Conference on Ma-
chine Learning.
Moody, J., and Saffell, M. 1999. Reinforcement learning for
trading. In Michael S. Kearns, S. A. S., and Cohn, D. A., eds.,
Advances in Neural Information Processing Systems, volume 11,
917–923. MIT Press.
Moody, J., and Saffell, M. 2001. Learning to trade via direct re-
inforcement. IEEE Transactions on Neural Networks 12(4):875–
889.
Moody, J., and Wu, L. 1997. Optimization of trading systems
and portfolios. In Abu-Mostafa, Y.; Refenes, A. N.; and Weigend,
A. S., eds., Decision Technologies for Financial Engineering, 23–
35. London: World Scientific.
Moody, J.; Wu, L.; Liao, Y.; and Saffell, M. 1998. Perfor-
mance functions and reinforcement learning for trading systems
and portfolios. Journal of Forecasting 17:441–470.
Ng, A., and Jordan, M. 2000. Pegasus: A policy search method
for large mdps and pomdps. In Proceedings of the Sixteenth Con-
ference on Uncertainty in Artificial Intelligence.
Sandholm, T. W., and Crites, R. H. 1995. Multi-agent reinforce-
ment learning in iterated prisoner’s dilemma. Biosystems 37:147–
166.
Singh, S.; Kearns, M.; and Mansour, Y. 2000. Nash convergence
of gradient dynamics in general-sum games. In Proceedings of
UAI-2000, 541–548. Morgan Kaufman.
Tesauro, G., and Bredin, J. 2002. Strategic sequential bidding
in auctions using dynamic programming. In Proceedings of the
first International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 591–598.
Tesauro, G., and Kephart, J. O. 2002. Pricing in agent economies
using multi-agent qlearning. Autonomous Agents and Multi-Agent
Systems 5(3):289–304.
Tesauro, G. 2004. Extending Q-learning to general adaptive
multi-agent systems. In S. Thrun, L. S., and Schölkopf, B., eds.,
Advances in Neural Information Processing Systems, volume 16.
MIT Press.
Williams, R. J. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learn-
ing 8:229–256.


