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ABSTRACT
Motivation: The search for genetic regions associated with
complex disease, such as cancer or Alzheimer’s disease, is
an important challenge that may lead to better diagnosis and
treatment. The existence of millions of DNA variations, pri-
marily single nucleotide polymorphisms (SNPs), may allow
the fine dissection of such associations. However, studies
seeking disease association are limited by the cost of geno-
typing SNPs. Therefore, it is essential to find a small subset
of informative SNPs (tag SNPs) that may be used as good
representatives of the rest of the SNPs.
Results: We define a new natural measure for evaluating the
predictionaccuracy of a set of tag SNPs, and use it to develop a
new method for tag SNPs selection. Our method is based on a
novel algorithm that predicts the values of the rest of the SNPs
given the tag SNPs. In contrast to most previous methods, our
prediction algorithm uses the genotype information and not
the haplotype information of the tag SNPs. Our method is very
efficient, and it does not rely on having a block partition of the
genomic region.

We compared our method to two state of the art tag SNP
selection algorithms on 58 different genotype data sets from
four different sources. Our method consistently found tag
SNPs with considerably better prediction ability than the other
methods.
Availability: The software is available from the authors upon
request.
Contact: kgad@tau.ac.il

1 INTRODUCTION
Most of the genetic variation among different people can be
characterized by single nucleotide polymorphisms (SNPs),
which are mutations at single nucleotide positions that occur-
red during human history and were passed on through heredity.
Most of these SNPs are bi-allelic, that is, only two bases (alle-
les) are observed across the population at such sites. It has
been estimated that there are about seven million common
SNPs (i.e., SNPs with minor allele frequency of at least 5%) in
the human genome [11, 3]. Alleles of SNPs in close physical

proximity to each other are often correlated, and the varia-
tion of the sequence of alleles in contiguous SNP sites along
a chromosomal region (haplotype) is known to be of limi-
ted diversity. The identification and analysis of haplotypes,
currently a major effort of the international community [17],
is expected to play a key role in trait and disease association
studies [12, 13].

The objective of disease association studies is to find genetic
factors correlated with complex disease. In these studies, the
DNA of individuals from two populations (healthy individuals
and carriers of the disease) is sampled. Then, discrepancies in
the haplotype structure of the two populations are revealed by
various statistical tests. These discrepancies serve as evidence
for the correlation of the genomic region studied with the
disease.

Clearly, the statistical significance of the study is directly
affected by the number of individuals typed. On the other
hand, the total cost of the study is also affected by the num-
ber of SNPs typed. Therefore, to save resources, one wishes
to reduce the number of SNPs typed per individual. This is
usually done by choosing an appropriate small subset of the
SNPs, called tag SNPs, that could predict the rest of the SNPs
with a small error. Thus, when preforming a disease asso-
ciation study, the geneticist would experimentally test for
association by only considering the tag SNPs, thereby con-
siderably saving resources (or, alternatively, increasing the
power of the statistical tests by increasing the number of indi-
viduals). Hence, a key problem is to find a set of tag SNPs of
minimum size that would have a very good prediction ability.
In this paper we propose a new method called STAMPA (Selec-
tion of Tag SNPs to Maximize Prediction Accuracy) that finds
a set of tag SNPs given a genotype sample taken from a set of
unrelated individuals.

Finding a high-quality set of tag SNPs is a challenging task
for several reasons. One of the main challenges is that the
haplotype information is usually not given, and instead we
get the genotypes. As opposed to haplotypes, the genotypes
give the bases at each SNP in both copies of the chromosome,
but lack the phase, i.e., information as to the chromosome
on which each base appears. Due to technology constraints,
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most sequencing techniques provide the genotypes and not
the haplotypes. There are however, computational tools that
use the correlations between neighboring SNPs in order to
predict the phase information. Their accuracy depend on the
proximity and correlation of the SNPs tagged. When a set of
tag SNPs is chosen and then tagged, the rest of the SNPs are
not measured and instead must be predicted from this infor-
mation. The accuracy of such prediction is limited, since the
correlation between the tag SNPs is not necessarily as strong
as the correlation between SNPs that are in close proximity
to each other. One of the advantages of our tag SNPs pre-
dictor is that it only uses the genotype information and does
not require knowledge of the haplotypes of the tag SNPs. We
use the phase information in a reference training set to select
the tag SNPs, and subsequently predict the other SNP values
in a test individual on the genotype of that individual for the
tag SNPs only. To the best of our knowledge, all extant pro-
grams that aim to explicitly predict individual SNPs use the
haplotypes of the tag SNPs.

Another issue that is crucial in the search for tag SNPs is
the definition of an adequate measure of the prediction quality.
Many of the current tag SNP selection methods partition the
region into blocks of limited diversity (e.g., [18, 20, 19]),
and find a set of tag SNPs that aims to predict the common
haplotypes of each block. There are various disadvantages
to such methods, most apparent is the lack of cross-block
information and the dependency of the tag SNPs choice on
the block definition. We propose here a new natural measure,
prediction accuracy,which directly evaluates the average SNP
prediction quality.

There is a large body of research on finding a highly pre-
dictive set of tag SNPs [18, 1, 2, 4, 14]. In contrast to most
previous methods, our method uses the genotype information
for the tag SNP selection. Zhang et al. [19] have also used
genotypes information for tag SNP selection. However, their
study selects the SNPs so as to maximize haplotype diversity,
and given the genotypes of the tag SNPs in a tested indivi-
dual it infers blocks and common haplotypes, but does not
predict the individual SNPs. Another key difference between
our method and previous ones is that we do not rely on any
block partition.

We performed extensive tests of STAMPAon genotypes from
a variety of sources. Our tests covered 58 datasets from four
sources: HapMap project [17], ENCODE project [17], Daly
et al. [5], and Gabriel et al. [7]. We show that using STAMPA,
very accurate results are achieved. For example, only 17 tag
SNPs out of 103 SNPs (16.5%) suffice to attain prediction
accuracy of 95% in the data of Daly et al.. Our method is
also very efficient: Runs on a regular PC required seconds to
several minutes on all datasets.

We compared our algorithm to two state of the art tag SNP
selection algorithms: ldSelect [4] and HapBlock [19]. Our
experiments show that STAMPAconsistently outperforms both
of these methods. On the average ldSelect uses ten times more

tag SNPs than STAMPA in order to achieve prediction accuracy
of 90%. Our algorithm was also more accurate than HapBlock
on each of the 58 datasets, sometimes by more than 15%.
Moreover, the running time of STAMPA was much smaller
than HapBlock. For example, on chromosome 5q31 data set,
STAMPA was faster by a factor of 97. Such advantage will be
more prominent on future larger data sets.

2 PROBLEM FORMULATION
In order to present our method, we first formalize the pro-
blem of tag SNPs prediction. We first need to introduce some
notations and definitions. Since we are only interested in bi-
allelic SNPs, we assume that each haplotype is represented by
a binary string. Thus, a haplotype of length m is a sequence
over {0, 1}m. A genotype of length m is represented by a
{0, 1, 2} sequence, where 0 and 1 stand for the homozygous
types {0,0} and {1,1}, respectively, and 2 stands for a hetero-
zygous type. We are given a set of n genotypes g1, . . . , gn

of length m each. We use gi,j to denote the j-th component
(0,1, or 2) of the vector gi. A phasing of a genotype gi is a
pair of haplotypes, h1

i , h
2
i ∈ {0, 1}m, such that h1

i,k 6= h2
i,k if

gi,k = 2 and h1
i,k = h2

i,k = gi,k if gi,k ∈ {0, 1}. We also use
the notation g(j) to denote the j-th SNP in genotype g.

Consider a genomic region that spans a set of m SNPs. The
frequencies of the genotypes in that region across the entire
populations are given by some unknown distribution function
Pr(gi ∈ G), where G is the sample space of all genotypes
in the population. A prediction algorithm is a function f :
{0, 1, 2}t → {0, 1, 2}m. Informally, the prediction algorithm
uses the genotype values of the tag SNPs in order to predict the
values of the rest of the SNPs. For a given vector q ∈ {0, 1, 2}t

of tag SNPs values, let fj(q) denote the j-th component of that
vector. Note that fj refers to the components of the predicted
vector of all m SNPs, given the tag genotypes q. Finally, let
zT : {0, 1, 2}m → {0, 1, 2}t be the restriction of the genotype
to the tag SNPs position. For instance, for a set of tag SNPs
T = {1, 3, 5, 6}, the restriction of the genotype gi = 0122010
is zT (gi) = 0201.

Our goal is to find a minimum size set of tag SNPs and a
prediction algorithm, such that the prediction error is minimi-
zed. Formally, for a given t, our objective is to find a set of
tag SNPs T of size t, and a prediction function f , such that
the following expression is minimized.

η =
m

∑

j=1

Pr[fj(zT (g)) 6= g(j)], (1)

where the probability is over the sample space given byPr(g ∈
G). In other words, for a randomly picked individual from
the population, we want to minimize the expected number of
prediction errors.

The main problem in achieving this goal is that the fre-
quencies of the genotypes in the population are unknown.
Therefore, we use a training dataset of genotypes, g1, . . . , gn
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in order to learn the distribution of genotypes in the data. For
a given prediction algorithm f : {0, 1, 2}t → {0, 1, 2}m,
we are interested in finding a set of tag SNPs T of size
t, such that expression (1) is minimized when the geno-
type is randomly picked from the training set. Formally, if
XT = |{(i, j) | gi,j 6= fj(zT (gi))}|, where gi,j is the j-th
SNP of gi, then we are looking for a set T of SNPs of size t
such that XT is minimized. The resulting prediction rate of
the tag SNPs depends both on the prediction function f and
on the choice of the tag SNPs.

3 THE PREDICTION ALGORITHM
In this section we present our prediction algorithm. The algo-
rithm is based on the observation made by several biological
studies, that the correlation between SNPs tends to decay as
the physical distance increases (see, e.g., [7, 2, 5, 9]). We
assume that given the genotypes values of two SNPs, the pro-
babilities of the values at any intermediate SNPs do not change
by knowing the values of additional distal ones. Formally, this
assumption can be stated as:

∀s : a < s < b, ∀q : q < a or q > b, ∀v ∈ {0, 1, 2}, ∀i :
Pr[gi,s = v|gi,a, gi,b] ≈ Pr[gi,s = v|gi,a, gi,b, gi,q ].

(2)

Thus, our prediction function predicts a SNP value using
only the values of the two closest tag SNPs to this SNP. Pre-
cisely, fi(zT (g)) = f(gj1 , gj , gj2) where j1 and j2 are the
closest tag SNPs to j, on both sides, if possible. Although
many biological studies support this assumption, it clearly
does not hold for all SNPs, or in all data sets. However, the
assumption is a rather faithful approximation of the reality
in most cases. As we shall show in Section 5, using this
assumption we achieve very high prediction rates.

Given a set of tag SNPs T = (s1, . . . , st), we use the pro-
cedure Predict given in Figure 1 to predict the value of SNP i
given the value of the tag SNPs. We assume that we are given
the training set of genotypes g1, . . . , gn together with their
corresponding haplotypes h1

1, h
2
1, h

1
2, . . . , h

2
n, where hj

i =

(hj
i1, . . . , h

j
im) ∈ {1, 2}m for j = 1, 2. The haplotypes can

be computed from the genotypes using a variety of available
algorithms (e.g., [10, 6, 15, 8]).

Let j1 and j2, j1 < i < j2 be the positions of the tag SNPs
closest to position i on both sides. If there is no tag SNP in
position j2 > j, then j1 and j2 are the last two SNPs, and if
there is no tag SNPs in position j1 < j then j1 and j2 are the
first two SNPs. The procedurePredict(i, j1, j2, a1, a2) uses a
majority vote in order to determine which value is more likely
to appear in position i given that positions j1 and j2 have the
values a1 ∈ {0, 1, 2} and a2 ∈ {0, 1, 2} respectively. In order
to use the phased information given by the model, we use
two majority votes to determine the two different alleles. For
instance, if a1 = 0 and a2 = 2, we find the most likely allele
given that the alleles in positions j1 and j2 are both 0, and
another allele given that the alleles in positions j1 and j2 are 0

and 1 respectively. Further details are given in Figure 1. Note
that predicting SNP i using the procedure Predict makes no
use of most of the tag SNPs - we simply ignore all the tag
SNPs except for the ones closest to i.

4 ALGORITHMS FOR TAG SNP SELECTION
Recall that our goal is to find a set of tag SNPs T of size t,
such that XT is minimized, where XT = |{(i, j) | gi,j 6=
Predict(j, j1, j2, gi,j1 , gi,j2))}|. We give two algorithms for
selecting the tag SNPs. Both algorithms use the prediction
algorithm as a subroutine. The first is a polynomial algorithm
that guarantees an optimal solution. The second is a simpler
and faster random sampling algorithm. We shall discuss their
performance in Section 5.

4.1 An Exact Algorithm
We now describe an algorithm that solves this problem to
optimality. The algorithm, called STAMPA (Selection of Tag
SNPs for Maximizing Prediction Accuracy), uses dynamic
programming.

Let X i,j
T = 1 if gi,j 6= Predict(j, j1, j2, gi,j1 , gi,j2) and let

X i,j
T = 0 otherwise. Clearly, XT =

∑

i,j X i,j
T . For every pair

of SNPs m1 < m2 we next define three auxiliary score func-
tions, score(m1, m2), score1(m1, m2) and score2(m1, m2),
which will be used in the dynamic program recursion. These
score functions evaluate the expected number of errors in a
subregion (a contiguous set of SNPs), given a partial set of
the tag SNPs. We assume that m1, m2 ∈ T and that for each
m1 ≤ j ≤ m2, j /∈ T . Then, we define

score(m1, m2) =

n
∑

i=1

m2−1
∑

j=m1

X i,j
T .

Thus, score(m1, m2) is the total number of prediction errors
in SNPs m1, . . . , m2−1, given that m1 and m2 are tag SNPs,
and that there are no tag SNPs between m1 and m2. Since
the procedure Predict infers a SNP value by considering only
its neighboring tag SNPs, we can readily compute the score,
while disregarding the information on all the other tag SNPs.

For score1(m1, m2), we assume that m1 and m2 are the last
two tag SNPs. Then, the score is defined as

score1(m1, m2) =

n
∑

i=1

m
∑

j=m1

X i,j
T .

Thus, score1(m1, m2) is the the total number of prediction
errors in SNPs m1, . . . , m when the last two SNPs are in
positions m1, m2. Again, since Predict only uses the closest
tag SNPs in order to compute the SNP values, we can compute
score1 independently of the locations of the rest of the SNPs.

Similarly, for score2(m1, m2) we assume that m1 and m2

are the first two tag SNPs, and define

score2(m1, m2) =

n
∑

i=1

m2−1
∑

j=1

X i,j
T .
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ALGORITHM Predict(i,j1,j2,a1,a2)

Input: i, j1, j2 ∈ {1, . . . , m}, and a1, a2 ∈ {0, 1, 2}.
Output: An integer v ∈ {0, 1, 2} which is a predicted value of a SNP in position i, given that in position j1 and j2
the values are a1 and a2 respectively.

1. For every (x, y, z) ∈ {0, 1}3 we let C(x, y, z) = {(j, p) | hp
jj1

= x, hp
jj2

= y, hp
ji = z} be the set of haplotypes

having the values x, y, z in positions j1, i and j2 respectively.

2. Let A(x, y) = z ∈ {0, 1}, where |C(x, y, z)| ≥ |C(x, y, 1 − z)| breaking ties arbitrarily.

3. Let c(x, y) = |C(x, y, 0)| + |C(x, y, 1)|.

4. We compute the values of two variables x, y using the following case analysis.
• If a1 < 2 and a2 < 2, then we set x = y = A(a1, a2).

• If a1 = 2, a2 = 2 and c(0, 0) · c(1, 1) ≥ c(0, 1) · c(1, 0), then x = A(0, 0) and y = A(1, 1).

• If a1 = 2, a2 = 2 and c(0, 0) · c(1, 1) < c(0, 1) · c(1, 0), then x = A(0, 1) and y = A(1, 0).

• If a1 = 1, a2 = 2 (a2 = 1, a1 = 2), then we set x = A(1, 1) and y = A(1, 0) (y = A(0, 1)).

• If a1 = 0, a2 = 2 (a2 = 0, a1 = 2), then we set x = A(0, 0) and y = A(0, 1) (y = A(1, 0)).

5. If x 6= y output 2, else output x.

Fig. 1. The procedure Predict. We implicitly assume that the training set and its phase are given. The variables x and y computed by the
case analysis represent the majority votes for the two haplotypes induced by the values a1 and a2. Note that the output value is determined
by simply counting the frequencies of different partial haplotypes in the training set that match a1 and a2, and taking the majority vote.

In this case, score2(m1, m2) is the total number of prediction
errors in SNPs 1, . . . , m2 − 1 when the first two SNPs are in
positions m1, m2.

We next define the function f that will be used in the dyna-
mic programming recursion. f(m∗, l) is defined for l ≥ 2 and
1 ≤ m∗ ≤ m. For l < t, the function f(m∗, l) represents the
minimum number of prediction errors in SNPs 1, 2, . . . , m∗,
given that the l-th tag SNP is in position m∗. For l = t, the
function f(m∗, t) represents the minimum number of predic-
tion errors in all SNPs 1, 2, . . . , m given that the last tag SNP is
in position m∗. Formally, we define f(m∗, l) in the following
way:

• For l = t, f(m∗, t) =
∑n

i=1

∑m

j=1 X i,j
T when the last

tag SNP is in position m∗.

• For t > l ≥ 2, f(m∗, l) =
∑n

i=1

∑m∗−1
j=1 X i,j

T when the
l-th tag SNP is in position m∗.

It is easy to verify by the definitions of f and of score, score1
and score2, that the following recurrence relation holds:

f(m
∗
, l) =

8

<

:

min
1≤m′<m∗ score2(m

′, m∗) l = 2

minl−1≤m′<m∗{f(m′, l − 1) + score(m′, m∗)} 2 < l < t

mint−1≤m′<m∗{f(m′, t − 1) + score1(m
′, m∗)} l = t

.

(3)

We now apply dynamic programming in order to find the
value of f(m∗, t) for every t ≤ m∗ ≤ m, using the above
recurrence relation. Since f(m∗, t) is the total number of pre-
diction errors given that the last tag SNP is in position m∗, it
is clear that the minimum value of XT over all possible sets of
tag SNPs of size t is min{m∗|t≤m∗≤m} f(m∗, t). Using back

pointers in the process, one can also find a set of tag SNPs
minimizing XT .
Complexity analysis: We first compute the three scores for
all

(

m
2

)

possible pairs of SNPs. For every pair the running
time is O(mn). Hence, the total running time for this stage
is O(m3n). We keep the scores in a matrix, and we use that
matrix in order to compute f . Given the computed scores, for
every m∗ ≤ m, computing f(m∗, 2) takes O(m∗), so doing
this for all m∗ takes O(m2). Similarly, computing f(m∗, i)
for every i < t, m∗ < m takes O(m2t). Finally, computing
f(m∗, t) for every m∗ ≤ m takes O(m2). Since t ≤ m the
total running time is O(m3n).

If the number of SNPs is large (even in the hundreds), a
running time of O(m3n) is very expensive. On the other
hand, in practice, the correlation between SNPs is decay-
ing when the physical distance between the SNPs increases.
Put differently, tag SNPs tend to predict well other SNPs in
the same or neighboring block, but not further away. Thus,
having a very large distance between neighboring tag SNPs
yields poor prediction power. Hence, in most practical cases
one can use a bound c on the maximal distance in SNPs bet-
ween neighboring tag SNPs. c will depend on the SNP typing
density and will typically not exceed 20 or 30. In such a
case, computing score(m1, m2) takes O(mc2n) and compu-
ting score1 and score2 takes O(c3n). Computing f(m∗, i)
for each i takes O(mtc). Thus, the total running time is
O(mtc + mc2n) = O(mc(cn + t)).
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4.2 Random Sampling
In some cases we are interested in finding quickly a very small
number of tag SNPs that roughly predict the rest of the SNPs.
That is, we are willing to give up some of the prediction power
if we can get a very small number of tag SNPs. In those cases,
the assumption that the tag SNPs are close to each other cannot
be made, c is very large, and the exact algorithm may be too
slow. We therefore suggest a very simple and much more
efficient algorithm that does not guarantee optimal results.

The algorithm is as follows: We generate 100 sets of tag
SNPs, T1, T2, . . . , T100, each generated by randomly picking
t positions out of the m possible positions. We then compute
XTi

for i = 1, 2, . . . , 100, and we choose the set of tag SNPs
Ti that minimizes XTi

. This algorithm is very naive, but we
show that it gives reasonable results in practice.

5 RESULTS ON BIOLOGICAL DATASETS
5.1 Description of the Datasets
We used four datasets encompassing 58 different genomic
regions.

• A dataset due to Daly et al. [5]. In this study, genotypes
for 103 SNPs, from a 500 KB region of chromosome
5q31, were collected from 129 mother, father and child
trios from European derived population in an attempt to
identify a genetic risk for Crohn’s disease. We only used
the children population in this data set.

• Population D from the study of Gabriel et al. [7]. The
data consist of 51 sets of genotypes from various genomic
regions, with number of SNPs per region ranging from 13
to 114. The sets contained 30 mother, father, child trios
that were taken from a Yoruba’s population, from which
we only used the 60 genotypes of the parents.

• Regions ENm013, ENr112 and ENr113 of the ENCODE
project [17]. These are 500 KB regions of chromosomes
7q21.13, 2p16.3 and 4q26 respectively, which were col-
lected from 30 trios. The number of SNPs genotyped in
each region is 361, 412 and 515 respectively (thus, the
density of the sample is 3-5 times greater than the density
of [5]). We used the 60 genotypes corresponding to the
parents from each dataset.

• Genotypes from the HapMap project [17]. We used three
sets of SNPs spanning the three genes PP2R4, STEAP,
and TRPM8. For each of these genes we took the HapMap
SNPs that are spanned by the gene plus 10 KB upstream
and downstream. The resulting sets contain 39, 23 and
102 SNPs. In this data set we used the parents genotypes.

5.2 Implementation
STAMPA was implemented in C. All reported runs used a
Linux operating system on a 4Ghz PC using 500M cache.
Running times are discussed below (Figure 3 and Table 2).

The Predict procedure requires a phased training set. To
obtain that solution when applying STAMPA, we used the
GERBIL algorithm [10]. Running times for phasing using
GERBIL were almost always below one minute. The Daly et
al. data set required the most time, about 2 minutes. These
times are not included in the reporting below.

5.3 Exact Solution vs. Random Sampling
Algorithm

We first measured the prediction accuracy of the two algo-
rithms in Section 4. For STAMPA, we used c = 30 as the
upper bound of distance between tag SNPs. The experiments
were performed in a leave one out manner: We repeatedly
removed one of the genotypes from the set, used the remai-
ning genotypes as the training set in order to find a set of tag
SNPs, and used these tag SNPs in order to predict the other
SNPs in the removed genotype.

The results show that that STAMPA uses very few tag SNPs
in order to predict the other SNPs with high confidence. For
example, in chromosome 5q31 data set [5], typing 2 SNPs
suffices to predict all of the 103 SNPs with 80% accuracy, 6
SNPs are needed to achieve 90%, and only 17 SNPs need to
be typed for 95%.

The results of the comparison of the two algorithms are sum-
marized in Figure 2. As expected, in most cases, STAMPA was
more accurate than the random sampling algorithm. Howe-
ver, when the number of tag SNPs is small, there is a clear
advantage for the random sampling algorithm.For example, in
Encode region ENr113, when less than 15 tag SNPs are requi-
red, the prediction accuracy of the random sampling algorithm
was higher. This gap can be explained by the fact that when
the number of tag SNPs is small, the upper bound for the
distance between tag SNPs is too restrictive for STAMPA. It
is important to emphasize, that each of the two algorithms
has a parameter, that can be increased to obtain more accu-
rate results, but at the expense of larger running times. Such
is the parameter c in STAMPA, and the number of samples in
the random sampling algorithm. Although in our experiments
we saw a clear advantage to STAMPA, in some situations we
expect the opposite to be true, e.g., when SNPs are genotyped
with high density in a very long region, and the number of tag
SNPs is required to be very small.

5.4 Comparisons to Extant Methods
We chose to compare our algorithm to two recent algorithms
for tag SNP selection that are widely used: ldSelect, due
to Carlson et al. [4], which uses a greedy approach, and
HapBlock due to Zhang et al. [19], which uses dynamic pro-
gramming and a partition-ligation EM subroutine to phase
subintervals in the recursion.Two additional tag SNP selection
algorithms that were reported in the literature [2, 14] could not
be included in the comparisons since their implementations
were not available.
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Fig. 2. Prediction accuracy as a function of the number of tag SNPs used in the two selection algorithms. Blue X - STAMPA, red circles -
random sampling algorithm.

In order to evaluate the prediction accuracy of a tag SNP
selection algorithm, one has to provide a prediction algorithm
such as Predict. Unfortunately, ldSelect and HapBlock do not
provide a prediction algorithm. Hence, in order to evaluate the
prediction accuracy of these algorithms, we had to choose a
prediction algorithm for each of them.

ldSelect requires as input phased genotypes. We used
PHASE [15] to obtain the phasing solution, since it is a widely
used and highly accurate phasing program (see, e.g., [10]).
The output of the program is sets of SNPs and for each one a
subset of its tag SNPs. SNPs in a set are not necessarily con-
tiguous. We used a majority vote of the tag SNPs inside each
set as the prediction method of SNPs in this set. (This rule
is equivalent to that of Predict in the case of two tag SNPs,
with the key difference that Predict assumes a specific order
of the two tag SNPs and the predicted one.)

HapBlock gets as input a genotype matrix and outputs the
tag SNPs. There are several input parameters for this software,
such as the algorithm for block partitioning and the method of

tag SNP selection. Additional numeric parameters are requi-
red, e.g., a threshold for common haplotypes. We used the
default values presented in the software manual [16]. Since
the input to this program is unphased genotypes, and no pre-
diction algorithm was suggested, we used our own prediction
algorithm (Section 3) to measure the accuracy of tag SNPs
chosen by the algorithm.

In Table 1 and in Figure 3 we give a summary of the com-
parison of STAMPA to ldSelect. In each of the methods, we
searched for the minimal number of tag SNPs needed in order
to reach accuracy of at least 80% and 90%, respectively. Since
the input format of ldSelect does not allow specifying the
number of tag SNPs, but rather the Pearson correlation value
between the tag SNPs and the predicted SNPs, we searched for
the minimal Pearson correlation value needed in order to reach
80% (or 90%) accuracy. Reducing the value of the Pearson
correlation results in a smaller number of tag SNPs. Our expe-
riments show that STAMPA consistently outperforms ldSelect.
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Data set 80% accuracy 90% accuracy Total number of SNPs
STAMPA ldSelect STAMPA ldSelect

5q31 2 64 6 91 103
Gabriel et al. 3.4 (1.8) 41.6 (14.8) 12.1 (6.3) 51 (17.8) 55.6 (20.2)

ENm013 5 84 12 189 360
ENr112 9 97 17 169 411
ENr113 11 83 18 325 514
PP2R4 2 6 2 6 38
STEAP 2 20 2 22 22
TRPM8 3 38 6 53 101

Table 1. Performance of STAMPA and ldSelect. The number of tag SNPs needed in order to reach accuracy of 80% and 90% by each algorithm is listed. For
the data of Gabriel et al., the first number is the average over all 51 datasets, followed by the standard deviation in parentheses. See Figure 3 for more detailed
results on these datasets.
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Fig. 3. Performance of STAMPA, ldSelect and HapBlock on each of the 51 genotyped regions in Gabriel et al. [7]. The x-axis is the 51
datasets in arbitrary order; blue X - STAMPA, red circles - the other algorithm. Top: comparison to ldSelect: the number of tag SNPs found
by the algorithm to reach accuracy of 80% (left) and 90% (right). Bottom: comparison to HapBlock: prediction accuracy (left) and running
times (right) of the algorithms on each data set.

On the average ldSelect uses ten times more tag SNPs than
STAMPA in order to reach accuracy of 90%.

In Table 2 and in Figure 3 we give a summary of the compa-
rison of STAMPA and HapBlock . We used the same number
of tag SNPs generated by HapBlock to select tag SNPs with
STAMPA. In all of the 58 data sets STAMPAwas more accurate.
Moreover, the running time of STAMPA was much smaller

than HapBlock. For example, on chromosome 5q31 data set,
STAMPA was faster by a factor of 97. Such advantage will be
more prominent on future larger data sets.
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Data set Number of Prediction accuracy Running times (seconds)
tag SNPs STAMPA HapBlock STAMPA HapBlock

5q31 17 0.949 0.889 179 17,311
ENm013 15 0.929 0.759 78 8,710
ENr112 33 0.939 0.822 87 3,810
STEAP 3 0.951 0.763 3 5
TRPM8 12 0.942 0.811 34 140

Gabriel et al. 16.9 (6.5) 0.932 (0.019) 0.88 (0.04) 1,282 20,131

Table 2. Prediction accuracy and running times of STAMPA and HapBlock. The number of tag SNPs is determined according the output of HapBlock
software, using its default parameters. No comparison could be performed on ENr113 since HapBlock gave no solution due to memory overload. The gene
PP2R4 was dropped since HapBlock outputs only one tag SNP for that gene, so comparison was meaningless. For the data of Gabriel et al., the first number is
the average over all 51 datasets, followed by the standard deviation in parentheses; running times are totals over all 51 datasets. See Figure 3 for more detailed
results on these datasets.

6 DISCUSSION
In this paper we have defined a novel measure for evaluating
the quality of tag SNP selection. The measure we use, pre-
diction accuracy, has a very simple and intuitive meaning: It
aims to maximize the expected accuracy of predicting untyped
SNPs, given the unphased (genotype) information of the tag
SNPs. The prediction itself is done using a simple majority
vote. By making an additional natural approximate assump-
tion that SNP values can be determined best based on the
values of their nearest tag SNPs on each side, the prediction
becomes quite simple, and the optimal selection of tag SNPs
can be done in polynomial time.

We presented a method for tag SNPs selection and for SNP
prediction based on the genotype values of the tag SNPs. Our
selection method, called STAMPA, is unique in its treatment of
the prediction part. Most extant methods for tag SNP selection
(e.g., [18, 1, 2, 4, 14]) rely on haplotype information that is
often not readily available in real life scenarios.One exception
is the HapBlock algorithm [19], which selects the tag SNPs
based on the genotypes and not on the haplotypes. However,
HapBlock selects the tag SNPs in order to maximize diversity
of the common haplotypes in blocks,and it is not clear whether
that method could be easily extended to a SNP prediction
algorithm using genotype data for the tag SNPs.

Another difference between STAMPAand HapBlock is in the
use of phasing: Although both methods employ the dynamic
programming approach, HapBlock solves many phasing sub-
problems in the dynamic programming recursion, determines
the blocks and selects the tag SNPs in each block. In con-
trast, STAMPA uses phased data for the training set and then
employs only the much simpler and faster prediction algo-
rithm in the recursion. This is the reason the latter algorithm
is much faster.

We presented two tag SNP selection algorithms, one based
on dynamic programming and the other based on random
sampling. The dynamic programming algorithm guarantees

an optimal solution in polynomial time, but may be prohibi-
tively slow in practice when the number of tag SNPs is large.
A practical compromise that we used is to limit the distance
between neighboring tag SNPs. Under this restriction opti-
mality is not guaranteed anymore, but our results using over
50 different genotype sets show that accuracy is very good in
most cases even with a modest distance bound (c = 30). The
distance-bounded dynamic programming approach usually
provides better results than the random sampling approach.
These findings are consistent with the report in [19], where a
different criterion (power) was used to evaluate random samp-
ling and HapBlock performance on simulated data. On the
other hand, the random sampling algorithm is very efficient,
and therefore we believe that it may be useful in some specific
situations, e.g., on large data sets where a very sparse set of
tag SNPs is sought.

In comparison to another tag SNP selection algorithm, ldSe-
lect [4], STAMPA consistently obtained higher accuracy. This
is not surprising, since ldSelect uses a simple greedy approach.
Interestingly, even the random sampling approach outper-
formed ldSelect (results not shown). ldSelect has the added
flexibility to select tag SNPs for non-contiguous sets of SNPs,
and thus may have an advantage over STAMPA in the cases
where the LD does not decay with distance.

What is the best measure for selecting tag SNPs?The answer
is not clear yet, and also depends on the context. We propose
here the expected prediction accuracy, and show that under
reasonable assumptions it yields an efficient and accurate
method for selection. Still, other criteria have been propo-
sed. If the ultimate goal is to detect disease association, the
power of a selection method may be evaluated using this cri-
terion. We intend to explore the power of STAMPA in disease
association in the future. Another objective may be to maxi-
mize the distinction between common haplotypes in blocks.
STAMPA does not provide common haplotypes and does not
assume any block structure, which simplifies the algorithmics
but may be viewed as a disadvantage. Our work shows that
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if the expected number of errors is of interest, then our algo-
rithms provide more accurate prediction compared to existing
algorithms.
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