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Abstract. We study the cover time of multiple random walks. Given a
graph G of n vertices, assume that k independent random walks start
from the same vertex. The parameter of interest is the speed-up defined
as the ratio between the cover time of one and the cover time of k random
walks. Recently Alon et al. developed several bounds that are based on
the quotient between the cover time and maximum hitting times. Their
technique gives a speed-up of Ω(k) on many graphs, however, for many
graph classes, k has to be bounded by O(log n). They also conjectured
that, for any 1 � k � n, the speed-up is at most O(k) on any graph. As
our main results, we prove the following:

– We present a new lower bound on the speed-up that depends on the
mixing-time. It gives a speed-up of Ω(k) on many graphs, even if k
is as large as n.

– We prove that the speed-up is O(k log n) on any graph. Under rather
mild conditions, we can also improve this bound to O(k), matching
exactly the conjecture of Alon et al.

– We find the correct order of the speed-up for any value of 1 � k � n
on hypercubes, random graphs and expanders. For d-dimensional
torus graphs (d > 2), our bounds are tight up to a factor of O(log n).

– Our findings also reveal a surprisingly sharp dichotomy on several
graphs (including d-dim. torus and hypercubes): up to a certain
threshold the speed-up is k, while there is no additional speed-up
above the threshold.

1 Introduction

Random walks come up and are studied in many sciences like mathematics,
physics, computer science etc. While mathematicians have studied random walks
on infinite graphs for a long time, computer scientists have spurred an interest
on random walks on finite graphs during the last two decades. Roughly speaking,

� The first author was partially supported by the German Research Foundation un-
der contract EL 399/2-1, and by the Integrated Project IST 15964 “Algorithmic
Principles for Building Efficient Overlay Networks” of the EU. The second author
was partially supported by a postdoctoral fellowship from the German Academic
Exchange Service (DAAD).

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 415–426, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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there have been two main lines of research. One is concerned with the develop-
ment of rapidly mixing random walks, resulting in approximation schemes of
#P hard problems (cf. [17] for more details and a survey on random walks). The
second line of research deals with the time to explore a graph, formally known
as cover time.

Random walks are an attractive tool for graph exploration due to their inher-
ent simplicity, locality and robustness to dynamical changes. For example, Avin,
Koucky, and Lotker [4] recently proved that a (slighly modified) random walk
can still explore all vertices of a graph efficiently, even if the graph is dynamically
changing during the covering procedure. Other algorithmic applications where
random walks have been used are searching [13], routing [18], gossiping [16] and
self-stabilization [12] etc.

Probably the first theoretical applications of the cover time traces back to
Aleliunas, Karp, Lipton, Lovász, and Rackoff [2]. It was shown that by taking a
random walk, it is possible to explore every undirected graph in polynomial time
and logarithmic space. In response to their question about time-space tradeoffs,
Broder, Karlin, Raghavan, and Upfal [7] studied the cover time of many, inde-
pendent random walks, each of which starts from the stationary distribution.

Certainly, the situation becomes more challenging if all random walks start
from the same vertex. Will they stick together and cover more or less the same
set of vertices, or will they quickly disperse in different regions to ensure a fast
covering? Alon, Avin, Koucky, Kozma, Lotker, and Tuttle [3] posed this question
and studied the speed-up defined as the ratio between the cover time of a single
random walk and the cover time of k random walks, where 1 � k � n. As it
turns out, the answer depends very much on the underlying graph: on complete
graphs, a speed-up of k is always possible, while on the cycle the speed-up is
only O(log k). On certain graphs, there are even starting positions of the k walks
such that the speed-up is Ω(2k) (for small k).

Another reason why the cover time of random walks has been investigated is
its intimate relation to other graph-theoretical parameters. For example, Broder
and Karlin [6] gave a comprehensive collection of bounds relating the cover time
to spectral properties of G. Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari
[9] established a tight connection between random walks and electrical networks
and related the cover time to other properties such as the vertex-expansion.

1.1 Related Work

One slight drawback of the cover time of a single random walk is that it takes at
least Ω(n log n) steps on every graph, and may even increase to Ω(n2) on regular
and Ω(n3) steps on non-regular graphs. This has led to several modified covering
schemes. Adler, Halperin, Karp, and Vazirani [1] introduced a covering process
where in each round one first chooses a vertex uniformly at random, and then
chooses an uncovered neighbor of this vertex (if there is one). Later Dimitrov and
Plaxton [11] proved that this process achieves a cover time of O(n+(n log n)/d)
on any d-regular graph. Note that in this scheme, one has to sample uniformly
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among all vertices (not just among visited neighbors) which is not completely
inline with the scenario of a decentralized exploration process.

Another approach taken by Ikeda, Kubo, Okumoto, and Yamashita [14] and
Avin and Krishnamachari [5] is to change the transition probabilities of the
random walk. For example, Ikeda et al. [14] devised a way of locally computable
transition probabilities which results in a cover time of O(n2 log n) on any graph.
However, one limitation of all these approaches is that they can only explore a
graph within Ω(n) steps.

Multiple random walks can break this barrier of Ω(n) and have been used
by Broder et al. [7] to obtain tradeoffs between space and time for the s-t-
connectivity problem. As mentioned before, they assumed that each random
walk starts from an independent sample of the stationary distribution. While
this indeed significantly speeds up the covering process, one has to sample again
among all vertices. This could be one reason why researchers have recently stud-
ied multiple random walks which start all from the same vertex ([3, 10]). Alon
et al. [3] derived several (asymptotic) lower and upper bounds on the speed-up
on several graph classes, while Cooper et al. [10] focused on the class of random
regular graphs and derived nearly exact bounds on the speed-up. Finally, multi-
ple random walks starting from the same vertex are also a fundamental tool for
property testing, cf. [15] for a recent analysis of a property tester of expanders.
The basic idea is to count the collisions of random walks that start from the
same vertex to estimate the expansion properties of a graph.

1.2 Our Contribution

Before describing our main results, we have to introduce a little bit of notation.
Let G be any undirected, connected graph with n vertices. For any 1 � k � n, let
E

[
COVk

u

]
be the expected time for k random walks that start from u to cover all

vertices. Let E
[
COVk

max

]
= maxu∈V E

[
COVk

u

]
(we also use E [COVmax(G) ] =

E
[
COV1

max(G)
]

to stick to the common notation). For any undirected, con-

nected graph G, we define the speed-up Sk :=E [COVmax(G) ] /E
[
COVk

max(G)
]
.

By H(u, v) we denote the expected time for the random walk to get from u to
v; it is a well-known fact that maxu,v H(u, v) approximates E [ COVmax(G) ] up
to a factor of O(log n) (see Theorem 2.2). The mixing time MIX1/2(G) is the
time required for the random walk to approach its stationary distribution (exact
definition in Section 2).

We first present a general lower bound on the speed-up. It is based on the
following upper bound on E

[
COVk

max(G)
]
:

Theorem 3.4 (from page 421). For any graph G and any k with 1 � k � n,

E
[
COVk

max(G)
]

= O
(

log n · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)

.
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Graph COV(G) Hmax MIX1/2(G) Speed up Sk(G)

k ∈ bounds

cycle n2 n2 n2 [1, n] = log k [3, Thm. 6]

2-dim. torus n log2 n n log n n
[1, log n] � k [3, Thm. 4]

[1, n] � log2 n log k [3, Cor. 25]

d-dim. torus,
n log n n n2/d

[1, log n] � k [3, Thm. 4]

d > 2
[1, n1−2/d log n] � k [�, Cor. 1]

[1, n] � n1−2/d log n log k [3, Thm. 24]

[1, n] � k [�, Cor. 4.6]

Hypercube n log n n log n log log n
[1, log n] � k [3, Thm. 4]

[1, n
log log n ] = k [�, Thm. 3.4 & Cor. 4.6]

[ n
log log n , n] = n

log log n [�, Thm. 3.4 & 5.3]

Complete n log n n 1 [1, n] = k [3, Lem. 12]

Expander n log n n log n
[1, n] � k [3, Thm. 18]

[1, n] = k [�, Cor. 5.1]

Random n log n n log n
[1, log n] � k [3, Thm. 4]

[1, n] = k [�, Cor. 5.1]

Fig. 1. Summary of the new and old results for the graphs mentioned by [3], where
constant factors are neglected in all columns. Hmax stands for maxu,v H(u, v). Our new
results are marked with �. For torus graphs, the bounds are tight up to a logarithmic
factor and for all other graphs, the bounds are tight (for each 1 � k � n).

This shows that E
[
COVk

max(G)
]

is upper bounded by log n · maxu,v H(u, v)/k,
as long as maxu,v H(u, v)/k is not smaller than the mixing time (see Corollary 3.5
for a simpler, but slightly weaker statement than Theorem 3.4).

We point out that most previous general upper bounds on E
[
COVk

max(G)
]

in Alon et al. [3] are at least Ω(n) [3, Thm. 4,5,13,14], and therefore only useful
on most graphs when k = O(log n). A similar bound to Theorem 3.4 from [3] is:

Theorem 1.1 ([3, Proof of Theorem 9]). For any graph G and 1 � k � n,

E
[
COVk

max(G)
]

= O
(

MIXn−1(G)n (log n)2

k

)
.

Note that the bound of Alon et al. [3] includes the mixing time as a factor, while
in our bound (Theorem 3.4 above), for any k, the mixing time does not come into
play at all, as long as maxu,v H(u, v)/k is larger than MIX1/2(G). Since for most
graph classes (cmp. Figure 1) maxu,v H(u, v) = Θ(n) and MIX1/2(G) = o(n),
our theorem gives a lower bound on the speed-up of k for a wide range of k
(cf. Figure 1, or Section 5 for more details).

The main idea to establish Theorem 3.4 is based on a coupling argument
between one random walk and k random walks (see Theorem 3.3 for details).
We believe that this technique might be very useful for deriving further bounds
on the cover time of one or many random walks.

We continue to prove a general upper bound for any graph, namely that
Sk = O(k log n) for any 1 � k � n. This already matches the conjecture of
Alon et al. [3] up to a logarithmic factor. Under a rather mild condition on
the mixing-time and cover time of one random walk, we improve this upper
bound to Sk = O(k), establishing the conjecture of [3] for a large class of graphs
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(Corollary 4.7). Finally, we also present an upper bound based on the diameter
of the graph (Theorem 4.8).

Applications of our lower and upper bounds to concrete graphs are summa-
rized in Figure 1, completing Table 1 of [3]. As an example, consider the hyper-
cube with n vertices. We prove that Sk = Θ(k) as long as k = O(n/ log log n).
However, for k = Ω(n/ log log n), Sk = Θ(n/ log log n). The same dichotomy
is established for d-dimensional torus graphs (d > 2), where also n/MIX1/2(G)
represents as a ”sharp threshold” on the speed-up.

1.3 Road Map

In Section 2 we introduce our notation and some preliminary results. Section 3
contains the proof of our upper bound on Sk. This is followed by Section 4
consisting of several lower bounds on Sk. In Section 5 we show how to apply
our general results to obtain tight bounds on Sk for concrete graph classes. We
close in Section 6 with the conclusions. Several proofs are omitted due to space
limitations.

2 Notations, Definitions and Preliminaries

Random Walk. A random walk (cf. [17] for a survey) on an undirected, con-
nected graph G = (V, E) starts at some specified vertex u ∈ V and moves in each
step along some adjacent edge chosen uniformly at random. To ensure conver-
gence also on non-bipartite graphs, a common way is to add loop probabilities:
at each step the random walk stays with probability 1/2 at the current vertex
and otherwise it moves to a randomly chosen neighbor. It is a well-known fact
that the loops only increase the cover time by a factor of 2.

There are two ways to represent the walk. The first and concrete one is to
view the walk as an infinite sequence of vertices X0, X1, . . ., where X0 = u is the
starting vertex and Xt is the vertex visited at step t.

A more abstract way is to only consider the distribution of the walk. To this
end, let P be the transition matrix of the walk, i.e., pu,v = 1

2 deg(u) if {u, v} ∈ E,
pu,u = 1

2 and pu,v = 0 otherwise. Note that P is symmetric if and only if G
is regular. Now define for each pair of vertices u, v, pt

u,v as the probability that
a random walk starting at u visits the vertex v at step t. Hence the vector
pt

u = (pt
u,v)v∈V represents the distribution of Xt, i.e., the visited vertex at step

t. It is a well-known fact that under our assumptions on G, pu(t) converges for
t → ∞ towards the stationary distribution π given by π(v) = deg(v)/(2|E|).
Mixing Time. To quantify the convergence speed, we define the relative point-
wise distance ([20, p. 45]) as

Δ(t) := max
u,v∈V

|pt
u,v − π(v)|

π(v)
.
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Definition 1. The mixing time of a random walk on G with transition matrix
P is defined for any 0 < ε < 1 by

MIXP
ε (G) := min{t ∈ N : Δ(t) � ε}.

If the reference to P is obvious, we shall also just write MIXε(G). Our definition
of mixing time should be compared with the one based on the variation distance
used by Alon et al. [3], MIXε(G) := maxu∈V min {t ∈ N : ‖pt

u − π‖1 � ε} . The
next lemma shows that MIXn−1(G) is not larger than MIXn−1(G).

Lemma 2.1. For any graph G = (V, E), MIXn−1(G) = O(MIXn−1(G)).

Hitting Time and Cover Time. For two vertices u, v ∈ V (G), we define the
hitting time from u to v as H(u, v) := E [min{t ∈ N\{0} : Xt = v, X0 = u} ], i. e.,
the expected number of steps to reach v from u. Denote by COVs(G) the first
time when a (single) random walk starting from s has visited all n vertices of G.
Then the cover time is defined as E [ COVmax(G) ] := maxu∈V E [ COVu(G) ]. (We
point out that in several previous work the cover time is written without E [ · ],
however, in this work we also have to deal with the random variable COVu(G)).
The following well-known result relates the maximum hitting time to the cover
time.

Theorem 2.2 ([9, 18]). For any graph G = (V, E) we have maxu,v∈V H(u, v) �
E [COVmax(G) ] � 2e3 · maxu,v∈V H(u, v) ln n + n

We shall consider the cover time when k random walks start at the same vertex,
where 1 � k � n. To this end, we study E

[
COVk

u(G)
]
, defined as the ex-

pected time for k random walks starting from u to cover all n vertices of G. Set
E

[
COVk

max(G)
]

= maxu∈V E
[
COVk

u(G)
]
. Clearly, E

[
COVk

max(G)
]

decreases
in k. Hence several of our lower bounds stated for E [ COVn

max(G) ] directly im-
ply the same bound on E

[
COVk

max(G)
]

with k � n. Sometimes, we will also

consider E
[
COVk

π(G)
]
. In this case, each starting point of the k random walks

is chosen independently from the stationary distribution π. We recall:

Theorem 2.3 ([7, Theorem 1]). Let G be any graph with m edges. Then we
have for any 1 � k � n, E

[
COVk

π(G)
]

= O
(

m2

k2 · log3 n
)

.

We continue with an auxiliary lemma.

Lemma 2.4. Let X1 and X2 be two random variables taking values in a finite
set S. Assume that there is a number 0 < C < 1 such that for every s ∈ S,
Pr [ X1 = s ] � C Pr [ X2 = s ] . Then there exists a coupling X̂ = (X̂1, X̂2) of
X1 and X2 such that Pr

[
X̂1 = X̂2

]
� C.



Tight Bounds for the Cover Time of Multiple Random Walks 421

3 Lower Bounds on the Speed-Up

A natural relation that has been also used by Alon et al. [3] is the following.

Lemma 3.1. For any 1� k � n, E
[
COVk

max(G)
]
� E

[
COVk

π(G)
]
+MIXn−3(G).

We prove an extension where the threshold for the mixing time is much smaller.
This apparently small difference will be crucial to obtain tight bounds for hy-
percubes (Section 5).

Lemma 3.2. For any 1 � k � n, E
[
COVk

max(G)
]

� 16E
[
COVk/2

π (G)
]

+
4 MIX1/2(G).

Proof Sketch. The basic idea is as follows. Let X1, X2, . . . , Xk be k random
walks starting from the same vertex u. Moreover, let Y 1, Y 2, . . . , Y k be k random
walks, all starting from independent samples of π. Our goal is to relate the set of
covered vertices by X1, . . . , Xk to the covered ones by Y 1, . . . , Y k/2 at the cost
of an additional MIX1/2(G)-term. In order to do so, we will prove that at least
half of the random walks among X1, . . . , Xk are located on a uniformly chosen
vertex after MIX1/2(G) steps.

Theorem 3.3. For every graph G and k with 1 � k � n,

E
[
COVk

π(G)
]

= O
(

log n · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)

.

Before we outline the proof of Theorem 3.3, let us point out that the result also
improves over Theorem 2.3 for a wide range of k, provided that MIX1/2(G) and
maxu,v H(u, v) are not too large.

Proof Sketch. We devise a coupling of a single random walk X to k random
walks, each of which starts according to π. We shall divide the single random
walk X into consecutive sections of length MIX1/2(G). We then argue that a
random walk starting from the stationary distribution has (almost) the same
chance of visiting a vertex within MIX1/2(G) steps as the single random walk
has in one fixed section. This implies that the probability that the k random
walks visit this vertex is (nearly) the probability that X visits the same vertex
in one of the even sections. Here it is crucial to consider only the even (or odd)
sections, so that the random walk X is located on a vertex according to π each
time a new section begins.

Combining this result with Lemma 3.2 we get immediately:

Theorem 3.4. For any graph G and any k with 1 � k � n,

E
[
COVk

max(G)
]

= O
(

log n · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)

.

Let us state a simpler, slightly weaker bound on the speed-up that follows directly
from Theorem 3.4:
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Corollary 3.5. Let G be a graph that satisfies MIX1/2(G) = O(maxu,v H(u, v))
and E [ COVmax(G) ] = Θ(maxu,v H(u, v) log n). Then for any 1 � k � n,

Sk(G) = Ω

⎛
⎝ k

1 + MIX1/2(G)

E[ COVmax(G) ] · k

⎞
⎠ .

Hence as long as k = O
(

E[ COVmax(G) ]
MIX1/2(G)

)
, Corollary 3.5 yields a speed-up of

Ω(k). Note that all graphs (except cycles and 2-dim. torus) in Figure 1 satisfy
the conditions of Corollary 3.5.

4 Upper Bounds on the Speed-Up

Alon et al. [3] gave a graph G and vertex u such that E[ COVu(G) ]

E[COVk
u(G) ] = Ω(2k)

for k = Θ(log n), so the speed-up is exponential in k. However, their example
does not work when u is replaced by a worst-case starting vertex. This lead
to their conjecture that the speed-up is always polynomial in k, if the starting
vertex is worst-case. More precisely, they conjectured that for any graph and
any 1 � k � n, Sk = O(k).

We shall prove that Sk = O(k log n) for any graph and k, matching the con-
jecture up to a factor of O(log n). This also shows that while for an arbitary
starting vertex an exponential speed-up is possible, the speed-up is always poly-
nomial, if the starting vertex is worst-case.

Proposition 4.1. For any graph G and any 1 � k � n, Sk = O(k log n).

Proof. Fix a vertex w. Choose a vertex u such that

Pr
[
walk of length E

[
COVk

u(G)
]

starting at u visits v
]

is minimized. We claim by way of contradiction that

Pr
[
walk of length 2E

[
COVk

u(G)
]

starting at u visits v
]

� 1
4k

.

Assuming the converse, the probability that all k random walks starting at u do
not cover w would be at least

∏k
i=1

(
1 − 1

4k

)
� 1 − ∑k

i=1
1
4k = 3

4 , which in turn

would imply E
[
COVk

u(G)
]

� 3
2 E

[
COVk

u(G)
]
, a contradiction.

Consider now a single random walk of length 16E
[
COVk

u(G)
]
k ln n. Then,

Pr
[
walk of length 16E

[
COVk

u(G)
]
k ln n starting at u visits v

]

� 1 −
(

1 − 1
4k

)8k ln n

� 1 − 1
n2

.

Taking the union bound over all n vertices yields the claim.
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4.1 Special Upper Bounds

Additionally, we shall derive three more specific lower bounds onE
[
COVk

max(G)
]
.

As a consequence, they are most useful to upper bound the speed-up when the
graph satisfies E [COVmax(G) ] = O(n log n) (which is the case for most inter-
esting graphs (cmp. Figure 1)).

We start by deriving a lower bound of Ω((n/k) log n) for not too small k by
using a relatively simple coupon-collecting argument. After that we present a
lower bound of Ω((n/k) log n) for not too large k, requiring that the mixing
time is sublinear. Combining these bounds, we obtain that E

[
COVk

max(G)
]

=
Ω((n/k) log n) for any 1 � k � n (if the mixing time is sublinear).

We start with a bound based on a coupon-collecting argument. We view each
random walk as an independent string of n letters (corresponding to n vertices).
Then we bound the probability that all letters occur in a sample of k random
strings.

Theorem 4.2. Let k be an arbitrary integer satisfying k � nε for an arbitrary
constant 0 < ε < 1. Then, E

[
COVk

max(G)
]

= Ω
(

n
k log n

)
.

For k < nε, we devise a lower bound on E
[
COVk

max(G)
]

that requires a sublin-
ear mixing time. We use the following result from Broder and Karlin [6].

Lemma 4.3 ([6, Lemma 12]). Consider a single random walk X1, X2, . . . with
a symmetric transition matrix P. Let Ts be the first time when s different vertices
are covered. Then for any m ∈ N,

E
[
T�(m+1)n/(m+2)� − T�(m)n/(m+1)�

]
� 1

2
n

m + 2
−O(MIXn−1(G) · m).

Using the lemma above, we can show the following corollary:

Corollary 4.4. Let X = (X1, X2, . . .) be a random walk on regular graph. Let
Ts be the first time that s different vertices are covered. Let 1 � m � n be any
positive integer. Define γm := 1

2
n

m+2 −O(MIXn−1(G) · m). Then,

Pr
[

T�(m+1)n/(m+2)� − T�(m)n/(m+1)� � 1
4
γm

]
� 1

16
.

Theorem 4.5. Assume that MIXn−1(G) = O(n1−ε) for a constant ε > 0. Then
for any regular graph G and k � 4

√
n/MIXn−1(G), E

[
COVk

max

]
= Ω

(
n
k log n

)
.

Proof Sketch. As in [6] our goal is to divide the random walks viewing one after
another into a certain number of epochs, where a new epoch starts if a certain
number of new vertices has been covered. Then we can bound the remaining
time in each epoch by Corollary 4.4. The technical difficulty arises when the
lower bound by Corollary 4.4 is larger than the remaining time of the walk. In
this case we assume (quite pessimistically) that the random walk has finished
one epoch, but this suffices, since k is rather small.
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Combining Theorem 4.2 and Theorem 4.5 we obtain immediately:

Corollary 4.6. For any regular graph G with MIXn−1(G) = O(n1−ε) for a con-
stant ε > 0 and any 1 � k � n, we have E

[
COVk

max(G)
]

= Ω
(

n
k log n

)
.

Turning back to the original question on upper bounding Sk we get:

Corollary 4.7. For any regular graph G that satisfies MIXn−1(G) = O(n1−ε)
and E [ COVmax(G) ] = Θ(n log n), we have for any 1 � k � n, Sk = O(k).

This establishes the conjecture of Alon et al. [3] for a large class of graphs
including most graphs of Figure 1.

Obviously, diam(G) is a lower bound on E
[
COVk

max(G)
]

for each k. Using a
result of [8], we can prove the following improvement (if diam(G) � log n):

Theorem 4.8. For any graph G with diameter diam(G), E [ COVn
max(G) ] =

Ω
(

diam(G)2

log n

)
.

5 Applications to Concrete Graphs

Expanders and Random Graphs. There are several (mostly equivalent) defini-
tions of expanders. Here, we call a regular graph an expander if MIXn−1(G) =
O(log n) (this is a more general definition than [3], where additionally the degree
has to be constant). It is also a well-known fact that any expander graph satisfies
maxu,v H(u, v) = O(n) (cf. [6, 17]). Hence Corollary 3.5 implies a speed-up of
Ω(k) for any 1 � k � n. Moreover, Corollary 4.6 establishes tightness.

For any given (1 + ε) log(n)/n < p < 1, ε > 0, an Erdős-Rényi random graph
is constructed by placing an edge between each pair of vertices independently
with probability p. Similar to regular expanders, we can prove the same result
for random graphs leading to the following corollary.

Corollary 5.1. For any regular expander graph and almost all Erdős-Rényi ran-
dom graphs with p � (1+ε) log(n)/n, we have for any 1 � k � n that Sk = Θ(k).

Hypercubes. Let us consider the speed-up on the log n-dimensional hypercube
Hn with n vertices. It is known that maxu,v∈V H(u, v) = O(n) (cf. [17]) which
readily implies that E [ COVmax(Hn) ] = Θ(n log n).

Lemma 5.2. For the hypercube Hn, MIX1/2(G) = O(log n log log n).

We remark that MIXn−1(Hn) = Ω(log2 n), so it is crucial to use MIX1/2(Hn).
Hence, as long as k � C1n/(logn log log n) for a sufficiently small constant C1,
Corollary 3.5 and Corollary 4.7 imply that the speed up is Θ(k). (We point out
that using the techniques of [10], a more precise bound on the speed could be
obtained). Let us now consider the case when k is large.

Theorem 5.3. For the hypercube Hn, E [COVn
max(Hn) ] = Ω(log n log log n).

Hence the speed-up on hypercubes undergoes a surprisingly sharp transition: it
equals k if k = O(n/ log log n), but as soon as k = Θ(n/ log log n) the speed-up
does not increase further.
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Cayley Graphs with Small Degree (including Torus Graphs). Let us now consider
torus graphs. For cycles, Alon et al. [3, Theorem 6] prove that Sk = Θ(log k) for
any 1 � k � n. For the two-dimensional torus graph, they proved [3, Theorem 4
& 8, Corollary 25] that Sk(G) = Ω(k) for k � log n, but Sk(G) = O(log2 n log k)
for any 1 � k � n. Therefore, we only have to consider the d-dimensional torus
with d � 3 in the following. In fact, we shall look at Cayley graphs more generally.
Recall that an undirected Cayley graph is a graph whose vertex set is equal to
the elements of a finite group and the edge set is given by a set of self-inverse
group generators (cf. [19]). We recall the following lemma.

Lemma 5.4 ([19]). For any Cayley graph G,MIX1/2(G)=O(Δ diam(G)2 log n).

Now applying Corollary 3.5 and Theorem 4.8 we obtain the following.

Theorem 5.5. Let G be a Δ-regular Cayley graph such that E [COVmax(G) ] =
Θ(maxu,v H(u, v) logn). Then, for any k � E[ COVmax(G) ]

Δ diam(G)2 log n , Sk(G) = Ω (k) .

Moreover for any 1 � k � n, Sk(G) = O
(

E[ COVmax(G) ]
diam(G)2 log n

)
.

Hence for any Cayley graph with small degree Δ, there is a sharp threshold point
near E[ COVmax(G) ]

diam(G)2 . For d-dimensional torus with d > 2 we can prove a slightly
stronger result, since it is known that maxu,v H(u, v) = Θ(n) and MIX1/2(G) =
Θ(diam(G)2) = Θ(n2/d) (cf. [3, 17]). Applying Corollary 3.5 for the lower bound,
and, Theorem 4.8 and Corollary 4.7 for the upper bound gives:

Corollary 1. Let G be a d-dimensional torus with d > 2. Then for any 1 �
k � n1−2/d log n, Sk(G) = Ω (k) . Moreover for any 1 � k � n, Sk(G) =
O (

min{k, n1−2/d log2 n}) .

6 Conclusions

We presented several lower and upper bounds on the speed-up defined as the
ratio between the cover time of one and the cover time of k random walks. On a
concrete level, our results fill several gaps left open in the previous work of Alon
et al. [3] (cmp. Figure 1). From a higher perspective, our findings also provide
an answer to the question raised by [3] about a good characterization of a best-
possible speed-up. For a large class of graphs, a speed-up of Ω(k) is possible up
to a certain threshold (roughly n log n divided by the mixing time), while above
the threshold the speed-up does not increase further.
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Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 527–538. Springer,
Heidelberg (2008)

[16] Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2003), pp. 482–491 (2003)

[17] Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdös is
Eighty 2, 1–46 (1993)

[18] Motwani, R., Raghavan, P.: Randomized Algorithms, 7th edn. Cambridge Univer-
sity Press, Cambridge (1995)

[19] Pak, I.: Mixing time and long paths in graphs. In: 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2002), pp. 321–328 (2002)

[20] Sinclair, A.: Algorithms for Random Generation and Counting. Birkhäuser, Basel
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