
UbiMASS - Ubiquitous Mobile Agent System for
Wireless Sensor Networks

Faruk Bagci, Julian Wolf, Benjamin Satzger, and Theo Ungerer
Institute of Computer Science

University of Augsburg, Germany
Email: {Bagci, Wolf, Satzger, Ungerer}@Informatik.Uni-Augsburg.DE

Abstract—Ubiquitous systems build on the vision that great
amounts of fixed and mobile microchips and sensors will be
integrated in everyday objects. Developing services on basis of
sensor nodes and limited devices is an arduous task. A program
running on such a device is static and limited to a single service.
If a new service needs to be performed, devices have to be
fundamentally reprogrammed and reloaded. For dynamic service
distribution a mobile agent system is devised and services are
distributed by mobile agents. The idea in this paper is to load a
service on a limited device or sensor node when it is needed and
to switch services dynamically. The service comes in form of an
agent to each device. We developed a mobile agent system called
UbiMASS that is downsized to run on sensor nodes. UbiMASS
was evaluated on the sensor nodes ESB430 which has multiple
sensors and actuators on-board. For real test scenarios, we could
investigate the possibility and advantages of service changes on a
wireless sensor network using mobile agents. UbiMASS offers an
easy and convenient way to dynamically reprogram tiny devices
with wireless connections.

I. INTRODUCTION

It is a vision for a new computer era - Ubiquitous Systems
are computing resources integrated into the human environ-
ment and not perceived as stand-alone computer systems. The
aim of microchips is to support the users in an independent
and invisible way instead of forcing them to adapt to the
computerized world. Most of the devices will be attached
to a fixed location whereas some will be mobile carried by
persons. Service development on memory and energy limited
devices is a complex task. An example for a service is a fire
detection application on basis of temperature sensors that are
spread out in an area. A program running on such a device
is static and usually limited to a single task. If a new service
needs to be performed each device has to be fundamentally
reprogrammed. Regarding the large number of sensor nodes
envisioned for future sensor network applications, this could
lead to an intractable task. Running multiple services on
one device is usually not possible because of memory and
performance limitations.

Regarding the decentralized approach, the openness, and
heterogeneity of wireless sensor networks, the paradigm of
mobile agents presents itself for ubiquitous systems. The
idea in this paper is to bring a service on limited devices
and sensors when it is needed and to switch services dy-
namically. Imagine a smart office building that has multiple
microcontrollers and sensors integrated in walls, doors and
office equipments, and users who have portable devices as

well as microchips integrated in badges. In the initial state, the
microcontrollers perform no services, but have the possibility
to host mobile agents. The service comes in form of an agent
to each device and leaves if it is no longer needed.

Agents in general can be defined as software units with
certain autonomy. They perform services by order of a user or
other agents. Mobile agents have an additional property: they
can autonomously migrate, i.e. they can transfer program code,
data and continuation pointer to a remote computer and resume
with the program execution. Beside this physical mobility,
mobile agents have the possibility to communicate with each
other in order to exchange information.

This paper describes a mobile agent system for ubiquitous
environments called UbiMASS. The mobile agents in Ubi-
MASS can receive information from the real environment
through appropriate interfaces. The light-weight design of
UbiMASS allows it to run on wireless sensor networks, that
consist of several sensor nodes. Usually each node has its
own processor, memory and application specific sensors. It is
a characteristic of sensor nodes that all resources are extremely
limited:

• Energy: Since the energy supply is provided by a battery
or solar cell, it is an important requirement to reduce the
energy consumption. Therefore, wireless communication
and performance intensive tasks should be avoided.

• Memory: For current prototypes only a limited memory
capacity is available. On the average sensor boards have
less than 20 kilobytes of RAM and about 100 kilobytes
of flash memory.

• Performance: In order to reduce the energy consumption,
low performance processors are used on sensor boards.
In most cases it is an 8-bit microcontroller. Therefore, the
performance and speed is very limited.

• Communication: Wireless communication has naturally
a weak data throughput. Additionally, problems with
packet failures, packet loss, and collisions lead to in-
creased energy consumption and time delays.

UbiMASS was successfully implemented and evaluated
on ESB430 sensor boards that are developed at the Freie
University of Berlin [2]. This board works with a TI MSP430,
an ultra low power 16 bit RISC-based microcontroller with 60
KB flash ROM and 2 KB RAM. ESB430 has multiple sensors
on-board. Figure 1 shows a picture of the ESB430 with its

2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

978-0-7695-4049-8/10 $26.00 © 2010 IEEE

DOI 10.1109/SUTC.2010.38

245

sensors and actuators.

Fig. 1. The ESB430 sensor board

The next section describes related mobile code approaches
for wireless sensor networks. Section III introduces the Ubi-
MASS architecture and its components. UbiMASS is evaluated
on the ESB430 sensor boards within several scenarios. Section
IV describes the evaluation results. The paper ends with the
conclusion.

II. RELATED WORK

Although there was an initial excitement about the idea
of mobile agents in the late nineties, there are only a few
projects that exist concerning agent systems on wireless sensor
networks. The most famous project in this area is Agilla [5]
[6].

Agilla is a mobile agent middleware for wireless sensor
networks. It offers a special extension for TinyOS, an open
source operating system for embedded systems. The aim
of Agilla is to create mobile agents and to allow them to
spread out their code and current status over a wireless sensor
network. Through this local control, the mobile agents obtain
more flexibility to find an optimal position for application
specific tasks. Based on the multitasking ability of TinyOS,
Agilla allows to run several agents on a single sensor node.
The number of possible agents differs depending on the
local memory capacity. Each agent is autonomous but shares
various resources of the middleware with other agents, i.e. a
neighbor list and a tuple space. The neighbor list contains
the addresses of neighboring nodes. Mobile agents use this
list for planning their next migration. The tuple space offers a
decoupled communication capability among agents. It forms
a shared memory architecture, where addressing is performed
over defined field names instead of memory addresses. A tuple
describes a typified data object. All tuples exist even if the
inserting agent does not exist any more. Another agent could
later reuse the data in the remaining tuple. In this manner the
tuple decouples the sending agent from the receiving agent.
Neither knowledge about the location nor the existence of the
communication partner is required. For the implementation of

agents Agilla uses a stack-based assembler language. This
approach is the main disadvantage of Agilla, since even
the programming of simple applications is really hard and
needs a lot of code lines. Complex applications are nearly
impossible. First step to enhance this was to provide a higher
programming language which is automatically transformed in
Agilla code. But still only simple command sequences are
possible. Another weakness of Agilla lies in the realization of
the tuple space. In a wireless environment it is obvious that
inconsistencies can arise. Due to connection failures data could
not be reached or several tuples with the same value could
exist. A global tuple space would be a solution but would
contradict to energy and resource requirements of wireless
sensor networks. Agilla was established and tested on the
sensor boards Mica2 and MicaZ, that have more extensive
hardware resources than the sensor boards used in this work.

Another project that uses code mobility but not in the
manner of mobile agents is Contiki [4] [3]. It is an open
source operating system for an 8-bit controller. Contiki is
implemented in the language C and is already ported to several
microcontroller. It is not an agent system but it offers the
possibility to dynamically re-programm sensor nodes during
runtime using mobile code approach. The code itself cannot
trigger the migration instead it is pushed by the underlying
middleware. Contiki was designed for embedded systems with
extremely low memory capacity. A typical Contiki configura-
tion uses only 2 kilobytes of RAM and 40 kilobytes of ROM.
The operating system consists of a simple event-triggered
kernel, where applications can be loaded and unloaded dynam-
ically at runtime. The processes of Contiki uses the so called
protothreads, which provide optional preemptive multitask-
ing. Inter-process communication is performed using message
passing through events. Sensor nodes can communicate over a
reduced TCP/IP stack called uIP. Contiki uses the standardized
ELF-format [1] for the dynamic binding and loading of code.
UbiMASS is also based on ELF which is described in the next
section.

III. UBIMASS ARCHITECTURE

Based on the requirements of ubiquitous agent systems, this
section presents the ubiquitous mobile agent system for sensor
networks (short UbiMASS). UbiMASS describes an agent
middleware, which offers a fundamental basis, to develop a
range of applications from the ubiquitous computing area.

The primary goal of UbiMASS is to offer mobile agents the
opportunity to distribute on their own initiative the code, as
well, existing data, and the current state over a wireless sensor
network. The agents, using their own local control and flexi-
bility, perform application specific tasks. It is not necessary to
transfer data over an unreliable wireless connection because
the agent itself has been moved to the data. This approach
is an elegant and energy-efficient solution for distributed
applications. Calculations proceed only at relevant locations
sparing the entire communication network from useless traffic
loads.

246

UbiMASS consists of multiple wireless connected agent
hosts offering a platform for mobile agents. A UbiMASS host
has a modular architecture with several components. Besides
the management of the agent system, the hosts must run the
agent and control its communication and migration.

Actually the agent middleware has three components: the
ELF loader, the Migration Engine, and the Sensor-Actuator
Interface. Figure 2 shows the UbiMASS host architecture.

Communication Level

Agent Middleware

Sensor-Actuator Interface

ELF Loader

Migration Engine

Agent

UbiMASS

Fig. 2. UbiMASS host architecture

A. UbiMASS ELF Loader
The agent system UbiMASS uses the standardized format

ELF for dynamic loading of the agent. In the case of an agent
migration the middleware calls the loading method of the ELF
loader to begin the execution of the agent. In order to explain
this operation it is necessary to describe at first the basics of
the ELF standard.

ELF stands for Executable and Linkable Format, that is
basically a standard for executable files. It is mostly used in
UNIX systems where it replaces the old and unflexible a.out.
ELF aims to rearrange the machine code in order to load it fast
and efficiently into the memory for execution. The standard
describes how commands have to be organized, interpreted
and loaded. The representation of control data is, in contrast
to other proprietary formats, always platform independent. [1]
distinguishes between three kinds of ELF files (object files):

• Executable File: This type of file comprises a program
that is ready to be executed. All necessary information to
create a new process is available. This process has access
to the code and data within the corresponding file.

• Relocatable File: In this case the file does not contain an
executable program, but only position independent code
and data. These can be linked with other object files to
produce an executable program or a dynamic library.

• Shared Object File: This file comprehends also code and
data, that can be linked on two ways. On the one hand a

new object file can be created using other relocatable or
shared object files. On the other hand executable or shared
object files can be used to produce a process image.

The object files are required for binding or linking of the
program as well as for executing the program. Therefore, ELF
defines different views of the same file: linking view and
execution view (see Figure 3). The linking view constitutes the
file as an alignment of sections. The execution view divides
the file into segments. Each view has a table describing the
several sections. Notice that sections and segments describe
actually the same file only from different points of view.

Fig. 3. Different views of an ELF file

The sections are used by compilers, assemblers, and linkers
to arrange the file into several parts. In this manner the
executable code is located in the section .text, all initialized
variables in the section .data, and all not initialized variables
in .bss. Additionally, there is a string table which contains all
names of sections and symbols. Another essential section is
the symbol table.

A symbol constitutes a kind of pointer with a name and a
value. A name of a function or a variable can be associated
with a physical address in this manner. The management
of all symbols is done with the symbol table to allow an
easy way of locating symbols. Besides index, names, and
addresses of symbols the table also contains in the column
info additional information about the visibility of the binding
and the classification of symbols. The binding can be defined
as local, global or weak. Local symbols are not visible outside
of the object file similar to a local variable. Globally defined
symbols are visible in all object files, i.e. they must be unique.
Weak symbols actually behave like global ones, but have lower
priority.

Actually an agent in UbiMASS is a relocatable ELF file.
This file is transferred from one agent host to the next in case
of a migration. In order to load the agent, the receiving agent
host calls the function elfloader load() which performs the
following steps:

• At first the header is checked to ensure that it is a correct
and compatible ELF file.

• The next section header is designed to get the number

UbiMASS consists of multiple wireless connected agent
hosts offering a platform for mobile agents. A UbiMASS host
has a modular architecture with several components. Besides
the management of the agent system, the hosts must run the
agent and control its communication and migration.

Actually the agent middleware has three components: the
ELF loader, the Migration Engine, and the Sensor-Actuator
Interface. Figure 2 shows the UbiMASS host architecture.

Communication Level

Agent Middleware

Sensor-Actuator Interface

ELF Loader

Migration Engine

Agent

UbiMASS

Fig. 2. UbiMASS host architecture

A. UbiMASS ELF Loader
The agent system UbiMASS uses the standardized format

ELF for dynamic loading of the agent. In the case of an agent
migration the middleware calls the loading method of the ELF
loader to begin the execution of the agent. In order to explain
this operation it is necessary to describe at first the basics of
the ELF standard.

ELF stands for Executable and Linkable Format, that is
basically a standard for executable files. It is mostly used in
UNIX systems where it replaces the old and unflexible a.out.
ELF aims to rearrange the machine code in order to load it fast
and efficiently into the memory for execution. The standard
describes how commands have to be organized, interpreted
and loaded. The representation of control data is, in contrast
to other proprietary formats, always platform independent. [1]
distinguishes between three kinds of ELF files (object files):

• Executable File: This type of file comprises a program
that is ready to be executed. All necessary information to
create a new process is available. This process has access
to the code and data within the corresponding file.

• Relocatable File: In this case the file does not contain an
executable program, but only position independent code
and data. These can be linked with other object files to
produce an executable program or a dynamic library.

• Shared Object File: This file comprehends also code and
data, that can be linked on two ways. On the one hand a

new object file can be created using other relocatable or
shared object files. On the other hand executable or shared
object files can be used to produce a process image.

The object files are required for binding or linking of the
program as well as for executing the program. Therefore, ELF
defines different views of the same file: linking view and
execution view (see Figure 3). The linking view constitutes the
file as an alignment of sections. The execution view divides
the file into segments. Each view has a table describing the
several sections. Notice that sections and segments describe
actually the same file only from different points of view.

Fig. 3. Different views of an ELF file

The sections are used by compilers, assemblers, and linkers
to arrange the file into several parts. In this manner the
executable code is located in the section .text, all initialized
variables in the section .data, and all not initialized variables
in .bss. Additionally, there is a string table which contains all
names of sections and symbols. Another essential section is
the symbol table.

A symbol constitutes a kind of pointer with a name and a
value. A name of a function or a variable can be associated
with a physical address in this manner. The management
of all symbols is done with the symbol table to allow an
easy way of locating symbols. Besides index, names, and
addresses of symbols the table also contains in the column
info additional information about the visibility of the binding
and the classification of symbols. The binding can be defined
as local, global or weak. Local symbols are not visible outside
of the object file similar to a local variable. Globally defined
symbols are visible in all object files, i.e. they must be unique.
Weak symbols actually behave like global ones, but have lower
priority.

Actually an agent in UbiMASS is a relocatable ELF file.
This file is transferred from one agent host to the next in case
of a migration. In order to load the agent, the receiving agent
host calls the function elfloader load() which performs the
following steps:

• At first the header is checked to ensure that it is a correct
and compatible ELF file.

• The next section header is designed to get the number

UbiMASS consists of multiple wireless connected agent
hosts offering a platform for mobile agents. A UbiMASS host
has a modular architecture with several components. Besides
the management of the agent system, the hosts must run the
agent and control its communication and migration.

Actually the agent middleware has three components: the
ELF loader, the Migration Engine, and the Sensor-Actuator
Interface. Figure 2 shows the UbiMASS host architecture.

Communication Level

Agent Middleware

Sensor-Actuator Interface

ELF Loader

Migration Engine

Agent

UbiMASS

Fig. 2. UbiMASS host architecture

A. UbiMASS ELF Loader
The agent system UbiMASS uses the standardized format

ELF for dynamic loading of the agent. In the case of an agent
migration the middleware calls the loading method of the ELF
loader to begin the execution of the agent. In order to explain
this operation it is necessary to describe at first the basics of
the ELF standard.

ELF stands for Executable and Linkable Format, that is
basically a standard for executable files. It is mostly used in
UNIX systems where it replaces the old and unflexible a.out.
ELF aims to rearrange the machine code in order to load it fast
and efficiently into the memory for execution. The standard
describes how commands have to be organized, interpreted
and loaded. The representation of control data is, in contrast
to other proprietary formats, always platform independent. [1]
distinguishes between three kinds of ELF files (object files):

• Executable File: This type of file comprises a program
that is ready to be executed. All necessary information to
create a new process is available. This process has access
to the code and data within the corresponding file.

• Relocatable File: In this case the file does not contain an
executable program, but only position independent code
and data. These can be linked with other object files to
produce an executable program or a dynamic library.

• Shared Object File: This file comprehends also code and
data, that can be linked on two ways. On the one hand a

new object file can be created using other relocatable or
shared object files. On the other hand executable or shared
object files can be used to produce a process image.

The object files are required for binding or linking of the
program as well as for executing the program. Therefore, ELF
defines different views of the same file: linking view and
execution view (see Figure 3). The linking view constitutes the
file as an alignment of sections. The execution view divides
the file into segments. Each view has a table describing the
several sections. Notice that sections and segments describe
actually the same file only from different points of view.

Fig. 3. Different views of an ELF file

The sections are used by compilers, assemblers, and linkers
to arrange the file into several parts. In this manner the
executable code is located in the section .text, all initialized
variables in the section .data, and all not initialized variables
in .bss. Additionally, there is a string table which contains all
names of sections and symbols. Another essential section is
the symbol table.

A symbol constitutes a kind of pointer with a name and a
value. A name of a function or a variable can be associated
with a physical address in this manner. The management
of all symbols is done with the symbol table to allow an
easy way of locating symbols. Besides index, names, and
addresses of symbols the table also contains in the column
info additional information about the visibility of the binding
and the classification of symbols. The binding can be defined
as local, global or weak. Local symbols are not visible outside
of the object file similar to a local variable. Globally defined
symbols are visible in all object files, i.e. they must be unique.
Weak symbols actually behave like global ones, but have lower
priority.

Actually an agent in UbiMASS is a relocatable ELF file.
This file is transferred from one agent host to the next in case
of a migration. In order to load the agent, the receiving agent
host calls the function elfloader load() which performs the
following steps:

• At first the header is checked to ensure that it is a correct
and compatible ELF file.

• The next section header is designed to get the number

UbiMASS consists of multiple wireless connected agent
hosts offering a platform for mobile agents. A UbiMASS host
has a modular architecture with several components. Besides
the management of the agent system, the hosts must run the
agent and control its communication and migration.

Actually the agent middleware has three components: the
ELF loader, the Migration Engine, and the Sensor-Actuator
Interface. Figure 2 shows the UbiMASS host architecture.

Communication Level

Agent Middleware

Sensor-Actuator Interface

ELF Loader

Migration Engine

Agent

UbiMASS

Fig. 2. UbiMASS host architecture

A. UbiMASS ELF Loader
The agent system UbiMASS uses the standardized format

ELF for dynamic loading of the agent. In the case of an agent
migration the middleware calls the loading method of the ELF
loader to begin the execution of the agent. In order to explain
this operation it is necessary to describe at first the basics of
the ELF standard.

ELF stands for Executable and Linkable Format, that is
basically a standard for executable files. It is mostly used in
UNIX systems where it replaces the old and unflexible a.out.
ELF aims to rearrange the machine code in order to load it fast
and efficiently into the memory for execution. The standard
describes how commands have to be organized, interpreted
and loaded. The representation of control data is, in contrast
to other proprietary formats, always platform independent. [1]
distinguishes between three kinds of ELF files (object files):

• Executable File: This type of file comprises a program
that is ready to be executed. All necessary information to
create a new process is available. This process has access
to the code and data within the corresponding file.

• Relocatable File: In this case the file does not contain an
executable program, but only position independent code
and data. These can be linked with other object files to
produce an executable program or a dynamic library.

• Shared Object File: This file comprehends also code and
data, that can be linked on two ways. On the one hand a

new object file can be created using other relocatable or
shared object files. On the other hand executable or shared
object files can be used to produce a process image.

The object files are required for binding or linking of the
program as well as for executing the program. Therefore, ELF
defines different views of the same file: linking view and
execution view (see Figure 3). The linking view constitutes the
file as an alignment of sections. The execution view divides
the file into segments. Each view has a table describing the
several sections. Notice that sections and segments describe
actually the same file only from different points of view.

Fig. 3. Different views of an ELF file

The sections are used by compilers, assemblers, and linkers
to arrange the file into several parts. In this manner the
executable code is located in the section .text, all initialized
variables in the section .data, and all not initialized variables
in .bss. Additionally, there is a string table which contains all
names of sections and symbols. Another essential section is
the symbol table.

A symbol constitutes a kind of pointer with a name and a
value. A name of a function or a variable can be associated
with a physical address in this manner. The management
of all symbols is done with the symbol table to allow an
easy way of locating symbols. Besides index, names, and
addresses of symbols the table also contains in the column
info additional information about the visibility of the binding
and the classification of symbols. The binding can be defined
as local, global or weak. Local symbols are not visible outside
of the object file similar to a local variable. Globally defined
symbols are visible in all object files, i.e. they must be unique.
Weak symbols actually behave like global ones, but have lower
priority.

Actually an agent in UbiMASS is a relocatable ELF file.
This file is transferred from one agent host to the next in case
of a migration. In order to load the agent, the receiving agent
host calls the function elfloader load() which performs the
following steps:

• At first the header is checked to ensure that it is a correct
and compatible ELF file.

• The next section header is designed to get the number

247

and size of the according entries. Using the string table
the names of all other sections is determined.

• Now all sections can be parsed. The section .text contains
the current program code of the ELF file. The section
.data presents all initialized data, whereas .bss contains
the non initialized data. for the relocation is stored in both
sections .rela.text and .rela.data. Furthermore the symbol
table and the string table are used to set the pointer on
all the relevant sections and to store the section number
for dissolving the final addresses.

• Two functions which are ported for the architecture of
the sensor board ESB 430 are used to allocate memory.
Sections .data and .bss are stored in the RAM, whereas
section .text gets into the flash memory.

• Using the symbol table next step is to relocate in sections
.text, .bss, and .data. This leads to the integration of the
location independent code into its environment where it
can be executed later.

• Finally the completely linked code is written into the al-
located space. The loaded programm can now be started.

This mechanism offers the possibility to integrate easily new
agents into running UbiMASS agent system which ensures
high flexibility and reliability.

B. Migration Engine

The Migration Engine of the UbiMASS agent middleware
is responsible for complete and correct process of the agent
migration. One of the key features is that the agent can decide
on its own which current values of variables it needs to take
to the destination host. In this manner, the agent can trigger
an entry point in order to continue to work where it stopped
at the previous host.

The process of the migration is shown in Figure 4.

1) Before starting the migration the agent can send cur-
rent values of integer and string variables to the agent
middleware using two functions set init data(int id, int
data) and set init data(int id, char data[]). Because the
agent itself will receive this list of tuples, there are no
further specifications necessary. The agent knows how
to handle the data on the destination node.

2) Using start migration() the agent initiates migration and
lets the middleware to perform the required steps.

3) Agent middleware initiates the migration. Actually, it is
a weak migration, because only the program code and
data of the agent is transferred, but not its status. The
agent starts from the beginning at each time. The agent
and its memory address that is known from the initial
loading is forwarded to the communication level. On the
destination host, the agent is loaded and started using the
ELF loader described in the previous section.

4) In order to receive the last values of its variables the
agent calls at the beginning the middleware function
demand init data(). This turns the migration into a
strong migration, because the agent can now continue
to work with its previous status.

5) The destination host requests the list of variables by
sending an INIT to the source host.

6) The source host packs all tuples into a char array and
sends it to the requesting host. Figure 5 gives an example
of the char array.

� �� � � � � � � � ���

Fig. 5. Example: sending of variable values

At the beginning of each variable the type is specified
by an i for integer and s for a string. Because integer
variables require 16 bits two chars are used to deliver
one integer right-shifting the first bits by 8. The value
in the example can be calculated by (3 << 8) + 32 =
768+32 = 800. After the string type, length of the string
is indicated. After successful transfer of the message,
agent host can delete the agent process and deallocate
memory space or agent can remain, if cloning of agents
is desired.

7) After waiting for the variable value to receive the
agent can access values using middleware functions
get init data(int id) and get init string(int id). Because
the agent knows in which order it has put the variables,
it also knows which variable matches its id.

The Migration Engine works as a fundamental component
of the overall agent system. For this work our goal was to
develop and to evaluate the basic functionality.

C. Sensor-Actuator Interface

Ubiquitous systems use context information to adapt to
environmental changes. These changes can be detected using
sensors. UbiMASS provides a sensor-actuator interface that
is used by the agent system to access sensor and actuator
information from the hardware. The access is strongly de-
pendent on the used sensor board and its firmware. In the
current version of UbiMASS the sensor-actuator interface is
ported to the ESB430 sensor board that has multiple sensors
and actuators on-board. Figure 6 gives an overview of current
components of the UbiMASS interface.

Fig. 6. Access of sensor and actuators of the ESB430 in UbiMASS

Porting to other devices is possible because of the modular
concept of UbiMASS. It is only necessary to link the firmware
components to the sensor-actuator interface of the new hard-
ware.

248

�������	

���
��
���������������	

�������
����

�����

� set_init_data(id, data)

� start_migration()

�������	

���
��
���������������	

�������
����

�����

� MIGRATION

� demand_init_data()

� get_init_data(id)

� send_init()

� send_data()

Fig. 4. Agent migration in UbiMASS

D. Communication Layer

The agent middleware in UbiMASS is positioned on top of
the communication layer that is responsible for the transfer of
messages between sensor nodes.

The communication bases on the User Datagram Protocol
(UDP) a minimal and connectionless net-protocol. During the
migration process an agent is fragmented into small packets.
Each data packet has a size of 96 bytes and gets an additional
header of 8 bytes. The UDP header contains four 16 bit fields
as shown in Figure 7:

• ID field identifies the current agent. It is set randomly at
the beginning and is incremented for each new agent.

• The type can get two possible values: a usual data packet
has the type TYPE DATA, whereas a response packet that
indicates a packet loss has the type TYPE NACK.

• Address field is used to reassemble the agent. The address
of first packet gets the value of memory address the
agent on the source was stored on. Each succeeding
packet increases the value by the data length (96 Bytes).
Destination host can use this information to reassemble
packets in the right order.

• Length field shows the overall length of the sent data.
This is used to check completeness of the entire data.

ID Type

Address Length

Data

Fig. 7. UDP datagram format in UbiMASS

Since UDP is a connectionless and non-reliable transfer
protocol, there are no guarantees that a sent packet reaches
the receiver or that packets arrive in a sorted order. The

communication layer of UbiMASS closes this gap by checking
the address and ID fields in the packet header. If there
are missing or incorrect packets, UbiMASS requests them
by sending a NACK message that contains the address of
incorrect packet. UbiMASS ensures in this way a reliable
communication between sensor nodes.

E. UbiMASS Agent
The core of an agent system is the agent itself. Agents in

UbiMASS can be easily implemented using the common C
language. Figure 8 illustrates an example of a UbiMASS agent.

1 #include "ubimass-esb.h"
2 #include "migration/migration-tmp.h"
3 #include <stdio.h>
4 #include <stdlib.h>
5 static struct etimer timer;
6 int i = 0;
7 int count_beeps = 2;
8
9 demand_init_data();
10 etimer_set(&timer, CLOCK_SECOND*4);
11 if (init_ok() == 1) {
12 count_beeps = get_init_data(0);
13 }
14 count_beeps++;
15 set_init_data(0, count_beeps);
16
17 while(i < count_beeps) {
18 etimer_reset(&timer);
19 beep_long(CLOCK_SECOND/4);
20 i++;
21 }
22
23 int len = migration_getLen();
24 start_migration(len);
25 }

Fig. 8. Example of a UbiMASS agent

This agent has the simple task of activating the beeper on the
current sensor board. The count of beeps is increased with each

249

migration. Therefore, the agent uses variable count_beeps.
After arriving on the current node agent has to request variable
values from the previous node. This is shown on line 9 of the
code, where the agent calls the middleware function demand-
_init_data().

After a waiting time in which the agent host requests
variable values from the source host, the agent can check
the status by calling init_ok(). If variables are received
correctly, the agent can access values over the function get-
_init_data(id). After increasing the number of beeps,
agent stores a new value by calling set_init_data(id,
value) in order to be able to access the variable on the
next node. The migration begins after calling the function
start_migration().

IV. EVALUATION

We have evaluated UbiMASS in several scenarios using real
sensor boards. In order to illustrate the advantage of UbiMASS
compared to traditional over the air reprogramming, we chose
a scenario where the sensor nodes were attached in the way
that the entire network forms a ring. It is assumed that in
the middle of the ring there is an object (e.g. a mountain)
that blocks the wireless connectivity, so that each node has
only a single predecessor and successor. Figure 9 describes
the scenario.

Fig. 9. Test scenario

In order to demonstrate reprogramming of the sensor net-
work, the agent that has the simple task to count the number
of sensor nodes is started first. The agent hops from node
to node and increases the number of visited hosts. Since the
network forms a ring, the agent will finally arrive at the first
node where it displays the number of nodes on a connected
PC. The round trip traverse of this agent is shown in Figure
10.

Since we want to demonstrate the service switch, we start
a second agent that accesses the light sensor on each node
(e.g. to check the weather situation). A great advantage of
UbiMASS in this context is that the second agent can be
started with a short delay after the first agent. In this way,

Fig. 10. Round trip of a mobile agent in UbiMASS

the agents provide different sensor information without losing
much time. Figure 11 visualizes this specific scenario.

UbiMASS offers agents the possibility to work asyn-
chronously and autonomously. Since the agent carries all the
information and sensor values, there is no need for additional
communication except for the migration. After migration of
the agent, the sensor node can perform different services by
allowing other agents to run on it.

It is interesting to compare this feature with other repro-
gramming systems. To investigate this, we implemented the
same scenario with two successive agents as mentioned above
on the open source operating system Contiki. With the specific
application of code propagation and storage of Contiki it is
possible to reprogram sensor nodes. After loading a program
from a PC on a sensor node this program can be transferred
to neighboring nodes by broadcasting the code. But this is
limited to only one time, i.e. nodes that are reachable over
two or more hops cannot be programmed with this approach.
In our ring scenario, this leads to an enormous effort since
we have to attach a PC at each second sensor node. After this
work, it is necessary to send a round-trip message in order to
receive the sensor values. Loading a second service requires
the same effort again from the beginning. Figure 12 describes
the required steps in Contiki compared to round trip of a single
agent in UbiMASS (see Figure 10).

In order to evaluate the transfer time and loading time
of agents, we measured the communication between two
neighboring nodes. Transfer time is only the time to send
the packets from one node to another without considering the
dynamic loading time of the agent. Loading time contains also
the time for starting the agent on the destination node. Figure
13 shows a chart where the size of the agent is increased and
the respective time is measured in system ticks (since the timer
functions of the firmware provide system ticks).

As expected the time increases linearly according to the size
of the agent. Also the loading time is linear because the ELF
loader has to handle more code if the agent size increases.

UbiMASS provides two different migration modes. Using
weak migration the agent starts always from the beginning on
the new node. All variables are initialized with pre-defined
values. The strong migration offers the possibility to begin at
the same point of code and the same variable values, where
the agent stopped working. We measured a round trip time of
agents with different sizes using weak and strong migration.
Figure 14 illustrates the results. The strong migration has only
a small offset compared to weak migration, which results from
the additional transfer time of variable values.

250

Fig. 11. Round trip of two successive mobile agents in UbiMASS

Fig. 12. Round trip in Contiki

Agent size in Bytes

Transfer-time Start of execution

Ti
m

e
in

 s
ys

te
m

 ti
ck

s

Fig. 13. Receiving an agent: only transfer time vs loading time

It is also interesting to compare the loading time of Ubi-
MASS to on the air programming of Contiki. Figure 15
visualizes the results of this comparison. The chart clearly
shows that the communication layer of UbiMASS works more

Fig. 14. Round trip time: weak migration vs strong migration

efficiently. UbiMASS takes much less time to load the new
service. Increasing the size of the code also increases the
distance between both lines.

For the next scenario we implemented an agent that mi-
grated to another node and back. We measured the round trip

251

Agent size in Bytes

Lo
ad

in
g

tim
e

in
 s

ys
te

m
 ti

ck
s

Fig. 15. Receiving an agent: comparison with reprogramming in Contiki

time in system ticks. It was also interesting to investigate the
communication in relation to the distance between nodes. We
performed several measurements by changing the location of
the nodes. Figure 16 shows that increasing the distance leads
to more packet losses which results in higher transfer times.
Also obstacles like persons or walls and other interferences
highly affect the communication time.

Distance in Meter

R
ou

nd
 tr

ip
 ti

m
e

in
 s

ys
te

m
 ti

ck
s

Fig. 16. Round trip time subject to distance between sensor nodes

V. CONCLUSION

This paper presented the Ubiquitous Mobile Agent System
for wireless sensor networks - UbiMASS. UbiMASS is very
light-weighted so that it can run on tiny devices like sensor
boards. It is designed using a modular architecture in order
to ease adaption for other hardware and to offer a convenient
way for programming new services in the form of agents.
Using the wireless link agents can migrate to remote nodes.
The UbiMASS communication layer is responsible for the
reliable transfer of agents. In order to load and bind agent
code dynamically, UbiMASS provides the ELF loader that is
based on a standard approach. The agent can access sensor
and actuator information using interfaces of the underlying
middleware. The migration engine offers agents the possibility
to autonomously decide if they want to move to other nodes.
We proved the usability of UbiMASS in scenarios with real

sensor boards. Compared to other systems the reprogramming
of nodes can be done in a more flexible and dynamic way
using UbiMASS.

REFERENCES

[1] Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification Version 1.2, May 1995.

[2] ScatterWeb Homepage, 2007.
[3] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt. Run-

Time Dynamic Linking for Reprogramming Wireless Sensor Networks.
In Proceeding of the Fourth ACM Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, Colorado, USA, November 2006.

[4] Adam Dunkels, Bjoern Groenvall, and Thiemo Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny Networked Sensors.
In Proceedings of the First IEEE Workshop on Embedded Networked
Sensors (Emnets-I), Tampa, Florida, USA, November 2004.

[5] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile Agent Middleware for
Sensor Networks: An Application Case Study. In Proceedings of the 4th
International Conference on Information Processing in Sensor Networks
(IPSN’05), pages 382–387, April 2005.

[6] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla:
A Mobile Agent Middleware for Sensor Networks. Technical Report
WUCSE-2006-16, Department of Computer Science and Engineering,
Washington University in St. Louis, 2006.

252

