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Whole-Genome Patterns of
Common DNA Variation in
Three Human Populations
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Individual differences in DNA sequence are the genetic basis of human
variability. We have characterized whole-genome patterns of common human
DNA variation by genotyping 1,586,383 single-nucleotide polymorphisms
(SNPs) in 71 Americans of European, African, and Asian ancestry. Our results
indicate that these SNPs capture most common genetic variation as a result
of linkage disequilibrium, the correlation among common SNP alleles. We
observe a strong correlation between extended regions of linkage dis-
equilibrium and functional genomic elements. Our data provide a tool for
exploring many questions that remain regarding the causal role of common
human DNA variation in complex human traits and for investigating the
nature of genetic variation within and between human populations.

Single-nucleotide polymorphisms (SNPs) are

the most abundant form of DNA variation in

the human genome. It has been estimated

that there are È7 million common SNPs with

a minor allele frequency (MAF) of at least

5% across the entire human population (1).

Most common SNPs are to be found in most

major populations, although the frequency of

any allele may vary considerably between

populations (2). An additional 4 million

SNPs exist with a MAF between 1 and 5%.

In addition, there are innumerable very rare

single-base variants, most of which exist in

only a single individual.

The relationship between DNA variation

and human phenotypic differences (such as

height, eye color, and disease susceptibility)

is poorly understood. Although there is evi-

dence that both common SNPs and rare

variants contribute to the observed variation

in complex human traits (3, 4), the relative

contribution of common versus rare variants

remains to be determined. The structure of

genetic variation between populations and its

relationship to phenotypic variation is un-

clear. Similarly, the relative contribution to

complex human traits of DNA variants that

alter protein structure by amino acid replace-

ment, versus variants that alter the spatial or

temporal pattern of gene expression without

altering protein structure, is unknown. In

some cases, these issues have been studied

in limited genomic intervals, but comprehen-

sive genomic analyses have not been possible.

Genome-wide association studies to iden-

tify alleles contributing to complex traits of

medical interest are currently performed with

subsets of common SNPs, and thus they rely

on the expectation that a disease allele is

likely to be correlated with an allele of an

assayed SNP. Although studies have shown

that variants in close physical proximity are

often strongly correlated, this correlation

structure, or linkage disequilibrium (LD), is

complex and varies from one region of the

genome to another, as well as between

different populations (5, 6). Selection of a

maximally informative subset of common

SNPs for use in association studies is neces-

sary to provide sufficient power to assess the

causal role of common DNA variation in

complex human traits. Although a large frac-

tion of all common human SNPs are avail-

able in public databases, lack of information

concerning SNP allele frequencies and the

correlation structure of SNPs within and

between human populations has made it

difficult to select an optimal subset.

Here we examine the SNP allele frequen-

cies and patterns of LD between 1,586,383

SNPs distributed uniformly across the human

genome in unrelated individuals of Europe-

an, African, and Asian ancestry. Our primary

aim was to create a resource for further

investigation of the structure of human

genetic variation and its relationship to

phenotypic differences.

A dense SNP map. To characterize a

panel of markers that would be informative

in whole-genome association studies, we se-

lected a total of 2,384,494 SNPs likely to be

common in individuals of diverse ancestry

(7). We identified the majority (69%) of the

SNPs by performing array-based resequencing
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of 24 human DNA samples of diverse ances-

try (5). These SNPs were supplemented with

SNPs chosen from public databases to obtain

a more uniform physical distribution across

the human genome. Further details of the SNP

ascertainment are given in the supporting on-

line material (7). We designed 49 high-density

oligonucleotide arrays for genotyping these

SNPs (8, 9) and roughly 300,000 long-range

polymerase chain reaction (PCR) primer pairs

covering the selected SNPs, with an average

of eight SNPs per individual region being am-

plified by PCR. The amplicons had an average

length of 9 kb and covered È92% of the

available human genome. An average of 6250

amplicons derived from a single individual

were pooled and hybridized to a single high-

density oligonucleotide array, producing geno-

types for È48,000 SNPs.

We genotyped 71 unrelated individuals

from three populations: 24 European Ameri-

cans, 23 African Americans, and 24 Han

Chinese from the Los Angeles area. The 71

individuals genotyped here were not related to

the individuals previously used for SNP

discovery. DNA samples were selected from

the Coriell Cell Repositories’ HumanVariation

Collection, and we relied on Coriell’s determi-

nations of sample populations. We complied

with all Coriell policies for research use DNA

of samples from named populations.

Each SNP was scored with a combination

of metrics that had been shown to correlate

with genotype quality on our platform, and

data for poorly performing SNPs was rejected.

These metrics included the call rate; the

number of observed genotype clusters; the

existence of near-perfect matches for SNP

flanking sequences elsewhere in the genome;

the presence of other known SNPs in probe-

flanking sequences; and consistency with

Hardy Weinberg equilibrium. Tests for Hardy

Weinberg equilibrium are very effective for

identifying some types of genotyping artifacts

(10); however, because we used these tests

for quality control, our genotype data are

unsuitable for investigating biologically inter-

esting true deviations from Hardy Weinberg

equilibrium. Further details of our genotype

quality control are described in the supporting

online material (7).

A subset of 1,586,383 SNPs was success-

fully genotyped based on our quality criteria,

with two alleles each observed at least once

among the 71 individuals. In total, more than

112 million individual genotypes were de-

termined for these SNPs. There were no

missing genotypes for 64% of these SNPs,

and 92% of these SNPs had less than 5%

missing data. The overall frequency of

successful genotype calls was 98.6%. SNP

assay details and individual genotypes have

been deposited in the National Center for

Biotechnology Information (NCBI)’s SNP

database (dbSNP, build 123, accession nos.

ss23145044 to ss24731426). Genotypes for

156,757 SNPs for nine of the European-

American individuals that were part of this

project had been previously determined by

the International HapMap Project, using a

variety of genotyping platforms (11). Our

data for these 1.6 million genotypes is

99.54% concordant with the HapMap project

data. The distribution of discordant geno-

types is very nonrandom; only 0.3% of the

SNPs account for 50% of all the discrep-

ancies, and we estimate that 90% of the

SNPs in the complete data set have no

incorrect genotypes. Haplotype analyses in

particular will generally benefit from this

error distribution, because accurate inference

of haplotypes requires consistent genotypes

across large groups of nearby markers.

The distribution of the 1.6 million high-

quality genotyped SNPs (table S1) is similar

to that of a previously reported map of 1.42

million SNPs (12). More than 95% of the

genome is in inter-SNP intervals of less than

50 kb, and roughly two-thirds of the se-

quenced genome is covered by inter-SNP

intervals of 10 kb or less (table S2). The

average distance between adjacent SNPs is

1871 base pairs (bp). Although repetitive

elements are underrepresented in our collec-

tion, we genotyped 269,611 SNPs within

repetitive elements where the SNP flanking

sequences could be uniquely mapped. There

are 735,094 SNPs (46%) in genic regions of

the genome, which we define as being within

10 kb of the transcribed intervals for 22,904

protein-coding genes in release 3 of NCBI’s

build 34 annotations. At least one SNP is

present in 78% of all transcripts. When the

10-kb region of DNA upstream and down-

stream of each transcript is included, 93% of

all the protein-coding genes contain at least

one SNP. A total of 20,165 SNPs (1.3%) are

present in amino acid coding sequences and

9370 of these SNPs are nonsynonymous,

leading to an amino acid change (table S3).

Although our SNP ascertainment is not

random, this subset of SNPs is quite uni-

formly distributed throughout the human

genome with respect to annotated protein-

coding genes as well as physical distance.

Common SNPs in three populations.
Table 1 illustrates our success in obtaining

a set of common SNPs that are informative

in human populations of diverse ancestry.

Most of the 1,586,383 SNPs with high-

quality genotypes are polymorphic in each

of the three population samples genotyped in

this study. Ninety-four percent of the SNPs

(1,483,594 SNPs) have two alleles in the

African-American sample; 81% (1,286,277

SNPs) have two alleles in the European-

American sample; and 74% (1,168,029 SNPs)

have two alleles in the Han Chinese sample. In

each population, the majority of the segregat-

ing SNPs have a MAF greater than 10%,

ranging from 68% of all segregating SNPs in

the African-American sample to 57% of all

segregating SNPs in the Han Chinese sample.

Only 263,029 of the 1,586,383 SNPs (17%)

have a MAF of less than 10% in all three of

the population samples. The distributions of

MAFs we see in the three populations is very

similar for the European-American and Han

Chinese samples, with a higher frequency of

rarer alleles in the African-American sam-

ple (fig. S1). Consistent with previous studies

(2, 13), we observed the greatest genetic di-

versity in individuals of African descent. Our

SNP ascertainment strategy makes it difficult

to make more definitive statements regard-

ing the precise distribution of SNP allele fre-

quencies in different populations.

Although the small sample sizes in this

study preclude any definite conclusion re-

garding the complete absence of a particular

allele in any given population, we observed

291,012 SNPs (18%) that were segregating

in only one population sample (‘‘private

SNPs’’). Most of these private SNPs (75%)

were segregating in the African-American

sample, although private SNPs were observed

for each of the three population samples

(Table 1). Although private SNPs tend to

have lower MAFs than other SNPs in our

collection, a substantial fraction are common:

106,404, or 37%, have MAF 9 0.10.

To quantify genetic variation within and

between populations, we calculated F
ST

for

each SNP in each pair of populations, as well

as combined values across all three popula-

Table 1. SNPs segregating in the three genotyped populations. Percentages are of 1,586,383 genotyped
SNPs or of 291,012 private SNPs.

Population
Segregating MAF 9 0.05 MAF 9 0.10

SNPs % SNPs % SNPs %

All SNPs
African-American 1,483,594 93.5 1,267,594 79.9 1,083,652 68.3
European-American 1,286,277 81.1 1,123,765 70.8 991,046 62.5
Han Chinese 1,168,029 73.6 1,027,109 64.7 910,451 57.4

Private SNPs
African-American 218,500 75.1 139,536 47.9 88,525 30.4
European-American 44,555 15.3 18,284 6.3 8,062 2.8
Han Chinese 27,957 9.6 15,946 5.5 9,817 3.4
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tions (14). F
ST

measures the genetic variance

between populations as a fraction of the total

genetic variance. Because African Americans

are a relatively admixed population with sub-

stantial but heterogeneous European genetic

contributions (15), the F
ST

estimates for com-

parisons with this group will be more vari-

able but should generally underestimate the

results that would be obtained with a native

African sample. The distribution of pairwise

F
ST

is very similar for the African-American

versus European-American and European-

American versus Han Chinese samples, with

more large F
ST

values between the African-

American and Han Chinese samples (fig. S2).

These findings are consistent with prior studies

(16, 17) showing that most common DNA

variation is shared across human populations,

with differences in allele frequencies between

populations.

Markers with large between-population var-

iance will be useful for admixture mapping

studies to identify genetic variants causing

phenotypic differences (18). Admixture map-

ping exploits relatively long-range allelic cor-

relations in a recently admixed population to

identify functional variants that have different

prevalences in the ancestral populations, wheth-

er because of genetic drift or local natural

selection. The technique requires selection and

genotyping of limited numbers of ‘‘ancestry-

informative markers.’’ Our identification of

large numbers of such markers removes one

of the major barriers to practical use of this

promising but largely untested technique.

Evidence for natural selection be-
tween populations. It has been suggested

that natural selection distorts the observed dis-

tribution of F
ST

across the human genome and

that large F
ST

values can be used to identify

candidate loci likely to have undergone local

selection (13, 19). If this is true, then larger

F
ST

values should be found near functional

genetic elements. We looked at the distribution

of F
ST

for SNPs that were genic or nongenic,

coding or noncoding, and synonymous or

nonsynonymous. We performed the analysis

within subsets of SNPs grouped by MAF, so

that effectively, we looked at the fraction of

between-population variance for SNPs with the

same total genetic variance (fig. S3). Common

SNPs in genic regions do have slightly but

significantly higher F
ST

values than nongenic

SNPs with the same MAF [analysis of vari-

ance (ANOVA), P 0 1.8 � 10j46], and com-

mon coding SNPs have slightly higher F
ST

values than noncoding SNPs in genic regions

(ANOVA, P 0 1.1 � 10j4). We did not see a

significant difference in F
ST

between synon-

ymous and nonsynonymous coding SNPs, but

our sensitivity is limited by the small sample

sizes and expected correlations among SNPs

within the same transcript. These results are

consistent with local selection changing the

distribution of F
ST

near functional sequences.

However, because the distributions of F
ST

among genic and nongenic SNPs are very sim-

ilar, large F
ST

values by themselves appear

to be very weak evidence of selection.

We performed a similar analysis to see if

there is also an association between private

SNPs and functional genetic elements. When

conditioned on MAF, we saw no difference in

frequency of private SNPs among genic and

nongenic SNPs or among coding and non-

coding SNPs (fig. S4). This indicates that the

SNPs responsible for evidence of local selec-

tion in the F
ST

analysis tend not to be private

and instead are segregating in multiple popu-

lations. Although there are known examples

linking population-specific SNP alleles to

phenotypic differences (20–22), our results

are more consistent with the conclusion that

most functional human genetic variation is

not population-specific.

Correlation structure of common
SNPs. DNA variants in physical proximity

along a chromosome tend to be correlated,

and these correlations are known as linkage

disequilibrium. LD results from a combina-

tion of processes, including mutation, natural

selection, and genetic drift. It can initially

extend over very long genomic distances but

is steadily broken down over time by recom-

bination. The observed structure of LD in any

particular genomic interval thus depends on a

complex interplay of demographic history,

stochastic events, and functional constraints.

Several metrics exist for measuring LD

between pairs of SNPs; we used r2, the

squared correlation coefficient for a 2 by 2

table of haplotype frequencies (23).

We have used a modification of a pre-

viously described algorithm to identify bins

of common SNPs that are in very strong LD,

where each bin has at least one ‘‘tag SNP’’

with an r2 of at least 0.8 with every other

SNP in the bin (24). This ‘‘greedy’’ algo-

rithm works by iteratively identifying the

largest possible subset with these properties

from a list of available SNPs, then removing

those SNPs from the list used in the next

iteration. By assaying a reduced set of tag

SNPs, the genotyping burden of an associa-

tion study may be substantially reduced

while retaining most of the power to discover

disease associations of the entire SNP set.

Unlike haplotype blocks, which are defined

as contiguous groups of SNPs, the SNPs that

make up a bin may be interdigitated with

SNPs that are part of other bins.

Table 2 summarizes bin characteristics

across the genome, excluding the Y chromo-

some, for each of the three population samples.

We focused on common SNPs with MAF 9
10% in this analysis, because estimates of LD

for variants with lower MAF are unreliable un-

less large numbers of individuals are genotyped

(23). Although most LD bins contained just one

SNP, these isolated SNPs were a small propor-

tion of all SNPs, and most SNPs were tightly

correlated with multiple other SNPs. In the

European-American data, 52.3% of 293,677

bins contained one SNP; however, these con-

stituted only 15.5% of the 991,185 common

SNPs. A substantial portion of all SNPs qual-

ified as tag SNPs by having a high r2 value

with every other bin member, indicating that

the bins are generally quite densely connected.

For the African-American sample, there were

substantially fewer bins made up of large num-

bers of SNPs extending over large distances

(Fig. 1). It should be kept in mind that the LD

structure we observed is based on an analysis of

only 25% of all common SNPs in the genome.

Although the sizes of longer intervals of LD

should be relatively robust to our incomplete

ascertainment, the proportion of all common

SNPs in high LD with other SNPs may be

substantially underestimated from our data.

LD and functional elements. We ob-

served a strong relationship between extended

intervals of LD and functional genomic fea-

Table 2. LD bin statistics in three populations.
Bins were classified by the number of SNPs they
contained.

Size* Bins % Bins kby SNPs % SNPs

African-American
1 362,465 67.4 0.0 362,465 33.5
2 to 4 131,737 24.5 12.4 337,877 31.2
5 to 9 32,081 6.0 37.2 202,512 18.7
Q10 11,530 2.1 78.4 180,556 16.7
Total 537,813 1,083,410

European-American
1 153,511 52.3 0.0 153,511 15.5
2 to 4 84,890 28.9 14.6 226,172 22.8
5 to 9 33,745 11.5 37.3 218,491 22.0
Q10 21,531 7.3 89.5 393,011 39.7
Total 293,677 991,185

Han Chinese
1 129,759 50.8 0.0 129,759 14.3
2 to 4 74,232 29.1 13.2 198,422 21.8
5 to 9 30,569 12.0 34.8 198,429 21.8
Q10 20,708 8.1 83.7 383,580 42.1
Total 255,268 910,190

*The number of SNPs per LD bin. .Average distance
spanned by the SNPs in each LD bin, in kb.

Minimum bin size, kb
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Fig. 1. Size distribution of LD bins. We show,
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Han Chinese LD maps are essentially identical.
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tures (Table 3). Large bins were significantly

overpopulated with genic versus nongenic

SNPs (trend test, P , 0), and in genic regions,

coding SNPs were significantly enriched over

noncoding SNPs (trend test, P 0 1.9 � 10j26).

Large bins were also overrepresented for non-

synonymous versus synonymous SNPs (trend

test, P 0 5.3 � 10j4). This result is consistent

with the hypothesis of an association between

selection and some regions of extended LD

(25, 26) and suggests that some genomic re-

gions of extended LD may play a particular-

ly important role in determining the genetic

basis of human phenotypic differences.

We identified five bins of more than 200

SNPs each and 17 genomic intervals con-

taining bins that span more than 1000 kb in

one or more populations (tables S4 and S5).

Several of these large bins spanned similarly

large genes. The bin with the most SNPs was

on chromosome 17 in the European-American

map and had an unusual pattern of variation,

with two previously reported haplotypes ex-

tending across 518 SNPs and spanning a dis-

tance of 800 kb (27). The rarer haplotype had

a frequency of 25% in the European-American

sample and a 9% frequency in the African-

American sample and was absent in the Han

Chinese sample. This bin includes the gene for

microtubule-associated protein tau, mutations of

which are associated with a variety of neuro-

degenerative disorders; a gene coding for a pro-

tease similar to presenilins, mutations of which

result in Alzheimer’s disease; and the gene for

corticotropin-releasing hormone receptor, which

mediates immune, endocrine, autonomic, and

behavioral responses to stress (27–29).

Large-scale patterns of LD. The distri-

bution of SNPs and LD across the entire

human genome is shown in Fig. 2 and can be

examined in more detail online. The top track

illustrates the relative uniformity of coverage

of the analyzed SNPs apart from intervals of

centromeric and telomeric heterochromatin.

The middle track shows the fraction of com-

mon SNPs that are in high LD with at least

one other SNP. In most regions, we observed

a high level of redundancy for the European-

American and Han Chinese samples and some-

what less redundancy in the African-American

sample. The bottom track shows the fraction

of common SNPs observed to be in rela-

tively large LD bins in each population.

This track shows substantial structure on a

scale of megabases. Although there is gene-

rally good agreement between populations,

there are also intervals where there is sub-

stantial divergence.

Our whole-genome analysis reveals that

the large-scale structure of LD across the ge-

nome is correlated with large-scale differences

in recombination rates, consistent with pre-

vious findings for a single chromosome (30).

In particular, regions of very strong LD are

mostly located in regions of low recombina-

tion (fig. S5). This correlation of large-scale

LD structure with recombination rate and the

finding that regions of extended LD show evi-

dence of selection provide strong support for

the hypothesis that the LD structure of the hu-

man genome has functional significance and

is not simply a byproduct of random genetic

drift and population demographics.

SNP subsets capture most common
variation. As only a fraction of all common

SNPs in human populations have been char-

acterized to date, association studies based on

available subsets of SNPs rely on the expecta-

tion that an undiscovered, disease-associated

variant is likely to be correlated with an allele

of an assayed SNP. The statistical power to

detect an unassayed, disease-associated allele

indirectly with a correlated allele of an assayed

SNP is related to r2. Specifically, the power to

detect an association indirectly in N individuals

is equivalent to the power to detect it directly

in Nr2 individuals (31). The actual power to

detect a particular causal variant depends on

that variant’s mode of action and penetrance

as well as details of the study design. Thus,

r2 can only be used to answer the narrower

question of what is the sample size penalty,

in an otherwise appropriately designed study,

for not directly assaying a causal variant.

To determine our ability to detect un-

assayed, disease-associated variants with this

SNP collection, we took advantage of the fact

that the European-American and African-

American individuals genotyped in this study

were also sequenced across selected genes by

the SeattleSNPs Program for Genomic Appli-

cations (PGA) (32). For these individuals, this

data provides an essentially complete assess-

ment of genetic variation in the sequenced

regions, allowing us to estimate the fraction

of all variation contained in our SNP set. In

addition, the data allows us to determine the

coverage of our genotyped SNPs for the sites

we did not directly assay.

We evaluated data for 16,601 sequence var-

iants identified in 152 genes, of which 2465

were part of our SNP set. The concordance

between our genotype data and the PGA data

for these 2465 SNPs was 99.2%. Our SNP set

contained È24% of all SNPs with a MAF Q
10% for these 152 genes in the African-

American and European-American samples.

SNPs with low MAF are underrepresented in

our data compared to the PGA data, because

our SNPs were typically discovered with se-

quence data from fewer distinct chromosomes.

These rarer variants account for relatively

small fractions of the total nucleotide diver-

sity. In the PGA data for the European Amer-

icans, 45% of SNPs have MAF G 10% but

account for only 15% of nucleotide diversity;

for the African Americans, 58% of SNPs have

MAF G 10% and account for 23% of nucleo-

tide diversity.

Table 4 shows the average r2 and the

fraction of r2 values exceeding thresholds, for

Table 3. Distribution of genic, synonymous, and nonsynonymous coding SNPs spanned by bins of
extended LD in any of the three population samples. Genic SNPs are defined as within 10 kb of a protein-
coding gene annotation.

Longest spanning
LD bin (kb)

SNPs
Genic Synonymous Nonsynonymous

SNPs % SNPs % SNPs %

G500 1,536,094 707,950 46.1 10,330 0.67 8,898 0.58
500 to 1000 42,432 22,189 52.3 347 0.82 302 0.71
Q1000 7,857 4,955 63.1 120 1.52 171 2.17

Table 4. LD statistics for common SNPs genotyped in this study, with common variants identified by
complete resequencing in 152 genes.

Subset* Yield (%)y r2z r2 9 0.5 (%)` r2 9 0.8 (%) r2 0 1.0 (%)

African-American
All 23.3 0.715 70.9 53.7 41.5
Tag 12.3 0.698 70.1 51.9 33.2

European-American
All 25.0 0.841 86.5 72.6 62.4
Tag 8.1 0.810 85.6 69.7 44.8

*SNPs from the current study: either all common SNPs or a minimal tagging subset. .Percentage of all SeattleSNPs
PGA variants that were in the selected set. -Across all PGA variants, the mean maximum r2 with a selected SNP in
the same locus. `Percentages of PGA variants having an r2 greater than the specified threshold with any selected
SNP in the same locus.

Fig. 2. Distribution of SNP positions and LD
structure across the genome. For each chro-
mosome, the top track shows SNP density per
kb, with a window size of 500 kb. The middle
track shows, for each population, the fraction
of common SNPs with MAF 9 10% that are in
high LD (r2 9 0.8) with at least one other
common SNP, with a window size of 500 kb.
The bottom track shows, for each population,
the fraction of common SNPs that are in an LD
bin extending over at least 50 kb, with a win-
dow size of 1000 kb.
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LEGEND

Top track: genotyped SNPs, per kb

Middle track: fraction of common
SNPs in high LD with another SNP

Bottom track: fraction of interval
covered by LD bins > 50 kb

Red: European American
Green: African American

Blue: Han Chinese
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any PGA SNP with the most-correlated SNP

in the same region that was included in our

SNP set. These results indicate that, with the

stringent threshold of r2 9 0.8, our SNP set

ascertains È73% of common variation in the

European-American sample and È54% of

common variation in the African-American

sample. These values are similar to those

previously predicted if 2.7 million SNPs

from public databases were developed into

genotyping assays (17). This analysis sets a

very conservative lower bound on coverage,

because it treats SNPs below the threshold

of r2 0 0.8 as completely uncovered and

does not reward coverage that exceeds the

threshold. Using a less stringent threshold of

r2 9 0.5, coverage would improve to 86% in

the European-American sample and 71% in

the African-American sample. The skewed

distribution of r2 toward high values is

apparent in the mean values of 0.84 for the

European-American sample and 0.72 for the

African-American sample. These numbers

are especially impressive considering that

we did not genotype 75% of all the common

SNPs in these intervals.

Selection of one tag SNP from each LD

bin for the three population samples yielded

296,313 of the 991,398 SNPs segregating in

the European-American sample (30%);

256,766 of the 909,824 SNPs segregating in

the Han Chinese sample (28%); and 540,533

of the 1,083,638 SNPs segregating in the

African-American sample (50%). When tag

SNPs from European Americans and African

Americans were used to assess common

variation in the PGA data, for MAF Q 10%,

the amount of all common variation ascer-

tained was reduced very little compared to

that ascertained with the complete sets of

common SNPs (Table 4). These tag SNP

numbers are smaller than have previously

been predicted with a similar selection

strategy (24); however, we did not attempt

to achieve 100% coverage as in that work.

Although choosing subsets of SNPs based on

bin relationships reduces the genotyping

burden for a comprehensive whole-genome

scan to some degree in all populations, these

data indicate that even taking advantage of

such tag SNP selection, a comprehensive

whole-genome association study requires

genotyping each individual for at least sev-

eral hundreds of thousands of SNPs.

Haplotype block structure. LD maps

and haplotype maps represent somewhat

different aspects of the local structure of

genetic variation. The genetic architecture of

a particular phenotype will determine which

representation is most powerful for the

identification of functional variants (33). In

parallel with our LD analysis, we used the

HAP program (34) to infer haplotypes from

our diploid genotype data. We partitioned

these reconstructed haplotypes into blocks

with limited diversity, separately for each of

the three population samples. These blocks

were defined as sets of SNPs for which at

least 80% of the inferred haplotypes could be

grouped into common patterns with popula-

tion frequencies of at least 5%.

Table 5 summarizes the structure of the

three resulting haplotype maps for the whole

genome, excluding the Y chromosome. The

haplotype map statistics across the three

populations appear qualitatively similar to

the LD maps, with substantially more blocks

in themap derived from the African-American

sample than in the maps from the European-

American and Han Chinese samples. The

numbers of SNPs required to represent fre-

quencies of common haplotype patterns were

similar to the numbers of tag SNPs identified

in the LD maps. Substantial fractions of LD

bins of two or more SNPs crossed haplotype

block boundaries, ranging from 33% in the

Han Chinese map to 48% in the African-

American map.

The bin structure for SNPs in the region

of the CFTR gene on chromosome 7 (Fig. 3)

demonstrates some of the differences be-

tween the LD bin and haplotype block maps

and further illustrates that there can be sub-

stantial population differences in local map

structure. In this interval, the European-

American and African-American LD maps

have similar complexity, with multiple over-

lapping bins, but the Han Chinese map is

dominated by two disjoint bins of highly

correlated SNPs. Conversely, a break point

near the 116,790-kb position is shared in the

African-American and Han Chinese LD maps

but is bridged by multiple LD groupings in

the European-American map. All three hap-

lotype maps share this break point. However,

the African-American map contains many

more distinct haplotype blocks than the maps

for the other two population samples.

Common genetic variation and human
health. Our focus on common genetic

variation has several motivations. Common

variants account for a larger share of human

nucleotide diversity than rare variants and

are more experimentally tractable. For the

same allelic effect, a common variant rep-

resents a larger fraction of phenotypic

variance and population attributable risk than

a rare one, so common variants are more

valuable from the perspective of diagnostics

and intervention. Finally, detecting and char-

acterizing effects of rare variants requires

very large sample sizes to obtain statistically

meaningful numbers of individuals carrying

Fig. 3. Extended LD
bin and haplotype
block structure around
the CFTR gene. LD
bins, where each bin
has at least one SNP
with r2 9 0.8 with
every other SNP, are
depicted as light hori-
zontal bars, with the
positions of constitu-
ent SNPs indicated by
vertical tick marks as
well as the extreme
ends of the bars. Iso-
lated SNPs are indicated
by plain tick marks.
Haplotype blocks, within
which at least 80% of
observed haplotypes
could be grouped into
common patterns
with frequencies of
at least 5%, are de-
picted as dark horizontal bars. Unlike haplotype blocks that are by design sequential and nonoverlapping, SNPs in one LD bin can be interdigitated
with SNPs in multiple other overlapping bins.
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a rare allele. There is no doubt that rare

variants play a role in the etiology of com-

mon disease, but pursuit of common variants

is more tractable with available technologies.

Common human diseases, such as car-

diovascular disease and psychiatric illness,

are caused by the interplay of multiple

genetic and environmental factors. The

bounded nature of the human genome and

the availability of the complete human

genome sequence have resulted in extensive

efforts to define the genetic basis of a wide

variety of complex human traits. One ap-

proach for identifying such genetic risk

factors is the case-control association study,

in which a group of individuals with disease

is found to have an increased frequency of a

particular genetic variant compared to a

group of control individuals. A number of

genetic risk factors for common disease have

been identified by such association studies

(3, 4, 35, 36). These studies suggest that

many different genes distributed throughout

the human genome contribute to the total

genetic variability of a particular complex

trait, with any single gene accounting for no

more than a few percent of the overall var-

iability of the trait (37). Case-control study

designs that include on the order of 1000 in-

dividuals can provide adequate power to

identify genes accounting for only a few

percent of the overall genetic variability of a

complex trait, even using the very stringent

significance levels required when testing

large numbers of common DNA variants

(37). Using such study designs in conjunction

with the detailed description of common

human DNA variation presented here, it may

be possible to identify a set of major genetic

risk factors contributing to the variability in a

complex disease and/or treatment response.

Although knowledge of a single genetic risk

factor can seldom be used to predict the treat-

ment outcome of a common disease, knowl-

edge of a large fraction of all the major genetic

risk factors contributing to a treatment re-

sponse or common disease could have im-

mediate utility, allowing existing treatment

options to be matched to individual patients

without requiring additional knowledge of the

mechanisms by which the genetic differences

lead to different outcomes.

In our analyses, we selected representa-

tions of the data, including pairwise LD as

well as a haplotype-based approach, that we

felt would be most useful for an initial

characterization of this resource. We focused

attention on pairwise LD analyses because

they provide a particularly simple framework

for evaluating coverage and information

content of different SNP collections. The

optimal representation of genetic variation

data remains an area of active research.

Although we have determined example hap-

lotype maps of the human genome in these

three populations, the most appropriate rep-

resentation of the data depends substantially

on the specific questions to be answered.

There will be many maps of human genetic

variation, each tailored for specific uses.

Public data availability. We have

implemented an instance of the Generic

Genome Browser (38) at http://genome.

perlegen.com for viewing the SNP, LD, and

haplotype data reported here; this data will

also be available from Science upon request.

More detailed haplotype analysis results are

available at http://research.calit2.net/hap/

wgha/ and through dbSNP. The data reported

here represent a massive increase in the

available number of SNPs characterized in

multiple populations. For comparison, al-

though the public SNP database, dbSNP

build 122, contained map positions for more

than 8.1 million human SNPs, frequencies

were available for only 797,000 of these

SNPs, mostly in just one population, and

genotypes were available for only 210,000

SNPs. Our data also complement the results

of the International HapMap Project (11), by

providing data for many more SNPs across

fewer individuals.

This work enables detailed analyses of the

structure of human genetic variation on a

whole-genome scale. We examined genetic

variation in individuals from three populations

with substantially different histories and

describe general features of variation within

and between populations. Because these

samples do not capture the full genetic

diversity of the populations from which they

were selected, our data are not suitable for

answering many questions about the detailed

genetic structure of human populations (39).

However, the public availability of these data

will enable a wide variety of additional

analyses to be carried out by scientists inves-

tigating the structure of human genetic var-

iation as well as the genetic basis of human

phenotypic differences.
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Table 5. Haplotype block partition results for the three populations.

Population Blocks Average size, kb* Required SNPsy
African-American 235,663 8.8 570,886
European-American 109,913 20.7 275,960
Han Chinese 89,994 25.2 220,809

*Average distance spanned by segregating sites in each block. .Minimum number of SNPs required to distinguish
common haplotype patterns with frequencies of 5% or higher.
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