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Abstract

Delivering the instruction stream can be the largest source of energy consumption in a

processor, yet loosely-encoded RISC instruction sets are wasteful of instruction bandwidth.

Aiming to improve the performance and energy efficiency of the RISC-V ISA, this thesis

proposes RISC-V Compressed (RVC), a variable-length instruction set extension. RVC is a

superset of the RISC-V ISA, encoding the most frequent instructions in half the size of a RISC-

V instruction; the remaining functionality is still accessible with full-length instructions. RVC

programs are 25% smaller than RISC-V programs, fetch 25% fewer instruction bits than RISC-

V programs, and incur fewer instruction cache misses. Its code size is competitive with other

compressed RISCs. RVC is expected to improve the performance and energy per operation of

RISC-V.
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1 Introduction

Power dissipation and energy efficiency are primary design constraints for processors both simple

and complex. For the simpler processor cores in mobile devices in particular, delivering the instruc-

tion stream is often the single largest source of energy consumption. In the DEC StrongARM-110,

for example, instruction address translation and cache access account for 36% of the chip’s power

dissipation [10]. In a more recent study [5], instruction cache access alone dissipated 40% of the

energy in a five-stage RISC pipeline. Main memory accesses and processor stalls incurred upon

instruction cache misses consume more energy still.

Instruction set architects have broadly used two techniques to reduce the relative energy cost of

instruction stream delivery. One approach is to increase the amount of work performed by a single

instruction. Vector machines, for example, reduce instruction bandwidth demands by expressing

a large amount of SIMD parallelism in a single instruction. CISC machines do so by combining

multiple simple operations into a single instruction and providing more addressing modes.

An alternative approach is to reduce the size of the instructions. CISC instruction sets gener-

ally have been composed of variable-length instructions: the simpler and more common ones are

usually encoded in fewer bits than those that require more operands or occur less frequently. RISC

ISAs initially forewent the code density advantages of variable-length instruction encodings in fa-

vor of simpler, fixed-length 32-bit encodings. Since then, RISC instruction set extensions have

provided fixed-length 16-bit encodings [1, 9], although often at the expense of performance and

access to some hardware features. Variable-length RISC ISAs [2] can obviate these drawbacks by

encoding the most common instructions densely, while maintaining most or all of the functionality

of the 32-bit base ISA.

In this thesis, I propose RISC-V Compressed (RVC), a variable-length instruction encoding

extension to RISC-V [17], a modern RISC instruction set. RVC’s goal is to improve energy per

operation by reducing instruction fetch traffic, cache misses, off-chip memory accesses, and stall

cycles. To that end, RVC encodes instructions that occur frequently, either in the static program

binary or in the dynamic instruction stream, in 16 bits, half of a RISC-V instruction word. I then

evaluate RVC’s effectiveness at both static code size compression and dynamic instruction fetch
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traffic reduction, and compare the code size of RVC programs with those of several commercial

ISAs. Finally, I discuss the implications of RVC for energy efficiency, performance, and processor

design.
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2 Background and Related Work

Before the microcomputer era, small address spaces and expensive memories limited program size,

even in large systems. Hence, dense instruction encodings have long been a feature of many scalar

instruction sets. Microcoded control made it simple to decode instructions of variable length, and

the ISAs and microarchitectures of the CISC minicomputers, like the DEC VAX [15], reflected

this design choice. Instructions that had fewer operands or used simpler addressing modes were

encoded in fewer bytes, reducing code size as compared to a fixed-length encoding with the same

features. The Intel x86 instruction set, a variable-length CISC in the same vein, remains popular

today.

As the CISC minicomputer gave way to the RISC microprocessor [12], simpler, more regular

instruction sets that simplified hard-wired control and pipelining rose to prominence. These RISC

ISAs were generally rather loosely encoded, typically with a fixed 32-bit instruction word. Fur-

thermore, since RISC instructions generally performed only simple operations, a given task might

have taken more RISC instructions than, for example, VAX instructions. As a result, a program

was typically expressed by many more RISC instruction bytes than VAX instruction bytes.

Although cheaper memories and integrated caches mitigated the larger instruction footprint of

RISCs in workstations, code size continued to be a primary constraint in embedded systems. As pin

count and memory size directly impact both cost and power consumption, a compact instruction

encoding was particularly desirable in this domain. To meet the demands of this market, some

RISC vendors extended their instruction sets to support a subset of their base ISA’s functionality

using short instruction words, typically 16 bits. These short instructions have a straightforward

mapping to one or more instructions in the base ISA. MIPS16 [9] and ARM Thumb [1] are notable

examples of this approach.

Processors that support MIPS16 or Thumb also support the corresponding base ISA (MIPS or

ARM). At any given time, only the base ISA instructions or the short instructions can be executed;

switching between the two ISA modes occurs only at procedure-call boundaries, using special

control-flow instructions. Almost all instructions in the short ISA mode are 16 bits long. To encode

the requisite functionality in this constrained opcode space, immediate operands are shortened,
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and most instructions can only address eight general-purpose registers1. Additionally, not all ISA

features are available: for example, neither MIPS16 nor Thumb procedures have direct access to

the floating-point hardware.

Although these short instruction word RISC ISAs can reduce code size substantially, they do

so at the expense of performance. The reduced register space results in more register spills to

the stack, thereby increasing instruction count and cache misses, and the unavailability of some

hardware features and addressing modes further increases instruction count. This tradeoff may

be acceptable when code size is a primary constraint, but the reduced performance of these ISAs

make them unattractive in other situations.

Variable-length RISC ISAs provide a compromise between the loosely-encoded base ISA and

the denser, less-performant short instruction word ISA. Frequent instructions with few operands

or small immediates are represented with a short instruction word. These short instructions can be

mixed with full-length instructions that support most or all of the base ISA functionality. ARM

Thumb-2 [2] exemplifies this approach, as does Heads and Tails [11], a variable-length RISC ISA

designed for efficient superscalar instruction decoding.

An alternative to adding short instructions to an existing ISA is to employ more general com-

pression techniques. Dictionary-based compression [6] schemes, for example, replace frequent in-

structions or instruction sequences with an index into a dictionary, which stores the decompressed

instructions. Though these schemes are effective at reducing code size, the dictionary lookup adds

latency and offsets the energy reduction from compression. Additionally, as the dictionary is a

per-program data structure, it adds to the architectural state.

1By comparison, the base MIPS ISA has 32 general-purpose registers, and the base ARM ISA has 16.
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3 RVC: A Variable-Length RISC ISA

Variable-length RISC ISAs can reduce static and dynamic code size as compared to their fixed-

length counterparts, yet they avoid the performance loss of a less-capable ISA that comprises only

short instructions. RVC, short for RISC-V Compressed, aims to leverage the performance and

energy advantages of a variable-length encoding in the RISC-V ISA. This section describes the

RISC-V base ISA and the RVC variable-length instruction extension.

3.1 The RISC-V Base ISA

RISC-V is a new ISA designed to support computer architecture research and education. RISC-

V has been architected to be straightforward to implement while supporting many features of

contemporary commercial instruction sets. It is inspired by previous RISC ISAs [3, 4, 8, 12–14],

although its design omits many architectural features that favor particular microarchitectural styles

at the expense of others, like delay slots and condition codes. This section describes the RISC-V

programmer-visible state and instruction encoding; a full description can be found in [17].

RISC-V supports 32-bit and 64-bit address spaces. The user-level architected state includes a

program counter and 32 fixed-point registers2, all either 32 or 64 bits wide, coincident with the size

of the address space. Additionally, the ISA has 32 64-bit floating-point registers. RISC-V is a load-

store architecture: memory is accessed only via loads and stores, and computational instructions

operate on the registers.

In the base ISA, all instructions are 32 bits long and must be naturally aligned. However,

the ISA encoding supports variable-length instruction extensions. Branch and jump targets need

only be 2-byte-aligned. All 32-bit instructions have their least significant two bits set to 11; bit

patterns 00, 01, and 10 are reserved for 16-bit instructions3. This scheme simplifies the task of

determining the boundaries between the instructions in the instruction stream, which is particularly

important for efficient superscalar instruction decoding.

2Fixed-point register 0 is hard-wired to zero.
3Additionally, opcode space has been reserved for instructions longer than 32 bits; these instructions have their

least significant five bits set to 11111. 48-bit and 64-bit instructions are likely useful for experimentation and for ISA
extensions that require substantial opcode space.
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31 27 26 22 21 17 16 12 11 10 9 7 6 0

rd rs1 rs2 funct10 opcode R-type
rd rs1 rs2 rs3 funct5 opcode R4-type
rd rs1 imm[11:7] imm[6:0] funct3 opcode I-type

imm[11:7] rs1 rs2 imm[6:0] funct3 opcode B-type
rd LUI immediate[19:0] opcode L-type

jump offset [24:0] opcode J-type

Table 1: RISC-V base instruction formats. rd specifies a destination register, while rs1, rs2, and
rs3 specify source registers. imm is a 12-bit immediate operand. The funct fields are additional
opcodes. [17]

size_t strlen(const char* str) 00: 29000003 lb a1, 0(a0)
{ 04: 19000013 addi v1,a0,0

const char* p = str; 08: 01402063 beq a1,x0,18
while(*p) 0c: 18c00413 addi v1,v1,1

p++; 10: 10c00003 lb v0, 0(v1)
return p - str; 14: f881f0e3 bne v0,x0,c

} 18: 10c90033 sub v0,v1,a0
1c: 004000eb jalr x0,ra

Figure 1: C and RISC-V code to compute the length of a C string.

Table 1 shows the six basic instruction formats. The R-type and R4-type formats support

register-register computation. The I-type format encodes register-immediate computation and

loads; branches and stores are B-type. L-type instructions load large immediates. The J-type

format comprises uncoditional jumps and procedure calls.

Some example RISC-V code, which uses a simple approach to calculate the length of a C

string, is shown in Figure 1. It is interesting to note that 28 of the 64 nibbles in these 8 instructions

are zeros, suggesting a loose, compressible encoding.

3.2 RVC Design Methodology

To determine a candidate set of RVC instructions and to evaluate RVC’s effectiveness, we collected

static and dynamic measurements from a subset of the SPEC CPU2006 benchmark suite [16].
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Static Dynamic
Benchmark Instructions Instructions (Millions)
bzip2 13038 2117
gcc 645973 3166
mcf 2050 3114
milc 22926 28560
gobmk 196743 19496
soplex 94297 1543
hmmer 57063 4077
sjeng 28881 20195
lbm 2503 1252
astar 7191 28635

Table 2: SPEC CPU2006 subset used for all experiments.

Table 2 lists the benchmarks and their static and dynamic instruction counts when compiled for

RISC-V.

All benchmarks were compiled with a GCC 4.4.0/Newlib 1.18.0 cross-compiler, optimizing for

size (-Os). Static measurements were obtained directly from the resulting executables and object

code. Dynamic measurements were obtained from a RISC-V instruction set simulator, running the

benchmarks to completion using their small input sets.

3.3 The RVC Extension

RVC’s goal is to improve energy efficiency by expressing frequent instructions with 16 bits, or half

the size of a base instruction, thereby reducing code size and fetch traffic. To do so without reduc-

ing performance, which would offset the energy savings, the 32-bit instructions in the RISC-V base

ISA are always available. Consequently, the 16-bit instructions need not cover all functionality in

the ISA, allowing the diminutive opcode space to be devoted only to the instructions that will most

reduce static and dynamic code size.

The RVC instruction set design is motivated by four observations about the instruction compo-

sition of many programs:

• A small number of opcodes account for most instructions in a program. Table 3 shows

the static and dynamic frequencies of the 20 most common instructions across the SPEC
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Instruction Static Frequency Cumulative Instruction Dynamic Frequency Cumulative
ADDI 25.1% 25.1% ADDI 15.2% 15.2%
LD 9.7% 34.8% ADD 7.9% 23.1%
SD 7.6% 42.4% FLD 7.6% 30.7%
LW 6.2% 48.6% LW 6.8% 37.5%
LUI 4.9% 53.5% LD 6.7% 44.2%
JAL 4.7% 58.3% BNE 5.3% 49.5%
J 4.5% 62.8% SLLI 4.7% 54.2%
BEQ 4.5% 67.3% SW 3.8% 58.1%
ADD 4.1% 71.3% BEQ 3.8% 61.8%
BNE 3.8% 75.2% ADDIW 3.7% 65.6%
SW 3.5% 78.7% FSD 3.0% 68.5%
ADDIW 2.6% 81.3% SD 2.4% 70.9%
SLLI 2.1% 83.4% FADD.D 2.2% 73.1%
JALR 1.4% 84.8% FMUL.D 1.9% 75.0%
ANDI 1.2% 86.0% LUI 1.9% 76.9%
ADDW 1.1% 87.1% BGE 1.8% 78.7%
FLD 1.0% 88.1% SUB 1.7% 80.4%
SLTI 0.8% 88.9% BLT 1.6% 82.0%
SB 0.8% 89.7% SRLI 1.6% 83.6%
LBU 0.8% 90.5% FSUB.D 1.5% 85.1%

Table 3: Top 20 most frequent RISC-V instructions, statically and dynamically, in a subset of the
SPEC CPU2006 benchmark suite. ADDI is also used to synthesize constants and register moves
in RISC-V.
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Figure 2: Static frequency of register usage, as either a source or destination operand, in a subset
of the SPEC CPU2006 benchmark suite. ra is the link register. The v, a, and t registers are for
return values, arguments, and temporaries, respectively; all are caller-saved. The s registers are
callee-saved. fp is the frame pointer, sp is the stack pointer, and tp is the thread-local storage
pointer.

CPU2006 benchmark subset. Statically, 10 opcodes account for 75% of instructions and 20

opcodes for 90%. Dynamically, 14 opcodes account for 75% of all instructions executed.

ADDI alone accounts for one-quarter of instructions statically and one-seventh dynamically.

• Many instructions have few unique operands. For example, for I-type and R-type instruc-

tions in these programs, the destination register is the same as at least one source register

36% of the time statically, and 31% of the time dynamically.

• Register accesses exhibit substantial locality of reference. Figure 2 shows the static fre-

quency of register usage across the same programs. 60% of register references are to eight

registers: two return-value registers and four argument registers (which double as caller-

saved temporaries), and two callee-saved registers. 11% of the remaining references are to

the stack pointer and 9% to the zero register. The remaining 22 registers account for only
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Figure 3: Dynamic frequency of register usage, as either a source or destination operand, in a
subset of the SPEC CPU2006 benchmark suite.

20% of register references. This phenomenon is largely attributable to the calling convention

but also to the compiler’s register allocation scheme. The same eight registers also account

for 60% of dynamic references (see Figure 3). Dynamically, the stack pointer and zero reg-

ister are referenced less frequently; even so, the remaining 22 registers still account for only

33% of dynamic references.

• Immediate operands are usually small. Figure 4 shows the size of immedate operands in the

same programs. Statically, more than two-thirds of immediates fit within 6 bits, and nearly

half within 4. Dynamically, smaller immediates are slightly more common. Branch and

jump displacements are larger, with half of these static instructions requiring at least 9 bits

(see Figure 5). Dynamically, however, short branches are quite common.

These observations led to a design in which many instructions specify the same source and

destination register or can only reference eight of the registers. With 3-bit register specifiers and

5- or 6-bit immediates, 11 bits worth of operands is sufficient to address two registers and either
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Figure 4: Cumulative distribution of immediate operand sizes in a subset of the SPEC CPU2006
benchmark suite. RISC-V immediates are at most 12 bits. Immediates are two’s-complement
values, so 0 and -1 are the 1-bit immediates.

an immediate or a third register, leaving 5 bits for the opcode4.

Instructions were considered for compression if they occurred frequently either statically or

dynamically with suitable operands. Table 5 lists the 33 instructions in RVC, along with the RISC-

V instruction to which the RVC instruction maps, and whether the RVC instruction was included

to reduce static code size, dynamic code size, or both. We included 14 fixed-point arithmetic in-

structions, the most common control-flow instructions, and several word and double-word loads

and stores. Floating-point arithmetic and sub-word loads and stores are notably absent; both re-

quire substantial opcode space to achieve worthwhile savings. Floating-point loads and stores are

included, however, as they are dynamically common in nearly all floating-point programs.

To simplify the implementation, all RVC instructions map to a single existing RISC-V instruc-

tion5. Some RVC opcodes map to the same RISC-V instruction: for example, RVC instructions to

4Only 24 of the 32 possible opcodes are available for RVC, since instructions whose two LSBs equal 11 must be
32 bits or longer.

5As a consequence, the compiler does not need to generate RVC instructions; rather, the assembler can substitute
the RVC equivalent of a RISC-V instruction if one exists. Nevertheless, instructions that map to a sequence of multiple
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Figure 5: Cumulative distribution of branch and jump offset sizes in a subset of the SPEC CPU2006
benchmark suite. Instructions are 4 bytes large, but offsets are multiples of 2 bytes; the implicit 0
LSB is not counted. RISC-V conditional branch offsets are at most 12 bits. Unconditional jump
offsets can be up to 25 bits, but offsets longer than 20 bits (±256K instructions) did not occur.

increment a register (C.ADDI), move a register (C.MOVE), or load an immediate (C.LI) all map

to ADDI. Similarly, three RVC opcodes provide different addressing modes for the RISC-V load

word instruction: stack-relative (C.LWSP), register-indirect (C.LW0), and displacement (C.LW).

The addition of RVC instructions does not complicate control flow in mixed RISC-V/RVC

code. RISC-V branches and jumps target 2-byte-aligned addresses so can address a RVC or RISC-

V instruction that would have been misaligned in the base ISA. Additionally, since RISC-V and

RVC instructions can be mixed freely, instructions to switch between ISA modes are not necessary.

Table 6 shows the encoding of the RVC instructions. All instructions have a 5-bit opcode and

at least one operand. Immediates are either 5 or 6 bits; branch offsets are 6 bits; and jump offsets

are 10 bits long. Instructions that reference a register do so either by its full 5-bit specifier (rd, rs1,

or rs2), or by a 3-bit specifier (rs1a, rs1a, rs2a, or rda). The mapping from these 3-bit fields to

RISC-V instructions were considered, such as load-multiple and store-multiple instructions, but were omitted for
simplicity.
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00: 29000003 lb a1, 0(a0) 00: 29000003 lb a1,0(a0)
04: 19000013 addi v1,a0,0 04: 1062 c.move v1,a0
08: 01402063 beq a1,x0,18 06: f4b0 c.beq a1,x0,10
0c: 18c00413 addi v1,v1,1 08: 0461 c.addi v1,1
10: 10c00003 lb v0, 0(v1) 0a: 10c00003 lb v0,0(v1)
14: f881f0e3 bne v0,x0,c 0e: ebb1 c.bne v0,x0,8
18: 10c90033 sub v0,v1,a0 10: 4d9c c.sub3 v0,v1,a0
1c: 004000eb jalr x0,ra 12: 0401 c.jr ra

Figure 6: RISC-V and RVC code to compute the length of a C string. The corresponding C code
is the same as that of Figure 1.

RVC Register # rs1a/rs2b/rda rs2b
0 20 (s0) 20 (s0)
1 21 (s1) 21 (s1)
2 2 (v0) 2 (v0)
3 3 (v1) 3 (v1)
4 4 (a0) 4 (a0)
5 5 (a1) 5 (a1)
6 6 (a2) 6 (a2)
7 7 (a3) 0 (0)

Table 4: RVC mapping of 3-bit register specifiers to the full 32-register space.
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Improves
RVC Instruction RISC-V Equivalent Description Static Dynamic
C.ADDI ADDI rd, rd, imm6 Increment register. X X
C.ADDIW ADDIW rd, rd, imm6 Increment register (as 32-bit word). X X
C.LI ADDI rd, x0, imm6 Load immediate. X
C.LWSP LW rd, imm6×4(sp) Load word, stack-relative. X
C.LDSP LD rd, imm6×8(sp) Load double-word, stack-relative. X
C.SWSP SW rs2, imm6×4(sp) Store word, stack-relative. X
C.SDSP SD rs2, imm6×8(sp) Store double-word, stack-relative. X
C.LW0 LW rd, 0(rs1) Load word, register-indirect. X
C.LD0 LD rd, 0(rs1) Load double-word, register-indirect. X
C.ADD ADD rd, rs1, rd Add register, destructive. X X
C.SUB SUB rd, rs1, rd Subtract register, destructive. X
C.MOVE ADDI rd, rs1, 0 Move register. X X
C.ADD3 ADD rda, rs1a, rs2a Add register. X
C.SUB3 SUB rda, rs1a, rs2a Subtract register. X
C.OR3 OR rda, rs1a, rs2a Bitwise-OR register. X
C.AND3 AND rda, rs1a, rs2a Bitwise-AND register. X
C.SLLI SLLI rda, rda, shamt Shift left logical. X X
C.SRLI SRLI rda, rda, shamt Shift right logical. X X
C.SRAI SRAI rda, rda, shamt Shift right arithmetic. X X
C.SLLIW SLLIW rda, rda, shamt Shift left logical (as 32-bit word). X X
C.LW LW rda, imm5×4(rs1a) Load word. X X
C.LD LD rda, imm5×8(rs1a) Load double-word. X X
C.SW SW rs2b, imm5×4(rs1a) Store word. X X
C.SD SD rs2b, imm5×8(rs1a) Store double-word. X X
C.FLW FLW rda, imm5×4(rs1a) Load floating-point word. X
C.FLD FLD rda, imm5×8(rs1a) Load floating-point double-word. X
C.FSW FSW rs2b, imm5×4(rs1a) Store floating-point word. X
C.FSD FSD rs2b, imm5×8(rs1a) Store floating-point double-word. X
C.BEQ BEQ rs1a, rs2b, imm5 Branch if equal. X X
C.BNE BNE rs1a, rs2b, imm5 Branch if not equal. X X
C.JR JALR x0, rs1a Indirect jump/subroutine return. X
C.JALR JALR ra, rs1a Indirect subroutine call. X
C.J J imm10 Unconditional jump. X

Table 5: RVC instruction listing.
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5-bit register numbers is shown in Table 4.

Figure 6 shows RISC-V and RVC code to compute the length of a C string. Six of the eight

RISC-V instructions can be represented with RVC instructions, reducing code size by 3
8
. RVC lacks

a load byte opcode, so RISC-V lb instructions are used. Note that the second such instruction is

not naturally aligned.

3.4 Implementation Considerations

RVC implementations are modestly more complex than RISC-V implementations. An RVC ma-

chine must be able to fetch misaligned 32-bit instructions, possibly across cache line and page

boundaries6. Additional decode logic is needed to convert RVC instructions to their RISC-V equiv-

alent (or to some internal format). Superscalar implementations must partially decode instructions

to find the boundaries between them, in order to determine which bits to decode. Fortunately, this

is a fast operation in RVC, as the first two bits of the instruction determine its length.

To leverage the reduction in fetch traffic, some implementations may require additional instruc-

tion buffering, so that when multiple instructions have been fetched and buffered, the instruction

fetch unit can be selectively turned off.

6A design that required 32-bit alignment of 32-bit instructions would offset much of the savings of RVC. For
example, if 50% of instructions are compressible, distributed uniformly at random, then in expectation 1

3 of 32-bit
instructions need 16 bits of padding, eliminating 1

3 of the code size reduction.
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15 14 13 12 11 10 9 8 7 5 4 0

imm6 rd 6= 0 ADDI C.ADDI
imm6 rd ADDIW C.ADDIW
imm6 rd LI C.LI
imm6 rd LWSP C.LWSP
imm6 rd LDSP C.LDSP
imm6 rs2 SWSP C.SWSP
imm6 rs2 SDSP C.SDSP

0 rs1 rd L0 C.LW0
1 rs1 rd L0 C.LD0
0 rs1 rd R2 C.ADD
1 rs1 rd R2 C.SUB
0 rs1 rd MOVE C.MOVE

rda rs1a 00 rs2a R3 C.ADD3
rda rs1a 01 rs2a R3 C.SUB3
rda rs1a 10 rs2a R3 C.OR3
rda rs1a 11 rs2a R3 C.AND3
rda 00 shamt SHIFT C.SLLI
rda 01 shamt SHIFT C.SRLI
rda 11 shamt SHIFT C.SRAI
rda 10 0 shamt SHIFT C.SLLIW
rda rs1a imm5 LW C.LW
rda rs1a imm5 LD C.LD
rda rs1a imm5 FLW C.FLW
rda rs1a imm5 FLD C.FLD
rs2b rs1a imm5 SW C.SW
rs2b rs1a imm5 SD C.SD
rs2b rs1a imm5 FSW C.FSW
rs2b rs1a imm5 FSD C.FSD
rs2b rs1a imm5 BEQ C.BEQ
rs2b rs1a imm5 BNE C.BNE

0 rs1 00000 ADDI C.JR
1 rs1 00000 ADDI C.JALR
1 jump target MOVE C.J

Table 6: RVC instruction encodings.
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4 Evaluation

To evaluate RVC’s potential for improving code size, energy efficiency, and performance, we ob-

tained static and dynamic measurements from the same SPEC CPU2006 programs listed in Table 2.

All benchmarks were compiled with a GCC 4.4.0 cross-compiler for the respective ISA, optimiz-

ing for size (-Os). Dynamic measurements were obtained from an RVC instruction set simulator

augmented with cache models. Some ISAs in this evaluation only support 32-bit address spaces,

so all programs were compiled for 32-bit targets7.

Compression from RISC-V to RVC instructions is implemented as a pass in the GNU assem-

bler. This procedure is straightforward, except for branches. Branch offsets cannot be computed

until the lengths of all intervening instructions are known, but whether an RVC branch can be used

depends on the branch offset. So, we speculate that all branches are short enough to be encoded as

RVC branches, then we relax them to longer RISC-V branches when offsets are determined not to

fit.

4.1 Static Code Compression Results

Static code size impacts instruction memory costs and start-up overhead, and it correlates with

instruction cache miss rates. One of our goals in defining RVC is thus to reduce static code size.

We measure RVC’s code compression efficacy by computing its compression ratio, i.e., RVC code

size divided by RISC-V code size. Figure 7 shows the static compression ratios for the SPEC

benchmarks. Compression ratios are generally about 75%, meaning that half of static instructions

were compressed.

Of course, compression ratio is a figure of less merit than code size, as one could simply adopt

a denser base ISA rather than compressing instructions in the base ISA. Figure 8 shows the code

size for several instruction sets, normalized to the size of RVC code. The first three ISAs, RISC-

V, MIPS, and ARM, are RISC ISAs with fixed-length 32-bit instructions. The next four, RVC,

MIPS16, ARM Thumb, and ARM Thumb-2, are compressed RISC ISAs. Finally, x86 represents

7Compression ratios for 64-bit RVC programs tend to be 0.1%-0.2% higher than for 32-bit RVC programs, as
immediates are larger.
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Figure 7: Static compression ratio of RVC code over RISC-V code, across a subset of the SPEC
CPU2006 benchmark suite.
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Figure 8: Static code size, normalized to RVC, averaged geometrically across a subset of the SPEC
CPU2006 benchmark suite. Only the programs’ object code is considered as the C library differs
between platforms.
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the variable-length CISCs.

The fixed-length ISAs have the largest code size. Interestingly, variable-length x86 code is less

than 15% smaller than fixed-length RISC-V code, in spite of having instructions as short as one

byte. The compressed RISC ISAs are substantially smaller; RVC and MIPS16 are 15% smaller

than x86. RVC code is 6-7% larger than Thumb and Thumb-2 code; Chapter 5 discusses some

reasons for their greater code density.

4.2 Dynamic Code Compression Results

In an idealized processor model, dynamic code size equals the amount of data fetched from in-

struction memory. Reducing dynamic code size can thus reduce instruction fetch energy, as fewer

total bits are retrieved from instruction memory. Figure 9 shows the dynamic compression ratios

for the same programs. RVC programs usually cause 25%-30% fewer instruction bits to be fetched

than RISC-V programs.
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Figure 9: Dynamic compression ratio of RVC code over RISC-V code, across a subset of the SPEC
CPU2006 benchmark suite.
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We did not compare RISC-V and RVC dynamic code size with that of other ISAs, but we

expect their static and dynamic code size to correlate to some degree.

4.3 Instruction Cache Performance

A reduced instruction working set will often incur fewer instruction cache misses. To study the

effect of RVC on instruction cache performance, we simulated each program running with cache

sizes ranging from 256 bytes to 32 KB, direct-mapped and two-way set-associative. All caches

use 32-byte lines. Figures 10 through 19 plot the instruction cache miss rates for these programs

versus the cache size. Two of the four curves are for the RISC-V (i.e. RV) program, one curve for

a direct-mapped cache and the other for a two-way cache; the other two curves are for the RVC

program, with the same cache configurations.

RVC reduces miss rates substantially in most programs, commensurate with the reduction in

instruction working set size. For 7 of the 10 programs (all except milc, lbm, and astar), using

RVC improves performance roughly as much as doubling the instruction cache size.
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Figure 10: Instruction cache miss rates for bzip2.
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Figure 11: Instruction cache miss rates for gcc.
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Figure 12: Instruction cache miss rates for mcf.
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Figure 13: Instruction cache miss rates for milc.
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Figure 14: Instruction cache miss rates for gobmk.
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Figure 15: Instruction cache miss rates for soplex.
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Figure 16: Instruction cache miss rates for hmmer.
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Figure 17: Instruction cache miss rates for sjeng.
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Figure 18: Instruction cache miss rates for lbm.
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Figure 19: Instruction cache miss rates for astar.

4.4 System Performance

The reduced instruction miss rates in RVC programs correspond to an improvement in overall

performance. To measure this effect, we modeled a processor that executes one instruction per

clock cycle, except for instruction and data cache and TLB misses; main memory accesses take 50

cycles. Figure 20 compares three configurations to a base RISC-V system with some instruction

cache size: a system with twice the instruction cache capacity; a system with a two-way set-

associative instruction cache; and an RVC system running an RVC program.

RVC improves performance substantially when the instruction working set does not fit in cache.

For 6 of the 8 cache configurations, using RVC is more effective than doubling the associativity.

Using RVC attains, on average, 80% of the speedup of doubling the cache size. A system with

a 16 KB direct-mapped cache with RVC is 99% as fast as a system with a 32 KB direct-mapped

cache without RVC.
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Figure 20: Geometric mean speedup of various configurations over a RISC-V system with a direct-
mapped instruction cache of a given instruction cache size. All instructions execute in one clock
cycle, except for cache misses, on which the processor blocks. Cache refills and writebacks take 50
cycles; TLB refills take 100. All configurations use a 32 KB 2-way set-associative data cache. All
caches have 32-byte lines. Instruction and data TLBs are each 8 entries and are fully associative.
The page size is 4 KB.
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5 Discussion

Program binaries compiled for fixed-length RISC ISAs are large relative to their CISC counter-

parts. But x86 code is substantially larger than that of the short-instruction-word and variable-

length RISC ISAs. For embedded systems with severe constraints on instruction memory size,

these ISAs are likely to be the most cost-effective.

Of the compressed RISCs, MIPS16 and RVC code are about the same size, while Thumb is

about 6% smaller. Even so, RVC code is likely to outperform both. MIPS16 and Thumb suffer

from lack of floating-point instructions and from access to only eight registers, increasing register

spills. Static and dynamic instruction counts are thereby increased. MIPS16 and Thumb programs

are composed almost exclusively of 16-bit instructions, whereas only about half of static RVC

instructions are 16 bits. Consequently, RVC programs are encoded in vastly fewer static instruc-

tions than either MIPS16 or Thumb programs. Most RVC programs thus comprise fewer dynamic

instructions than either MIPS16 or Thumb programs, likely improving performance over both.

Thumb-2 is a variable-length RISC ISA similar to RVC. Like ARM and Thumb, Thumb-2 has

several ISA features that improve code size over RISC-V and RVC code. A PC-relative addressing

mode enables many global variable accesses to be encoded as a single 16-bit instruction, whereas

global variable accesses in RVC require two 32-bit instructions8. Conditional execution shortens

some code paths. Load Multiple and Store Multiple instructions shorten function prologues and

epilogues in particular. Finally, some arithmetic code sequences can be expressed by fewer Thumb-

2 instructions than RVC instructions9. Although these features serve to make Thumb-2 code about

7% smaller than RVC code, it is worth noting that some of them significantly complicate certain

implementation styles (e.g. conditional execution in a dynamically scheduled pipeline with register

renaming).

In addition to reducing static code size, RVC shows promise for improving energy per opera-

tion. An RVC machine with small instruction caches is likely to outperform and use less energy

8In RISC-V, globals are loaded with a LUI/Load instruction pair. The load cannot be compressed into an RVC
instruction because the immediate value is not known until link time.

9For example, the C expression a + (b << 17) might compile to C.SLLI/C.ADD3 in RVC, but just ADD.W
in Thumb-2.

28



than a similarly-configured RISC-V machine. On a system with a 16 KB direct-mapped instruction

cache and 32 KB 2-way data cache, 9% of all main memory accesses (instruction and data) are

eliminated, performance is 4% better, and 25% fewer instruction bits need be fetched. With an 8

KB instruction cache, main memory accesses are reduced 14% and performance is 7% improved.

Perhaps more importantly, the smaller instruction footprint of RVC programs enables the use

of smaller or simpler caches. For a 1% performance hit, a RISC-V implementation with a 32 KB

instruction cache could add RVC support and halve its instruction cache size. And, of course,

fewer bits need be fetched from this smaller cache. For implementations in which instruction fetch

energy is a large component of total energy, using RVC and a smaller cache could improve energy

efficiency significantly.
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6 Conclusions and Future Work

It is difficult to project the actual energy savings of a variable-length instruction encoding like RVC

without a complete implementation. For example, additional buffering and decode logic increase

energy and could, for some processors, affect cycle time or require additional pipelining. On the

other hand, if RVC allows using a smaller cache, the reduced cache access time might largely

compensate for this effect. Forthcoming VLSI and FPGA implementations of the RVC instruction

set should elucidate its power, area, and timing tradeoffs.

Additionally, a comparison of the dynamic instruction counts and fetch traffic of the various

ISAs in this study would paint a clearer picture of the tradeoff between performance, code size,

and energy. Virtutech Simics [7], a full-system simulator, supports all of the instruction sets in this

study except RISC-V and RVC and would be suitable for these experiments.

Nevertheless, RVC is a promising means to improve energy efficiency. Its code size is compet-

itive with the other compressed RISC ISAs in this study, which have proven quite popular. RVC

programs need to fetch about 25% fewer instruction bits than RISC-V programs, reducing costly

instruction fetches, and smaller code size can improve performance by reducing cache misses or

can enable the use of smaller caches, further reducing energy and also reducing area. RVC will

thus make RISC-V processors more efficient.
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