
A Case for FAME: FPGA Architecture Model Execution

Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, David Patterson

The Parallel Computing Laboratory
CS Division, EECS Department, University of California, Berkeley

{xtan,waterman,hcook,slbird,krste,pattrsn}@eecs.berkeley.edu

ABSTRACT
Given the multicore microprocessor revolution, we argue
that the architecture research community needs a dramatic
increase in simulation capacity. We believe FPGA Archi-
tecture Model Execution (FAME) simulators can increase
the number of useful architecture research experiments per
day by two orders of magnitude over Software Architec-
ture Model Execution (SAME) simulators. To clear up
misconceptions about FPGA-based simulation methodolo-
gies, we propose a FAME taxonomy to distinguish the cost-
performance of variations on these ideas. We demonstrate
our simulation speedup claim with a case study wherein we
employ a prototype FAME simulator, RAMP Gold, to re-
search the interaction between hardware partitioning mech-
anisms and operating system scheduling policy. The study
demonstrates FAME’s capabilities: we run a modern par-
allel benchmark suite on a research operating system, sim-
ulate 64-core target architectures with multi-level memory
hierarchy timing models, and add experimental hardware
mechanisms to the target machine. The simulation speedup
achieved by our adoption of FAME—250×—enables experi-
ments with more realistic time scales and data set sizes than
are possible with SAME.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Micropro-
cessors; I.6.8 [Simulation and Modeling]: Discrete Event

General Terms
Design, Performance, Experimentation

1. INTRODUCTION
Computer architects have long used software simulators

to explore instruction set architectures, microarchitectures,
and approaches to implementation. Compared to hardware
prototyping, their low capital cost, relatively low cost of im-
plementation, and ease of change have made them the ideal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

choice for the early stages of research exploration. In addi-
tion, when uniprocessor performance was doubling every 18
months, simulation speed correspondingly doubled every 18
months without any special programming effort.

The recent abrupt transition to multicore architectures [5,
19], however, has both increased the complexity of the sys-
tems architects want to simulate and removed the straight-
forward path to simulator performance scaling. Parallel ap-
plications exhibit more complex behaviors than sequential
ones, including timing-dependent non-deterministic execu-
tion, cache coherence traffic, and operating system scheduler
interactions. Applications now also commonly have dynam-
ically generated code, including code that is automatically
tuned to the underlying hardware platform. Although it
is generally well understood how to model these phenom-
ena, accurate models require detailed cycle-level simulation.
Unfortunately, detailed cycle-level simulation is notoriously
difficult to parallelize due to the need for regular cycle-by-
cycle synchronization, and hence sequential software simu-
lators have fallen far behind the performance required to
support the new wave of parallel systems research.

This paper argues that architecture research now faces a
crisis in simulation because of the new requirements and the
consequences of the move to multicore processors. Indeed,
we found that the median instructions simulated per bench-
mark was similar in ISCA papers in 1998 and 2008. In recent
papers, however, those instructions were simulated across
an average of 16 times as many processors, so the num-
ber of instructions per processor significantly decreased over
that decade. To tackle this simulation gap, several research
groups, including those in the RAMP Project [41], have been
exploring the use of FPGAs to build various forms of FPGA-
accelerated architecture simulators. In this paper, we use
the terms Software Architecture Model Execution (SAME)
or FPGA (Field-Programmable Gate Array) Architecture
Model Execution (FAME) to label the two approaches to
multicore simulation. Due to the rapid progress made by
the whole FAME community over the last few years, there
appears to be considerable confusion about the structure and
capabilities of FAME simulators in the broader architecture
community. This paper proposes a four-level taxonomy of
increasingly sophisticated FAME levels to help explain the
capabilities and limitations of various FPGA simulation ap-
proaches.

We then present the detailed design of the RAMP Gold
simulator, a very efficient architectural simulator for early-
stage design exploration. We describe how RAMP Gold
supports various forms of architecture experimentation and

290

how modifications could be made to support others. The
following section presents a case study to illustrate the ef-
fectiveness of RAMP Gold in modern systems research. We
also provide a quantitative evaluation of the RAMP Gold
simulator against Simics+GEMS [24, 25], a popular SAME
simulator. We compare simulation speeds for the PARSEC
benchmark suite [7]. We show that while pure functional
simulations of a few cores run at about the same speed,
RAMP Gold runs detailed models on 64 cores on average
263× faster than Simics+GEMS, with a maximum speedup
of 806×. Not only does this provide a dramatic increase
in simulation capacity, it also markedly reduces simulation
latency thereby improving experimenter productivity.

2. MULTIPROCESSOR SIMULATION
A modern processor running an application workload is

difficult to model analytically, yet building a prototype for
each design point is prohibitively expensive. Software sim-
ulators have therefore become the primary method used to
evaluate architectural design choices. In this paper, we re-
fer to the machine being simulated as the target and the
machine on which the simulation runs the host.

Simulating parallel target machines is much more diffi-
cult than simulating uniprocessors. Part of the added com-
plexity is simply that the target hardware is more complex,
with multiple cores and a cache-coherent shared memory hi-
erarchy. Also, a parallel software runtime must be present
to support multithreading or multiprogramming across the
multiple cores of the simulated target, which adds additional
complexity. For multiprocessor research, trace-driven simu-
lation is still often used despite the inability of traces to cap-
ture the effects of timing-dependent execution interleaving,
as developing a full system environment capable of running
large workloads is difficult.

As with uniprocessor simulators, many parallel simula-
tors only model user-level activity of a single application.
One popular early example was RSIM [29], which provided
detailed models of out-of-order superscalar processors con-
nected via coherent shared memory but without support for
an operating system. The SimOS project demonstrated how
to run an operating system on top of a fast software sim-
ulator [34]. SimOS supported multiple levels of simulation
detail, with the fastest version of SimOS using dynamic bi-
nary translation to speed target instruction emulation while
emulating cache hierarchies in some detail [44]. A simi-
lar technique was incorporated into the commercial product
Simics, which allows researchers to study large application
programs and the operating system running together. Al-
though the architecture research community is not a large
market, Simics offers an interface that allows researchers
to plug in their own detailed execution-driven performance
model to evaluate detailed portions of the computer [24].
Augmented with detailed performance models developed by
other researchers [25], Simics has become a popular tool in
the architecture community; we provide a detailed evalua-
tion of its performance in Section 5.

Sadly, parallelizing detailed multiprocessor simulations to
run efficiently on parallel host machines is difficult. The need
for cycle-by-cycle interaction between components limits the
parallel speedup due to the high cost of software synchro-
nization. If this cycle-by-cycle synchronization is relaxed,
parallelized software simulators can attain some speedup but

at the cost of needing to validate that the missing interac-
tions do not affect the experiment’s results [26, 33].

As with uniprocessors, researchers have considered using
sampling to reduce multiprocessor simulation time. Alas,
mixed-mode simulation and sampling do not work well in
general for multiprocessor simulations [6]. For uniproces-
sors, the program execution should be the same independent
of the underlying microarchitecture, and so the architectural
state of the processor is correct at the beginning of any sam-
ple point for any target microarchitecture. Such is not the
case for multiprocessors because software thread interleav-
ings change depending on the behavior of the microarchi-
tecture in each core. For example, an experiment exploring
the impact of relaxed consistency models on multithreaded
programs might never encounter the interesting events if the
functional simulation used sequential consistency to obtain
sample start points. Sampling can give representative re-
sults for multiprogrammed workloads, since processes run-
ning on different cores generally do not interact via shared
memory. Others have argued that transaction-oriented ap-
plications such as databases are also amenable to sample-
based simulation, since any sample is representative of some
legal overlap of independent transactions [43].

Implicit in many techniques used to reduce simulation
time is the assumption that software is compiled statically,
changes slowly, and is independent of the target architec-
ture. Architects have generally treated benchmark programs
as static artifacts to be measured without understanding the
problems being solved or the algorithms and data structures
being used. Thus, collections of old software like SPEC were
considered reasonable benchmarks for future architectures,
as long as the SPEC suite changed every five years to reduce
gamesmanship. In fact, many architectural studies have just
used precompiled binaries distributed with a shared simu-
lator infrastructure. New applications, new programming
models, and new programming languages have been largely
ignored. The move to ubiquitous parallel processing is such
a disruptive change that this laissez faire approach will no
longer work, since by definition we need new programs, mod-
els, and languages. Moreover, as mentioned above, modern
software dynamically adapts to the hardware microarchitec-
ture by generating and measuring code at runtime. Exist-
ing simulation time shortcuts are not likely to be useful, and
simulation latency is now at least as important as simulation
throughput.

3. FPGA-BASED SIMULATION
FPGAs have become a promising vehicle for architecture

experiments, providing a highly parallel programmable ex-
ecution substrate that can run simulations several orders
of magnitude faster than software [41]. Previously, FPGA
processor models were hampered by the need to partition
a processor across multiple FPGAs, which increases hard-
ware costs, reduces performance, and significantly increases
development effort. But FPGA capacity has been scaling
with Moore’s Law and so now, depending on complexity,
multiple processors can fit on a single FPGA. Furthermore,
future scaling should allow FPGA capability to continue to
track simulation demands as the number of cores in target
systems grows. Due to high volumes, FPGA boards have
also become relatively inexpensive; the RAMP Gold design,
for example, uses a $750 commercial board.

Multiple groups have now developed working FPGA-

291

based systems [11, 14, 28, 21, 12], but using perhaps an
even greater variety of techniques than software simulators,
and correspondingly a wider range of tradeoffs between sim-
ulator performance, accuracy, and flexibility. Consequently,
we have heard much confusion in our discussions with other
architects about how FAME relates to prior work using
FPGAs for architecture prototyping and chip simulation,
and what can and cannot be done using FAME.

In this section, we first present three binary dimensions
within which we can categorize FAME approaches. Next,
inspired by the five-level RAID classification, we present
four levels of FAME that capture the most important de-
sign points in this space. Our hope is these FAME levels
will help explain FPGA-based emulation approaches to the
broader architecture community.

3.1 FAME Implementation Techniques
We use the following three binary dimensions to charac-

terize FAME implementation approaches.

3.1.1 Direct vs. Decoupled
The Direct approach is characterized by the direct map-

ping of a target machine’s RTL description into FPGA gates,
where a single target clock cycle is executed in a single host
clock cycle. An advantage of the direct approach is that,
in theory, a re-synthesis of the target RTL for the FPGA
provides a guaranteed cycle-accurate model of the target
processor. The direct approach has been popular in chip
verification; one of the first uses of FPGAs was emulating a
new chip design to catch logic bugs before tapeout. Quick-
turn [16] was an early example, where boxes packed with
FPGAs running at about 1–2MHz could run much larger
test programs than feasible with software ECAD logic sim-
ulators. Direct emulation is also often used by intellectual
property (IP) developers to supply a new core design to
potential customers for evaluation and software porting be-
fore committing to an ASIC. Direct emulation has become
much easier as the growth in FPGA capacity reduces the
need to partition monolithic RTL blocks, such as CPUs,
across FPGAs, but large system designs may still require
many FPGAs. The inefficiency of FPGAs at emulating
common logic structures—such as multiported register files,
wide muxes, and CAMs—exacerbates capacity problems.

A more powerful FAME option, which improves efficiency
and enables other more advanced options, is to adopt a De-
coupled design, where a single target clock cycle can be im-
plemented with multiple or even a variable number of host
clock cycles [18]. For example, direct mapping of a multi-
ported register file is inefficient on FPGAs because discrete
FPGA flip-flops are used to implement each register state
bit with large combinational circuits used to provide the
read ports. A more efficient decoupled model would imple-
ment a target multi-ported register file by time-multiplexing
a single-ported FPGA RAM over multiple FPGA clock cy-
cles. The drawback of a decoupled design is that models
have to use additional host logic to model target time cor-
rectly, and a protocol is needed to exchange target timing
information at module boundaries if modules have different
target to host clock cycle ratios [18, 31].

3.1.2 Full RTL vs. Abstracted Machine
When the full RTL of a target machine is used to build a

FAME model, it ensures precise cycle-accurate timing. How-

ever, the desired RTL design is usually not known during
early-stage architecture exploration, and even if the intended
RTL design is known, it can require considerable effort to
implement a working version including all corner cases. Even
if full correct RTL is available, it may be too unwieldy to
map directly to an FPGA.

Alternatively, we can use a higher-level description of the
design to construct a FAME model. Abstraction can reduce
both model construction effort and FPGA resource needs.
The primary drawback is that an abstract model needs val-
idation to ensure accuracy, usually by comparing against
RTL or another known good model. If the mechanism is
novel, an RTL prototyping exercise might be required to pro-
vide confidence in the abstraction. Once validated, however,
an abstract component can be reused in multiple designs.

HAsim [30] was an early example of the Abstract FAME
option, where the processor model was divided into sepa-
rate functional and timing models that do not correspond
to structural components in the target machine. Split func-
tional and timing models provide similar benefits as when
used in SAME simulators. Only the timing model needs to
change to experiment with different microarchitectures, and
the timing model can include parameters such as cache size
and associativity that can be set at runtime without resyn-
thesizing the design, dramatically increasing the number of
architecture experiments that can be performed per day.

3.1.3 Single-Threaded vs. Multi-Threaded
A cycle-accurate FAME model synchronizes all model

components on every target clock cycle. Some complex com-
ponents might experience long host latencies, for example, to
communicate with off-chip memory or other FPGAs, reduc-
ing simulator performance. For processors, a standard ap-
proach to tolerate latencies and obtain greater performance
is to switch threads every clock cycle so that all dependencies
are resolved by the next time a thread is executed [3]. The
same approach can be applied when implementing FAME
models in a technique we call host multithreading, and is
particularly applicable to models of parallel target machines.

When the target system contains multiple instances of
the same component, such as cores in a manycore design,
the host model can be designed so that one physical FPGA
pipeline can model multiple target components by interleav-
ing the component models’ execution using multithreading.
For example, a single FPGA processor pipeline might model
64 target cores or a single FPGA router pipeline might model
16 on-chip routers.

Host multithreading greatly improves utilization of FPGA
resources by hiding host communication latencies. For ex-
ample, while one processor target model makes a request to
a memory module, we can interleave the activity of 63 other
target processor models. Provided modeling of the memory
access takes fewer than 64 FPGA clock cycles, the emulation
will not stall. Multithreaded emulation adds additional de-
sign complexity but can provide a significant improvement in
emulator throughput. ProtoFlex is an example of a FAME
simulator that host-multithreads its functional model [12].
The same concept has also been used in SAME simulators,
e.g., later versions of the Wisconsin Wind Tunnel were also
host multithreaded [27].

3.2 FAME Levels
A combination of these FAME implementation techniques

292

Level Name Example Strength Experiments
per Day

Experiments per
Day per $1000

000 Direct FAME Quickturn,
Palladium

Debugging logical design 1 0.001

001 Decoupled FAME Green Flash Higher clock rate; lower cost 24 0.667
011 Abstract FAME HAsim Simpler, parameterizable design;

faster synthesis; lower cost
40 40.000

111 Multi-threaded FAME RAMP Gold Lower cost; higher clock rate 128 170.000

Table 1: Summary of four FAME Levels, including examples.

often makes sense. The next four sections present a four-
level taxonomy of FAME that improves in cost, perfor-
mance, or flexibility. The four levels are distinguished by
their choices from the three options above, so we can num-
ber the levels with a three-bit binary number, where the
least-significant bit represents Direct (0) vs. Decoupled (1)
and the most-significant bit represents Single-Threaded (0)
vs. Multi-Threaded (1). Table 1 summarizes the levels and
gives examples and the strengths of each level. Each new
FAME level lowers cost and usually improves performance
over the previous level, while moving further away from the
concrete RTL design of the target.

To quantify the cost-performance difference of the four
FAME levels, we propose as a performance measure the
number of simulation experiments that can be performed
per day. Given the complex dynamics of manycore pro-
cessors, operating systems, and workloads, we believe the
minimum useful experiment is simulating 1 second of target
execution time at the finest level of detail for 16 cores at a
clock rate of 2GHz with shared memory and cache coher-
ence. We employ this as an approximate unit to measure
an experiment. The same experiment but running for 10
target seconds is 10 units, the same experiment but running
for 1 second at 64 cores is 4 units, and so on. Note that
in addition to host simulation time, experiment setup time
(e.g. design synthesis time) must also be included. To obtain
a cost-performance metric, we simply divide the number of
experiments per day by the cost of that FAME system. To
keep the numbers from getting too small, we calculate exper-
iments per day per $1000 of the cost of the FAME system.
The last column of Table 1 estimates this metric for 2010
prices.

3.2.1 Direct FAME (Level 000): (e.g., Quickturn)
The common characteristic of Direct FAME emulation

systems, such as Quickturn, is that they are designed to
model a single chip down to the gate level with a one-to-one
mapping of target cycles to host cycles.

Let’s assume we could simulate the gates of 16 cores on a
$1 million Direct FAME system at 2MHz. Each run would
then take 2GHz/2MHz =1000 seconds or 17 minutes. Be-
cause the model is not parameterized, we have to rerun the
CAD tool chain for each experiment to resynthesize the de-
sign. Given the large number of FPGAs and larger and more
complicated description of a hardware-ready RTL design, it
can take up to 30 hours to set up a new design [39]. If
Direct FAME can do 1 experiment per day, the number of
experiments per day per $1000 is 0.001.

In addition to high simulation turnaround time, Direct
FAME requires great design effort to change the RTL for
each experimental machine, unlike some of the later FAME
levels. Although helpful in the later stages of debugging

the design of a real microprocessor intended for fabrication,
Direct FAME is too expensive and time consuming to use
for early-stage architectural investigations.

Newer gate-level emulation products, such as Cadence
Palladium and MentorGraphics Veloce, are no longer based
on commercial FPGAs but instead use custom-designed
logic simulation engines. However, they still have relatively
low target clock rates [1] and cost millions of dollars, though
the tools are superior to FPGA tools for this purpose.

3.2.2 Decoupled FAME (Level 001):
(e.g., Green Flash memory system)

Programmable logic is slow compared to hardwired logic,
and some ASIC features, such as multiported register files,
map poorly to FPGAs, consuming resources and cycle time.
For example, Green Flash [42] can fit two Tensilica cores
with floating-point units per medium-sized FPGA, but it
runs at only 50MHz [35]. The memory system uses off-
chip DRAM, however, which runs much faster than the logic
(200MHz) and so decoupling is used in the memory system
to match the intended target machine DRAM timing.

Performing a 16-core experiment needs 2 BEE3 [15]
boards, which cost academics about $15,000 per board, plus
the FPGAs and DRAMs, which cost about $3000 per board,
or $36,000 total. It takes 8 hours to synthesize and place
and route the design and about 40 seconds (2GHz/50MHz)
to run an experiment. Since this level has a few timing
parameters, such as DRAM latency and bandwidth, Green
Flash can run about 24 experiments per synthesis [35]. Alas,
the state of FPGA CAD tools means FPGA synthesis is a
human-intensive task; only one synthesis can be run per
workday. Thus, the number of experiments per day per
$1000 is 24/$36K or 0.667. Decoupled FAME (Level 001)
improves the cost-performance over Direct FAME (Level
000) by a factor of almost 700×. This speedup is mostly
due to processor cores fitting on a single FPGA, thus avoid-
ing the off-chip communication that slows Direct FAME sys-
tems; also, Decoupled FAME uses a simple timing model to
avoid resynthesis for multiple memory system experiments.

It is both a strength and a weakness of Decoupled FAME
that the full target RTL is modeled. The strength is that
the model is guaranteed to be cycle accurate. Also, the same
RTL design can be pushed through a VLSI flow to obtain
reasonable area, power and timing numbers from actual chip
layout [37]. The weakness is that designing the full RTL for
a system is labor-intensive and rerunning the tools is slow.
This makes Decoupled FAME less suitable for early-stage
architecture exploration, where the designer is not ready
to commit to a full RTL design. Decoupled FAME thus
takes a great deal of effort to perform a wide range of ex-
periments compared to Abstract and Multithreaded FAME.
These higher levels, however, require decoupling to imple-

293

ment their timing models, and hence we assume that all
the following levels are Decoupled (or odd-numbered in our
enumeration).

3.2.3 Abstract FAME (Level 011): (e.g., HAsim)
Abstract FAME allows high-level descriptions for early-

stage exploration, which simplifies the design and thereby
reduces the synthesis time to under 1 hour. More impor-
tantly, it allows the exploration of many design parameters
without having to resynthesize at all, which dramatically
improves cost-performance.

Let’s assume we need 1 BEE3 board for 16 cores, so the
cost is $18,000. To simulate cache coherency, the simulator
will take several host cycles per target cycle for every load
or store to snoop on the addresses. Let’s assume a clock
frequency of 65MHz, as with HAsim [32], and an average
number of host cycles per target cycle of 4. The time for one
experiment is then 4 × 2GHz/65MHz = 123 seconds. Since
human intervention isn’t needed to program the FPGAs,
the number of experiments per day is 24 hours/123 seconds
= 702. The number of experiments per day per $1000 is then
702/$18K or about 40. Abstract FAME (Level 011) makes
a dramatic improvement in this metric over lower FAME
levels: by a factor of almost 60 over Decoupled FAME (Level
001) and a factor of 40,000 over Direct FAME (Level 000).

In addition to the improvement in cost-performance, Ab-
stract FAME allows many people to perform architecture
experiments without having to modify the RTL, which both
greatly lowers the effort for experiments and greatly in-
creases the number of potential experimenters. Once again,
the advantages of abstract designs and decoupled designs
are so great that we assume any subsequent level is both
Abstract and Decoupled.

3.2.4 Multithreaded FAME (Level 111):
(e.g., RAMP Gold)

The main cost of Multithreaded FAME is more RAM to
hold copies of the state of each thread, but RAM is one of
the strengths of FPGAs — a single programmable logic unit
can be exchanged for 64-bits of RAM in a Virtex-5 FPGA.
Hence, Multithreaded FAME increases the number of cores
that can be simulated efficiently per FPGA. Multithreading
can also increase the clock rate of the host simulator by
removing items on the critical path, such as bypass paths.

Since we are time-multiplexing the FPGA models, a much
less expensive XUP board ($750) suffices. Multithreading
reduces RAMP Gold’s host cycles per target core-cycle to
1.90 (measured) and enables a clock rate of 90MHz. Since
the simulator is threaded, the time for a 16-core simulation
is 16× 2GHz/90MHz× 1.9 = 675 seconds. The number of
experiments per day is 24 hours / 675 seconds = 128. The
number of experiments per day per $1000 is then 128/$0.75K
or about 170. Multithreaded FAME (Level 111) improves
this metric by more than a factor of 4 over Abstract FAME
(Level 011), by a factor of about 250 over Decoupled FAME
(Level 001), and by a factor of 170,000 over Direct FAME
(Level 000). We expect that Version 2 of RAMP Gold will
fit three pipelines on a single FPGA and run at 100MHz,
allowing over 550 experiments per day per $1000.

In addition, Multithreaded FAME lowers the cost of entry
by a factor of 24–48 versus Abstract or Decoupled FAME,
making it possible for many more researchers to use FAME
for parallel architecture research.

3.2.5 Other Possible FAME Levels
By definition, direct mapping cannot be combined with

abstract models or multithreading. An RTL design can
be multithreaded, however, whereby every target register
is replicated for each threaded instance but combinational
logic is shared by time multiplexing. We ignored this Multi-
threaded RTL combination (101) as a FAME level because,
although plausible, we have not seen instances of this com-
bination in practice.

3.2.6 Hybrid FAME Simulators
Although we present levels as completely separate ap-

proaches for pedagogic reasons, real systems will often com-
bine modules at different levels, or even use hybrid designs
partly in FPGA and the rest in software. For example,
System-on-a-Chip IP providers will often use a mixed de-
sign to provide a fast in situ emulation of their IP blocks
for customers. The IP block is modeled by mapping the
final ASIC RTL to the FPGA (Direct FAME, Level 000),
but the enclosing system is described at an abstract level
(Abstract FAME, Level 011). FAST [11] is an example of
a hybrid FAME/SAME system, where the functional model
is in software and the timing model is in hardware.

3.2.7 FPGA Computers
Another use of FPGAs is to build FPGA computers, where

FPGAs are the final target technology. For example, FPGAs
are used to build computers to run real production compute
workloads (e.g., Xilinx Microblaze [2], Convey HC-1 [9]).
Research processors can also be prototyped using FPGAs
at much lower cost, risk, and design effort compared to a
custom chip implementation [36, 28, 21, 40]. Although an
FPGA research prototype bears little resemblance to a cus-
tom chip in terms of cycle time, area, or power, it can yield
valuable insights into the detailed implementation of a new
architectural mechanism, as well as provide a fast platform
to evaluate software interactions with the new mechanisms.

Although often confused with Direct FAME (level 000),
FPGA computers are not intended to model a target ma-
chine; rather, they are the target machine. As such, we do
not include FPGA computers in the FAME taxonomy.

4. THE RAMP GOLD SIMULATOR
RAMP Gold 1 is a Multithreaded FAME (Level 111) simu-

lator deployed on a single $750 Xilinx Virtex-5 FPGA board.
In this section, we describe the design of RAMP Gold and
how it attains high efficiency by tailoring the design to the
FPGA environment.

The current RAMP Gold simulated target is a tiled,
shared-memory manycore system with up to 64 single-issue,
in-order SPARC V8 cores. RAMP Gold is a full-system sim-
ulator, which boots the Linux 2.6 kernel, as well as ROS [20,
23], our manycore research operating system. RAMP Gold’s
target machine is highly parameterized and most simulation
options are runtime configurable: Without resynthesizing a
new FPGA configuration, we can vary the number of tar-
get cores, cache parameters (size, associativity, line size, la-
tency, banking), and DRAM configuration (latency, band-
width, number of channels). This extensive runtime param-
eterization accelerates design space exploration and comes

1RAMP Gold source code is available at
http://ramp.eecs.berkeley.edu/gold

294

Bank 0

L2 Tags

M

S

H

R

=

Fetch P
Architecture

State
(x64)

Frontend
Link

RX TX

Frontend App Server
Gigabit

Ethernet

Microcode

ROM
Decode

 P8 direct-mapped private
host I$ (x64)

 P
2x16 2-way
private ITLB

(x64)

Target Register File Access

 P
Architecture
Register File

(x64)

Integer ALU

Simple ALU

IDIV/IMUL

Pipelined FPU

DP

FPU

SP-DP

Conv

FP-

INT

Conv

 MMU P
2x16 2-way

private DTLB
(x64)

D
D

R
2

 M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Exception/Write Back

 PIO Devices
(x64)

16KB

unified

host D$

64-entry

MSHR

Thread Scheduler

Target

Cycle

Count

Scoreboard

 PL1 I$
Tag

==

Timing Model

Config Reg

 PL1 D$
Tag

Timing Model

Config Reg

<INST, PC,

PADDR>

L2 Tags

M

S

H

R

=

L2 Tags

M

S

H

R

=

L2 Tags

M

S

H

R

=

Bank 0

Bank 1

DRAM TimingQoS

DRAM TimingQoS

DRAM TimingQoS

DRAM TimingQoS

Timing Model

Config Reg

From functional

model I/O bus

CPU Timing

Model
Banked L2

Timing Model

DRAM Channel

Timing Model

2
2

5
 M

H
z
/2

G
B

 S
O

D
IM

M

Functional Model Timing Model

Bank 2

Bank 3

Figure 1: RAMP Gold Microarchitecture

at little cost to simulator performance: with a detailed mem-
ory system timing model, we can simulate over 40 million
target core-cycles per second.

4.1 RAMP Gold Microarchitecture
Figure 1 shows the microarchitecture of RAMP Gold. The

simulator decouples timing from function. The functional
model faithfully executes the SPARC V8 ISA and main-
tains architected state, while the timing model determines
instruction execution time in the target machine. Both mod-
els reside in one FPGA to minimize synchronization costs,
and both are host-multithreaded to achieve high utilization
of FPGA resources.

The functional model implements the full SPARC V8 ISA
in hardware, including floating-point and precise exceptions.
It also provides sufficient hardware to run an operating sys-
tem, including MMUs, timers, and interprocessor interrupts.
The functional model is deeply pipelined, and avoids fea-
tures such as highly ported register files and wide bypass
muxes that map poorly to FPGAs. The functional model
carefully exploits Virtex-5 features, for example, double-
clocking block RAMs and mapping target ALU instructions
to hardwired DSP blocks. The single in-order issue func-
tional pipeline is 64-way multithreaded, enabling functional
simulation of 64 target cores. Each thread’s private state in-
cludes a 7-window register file, a 32-entry instruction TLB
and 32-entry data TLB, a 256-byte direct-mapped instruc-
tion cache, and the various processor state registers. Al-
though 64 copies of this state seems large, trading state for
increased pipeline utilization is attractive in the FPGA fab-
ric, wherein storage is cheap relative to computation.

The threaded functional pipeline has a single, shared,
lockup-free host data cache. It is 16KB, direct-mapped,
and supports up to 64 outstanding misses. Sharing a very
small host cache between 64 threads is a design point pe-
culiar to the FPGA fabric: the low latency to the host
DRAM, approximately 20 cycles in the worst case, is cov-
ered easily by multithreading. Thus, the lower miss rate of
a large, associative host cache offers little simulation perfor-

mance advantage. Indeed, across a subset of the PARSEC
benchmarks, the small host cache incurs at most a 3.8% per-
formance penalty compared to a perfect cache. (The tiny
256-byte instruction caches have even less of an impact on
performance—at most 2.3% worse than a perfect cache.)

The timing model tracks the performance of a target 64-
core tiled manycore system. The target core is currently
a single-issue, in-order pipeline that sustains one instruc-
tion per clock, except for instruction and data cache misses.
Each core has private instruction and data caches. The cores
share a unified lockup-free L2 cache via a magic crossbar in-
terconnect. Each L2 bank connects to a DRAM controller
model, which models delay through a first-come, first-served
queue with a constant service rate. Modeling the timing be-
havior of cache coherence traffic on realistic interconnects is
a target for future work, though should fit easily within the
current design framework.

Separating timing from function expands the range of sys-
tems RAMP Gold can model, and allows the effort expended
on the functional model to be reused across many different
target machines. For example, we can model the perfor-
mance of a system with large caches by keeping only the
cache metadata inside the FPGA. The functional model still
fetches from its host instruction cache and performs memory
accesses to its host data cache when the timing model sched-
ules it to do so. Moreover, the flexibility of splitting timing
and function allows us to configure RAMP Gold’s timing
models at runtime. To model different cache sizes, for exam-
ple, we fix the maximum cache size at synthesis time, and at
runtime we program configuration registers that determine
how the cache tag RAMs are indexed and masked. Most tim-
ing model parameters can be set at runtime; among these
are the size and associativity of the L1 and L2 caches, the
number of L2 cache banks and their latencies, and DRAM
bandwidth and latency. The current implementation of the
timing model runs at 90MHz on the Virtex-5 FPGA, and
supports up to 12MB of aggregate target cache, while using
over 90% of the on-chip FPGA block RAM resources.

Synthesis of RAMP Gold takes about two hours on a mid-

295

range workstation, resulting in 28% logic (LUT) and 90%
BRAM utilization on a mid-size Virtex-5 FPGA. The low
logic utilization is due in part to mapping computation to
the built-in DSPs and by omitting bypass multiplexers. The
high block RAM utilization is mainly due to the large tar-
get caches we support. More details on the RAMP Gold
implementation can be found in [38].

4.2 Model Verification and Flexibility
RAMP Gold comprises about 36,000 lines of SystemVer-

ilog with minimal third-party IP blocks. We liberally employ
SystemVerilog assertions to aid in RTL debugging and verifi-
cation. The functional model is verified against the SPARC
V8 certification suite from SPARC International. Because
it uses abstracted RTL, RAMP Gold requires the same sim-
ulator timing verification as SAME simulators, but the far
greater performance eases the verification effort. We verify
our timing models with custom microbenchmarks.

The timing model and its interface to the functional model
are designed to be simple and extensible to facilitate rapid
evaluation of alternative memory hierarchies and microar-
chitectures. Despite its extensive runtime configurability,
the timing model comprises only 1000 lines of SystemVer-
ilog. It is thus easy to understand and prototype new ar-
chitectural ideas. For example, we implemented a version of
a novel quality-of-service framework, Globally-Synchronized
Frames [22], in about 100 lines of code and three hours of
implementation effort.

4.3 Related FAME Work
RAMP Gold is inspired in part by other recent projects

in the FAME community. Fort et al. [17] employed multi-
threading to improve utilization of soft processors with little
area cost. Protoflex [12] is an FPGA-based full-system sim-
ulator without a timing model, and is designed to provide
similar functionality to Simics [24] at FPGA-accelerated
speeds. ProtoFlex employs host multithreading to simu-
late multiple SPARC V9 target cores with a single host
pipeline but lacks a hardware floating-point unit as it targets
commercial workloads like OLTP; its performance thus suf-
fers on arithmetic-intensive parallel programs. HAsim [31]
is a FAME Level 011 simulator that decouples target tim-
ing from functionality, but models a more complex out-of-
order superscalar processor. A newer version of HAsim with
host multithreading is under development. FAST [11, 10] is
a hybrid FAME/SAME simulator which uses a speculative
execution scheme to allow a software functional model to
efficiently run in parallel with a decoupled timing model in
an FPGA. RAMP Gold is the first multithreaded, decou-
pled FAME Level 111 simulator with a detailed multi-level
memory hierarchy timing model.

5. EVALUATION: A MANYCORE OS
SCHEDULING CASE STUDY

To demonstrate the capabilities of Multithreaded FAME,
we experiment with the interaction between hardware parti-
tioning mechanisms and operating system scheduling policy
using RAMP Gold. We chose this case study [8, 13] because
we feel it contains many important components of modern
architecture research: We run a modern parallel benchmark
suite, boot a research operating system, simulate manycore
target architectures with multi-level memory hierarchy tim-

ing models, and add experimental hardware mechanisms to
the target machine.

The additional simulation capacity of RAMP Gold en-
ables us to move beyond simple benchmarking, and instead
experiment with different operating system policies to see if
the OS can effectively utilize these added mechanisms. We
feel that our results illustrate the potential of FAME not
only for parallel computer architecture research but also as
an enabler of hardware and system software co-design.

The speedup in simulation time from FAME allows for
a far more robust analysis than would have been possible
using SAME, and the conclusions reached using the addi-
tional simulation capacity are qualitatively different from
those that would be obtained using the slower SAME simu-
lation capability.

5.1 Problem Statement
In the manycore era, operating systems face the spatial

resource allocation problem of having to manage a grow-
ing number of on-chip resources shared by a growing num-
ber of concurrently running applications. Spatial resource
allocation is challenging because applications can have di-
verse resource requirements, and the range of possible sched-
ules grows combinatorially with applications and resources.
Our proposal to help the scheduler make intelligent spatial
scheduling decisions is to employ predictive models of ap-
plication performance. The OS scheduler uses the model
of each application’s performance to predict which schedule
will have the best overall system behavior (i.e., best perfor-
mance or lowest energy). To make the case for model-based
control of spatial resource scheduling, we need to learn if the
performance models we create are accurate, which metrics
the scheduler should use, and how far from optimal are the
resulting schedules. Evaluating each issue requires seconds
of simulated target time and/or hundreds of experiments.
We thus need a simulator that can run at OS timescales
with reasonable turnaround.

Furthermore, we believe architectural support for perfor-
mance isolation can greatly improve the effectiveness of pre-
dictive modeling and scheduling, as well as improve appli-
cation performance by reducing interference. To test this
theory, we added hardware partitioning mechanisms to the
target architecture.

5.2 Partitioning Mechanisms
Our allocation framework includes the following resources:

the cores and their private caches, the shared last-level
cache, and shared memory bandwidth. For each resource, we
provide a mechanism to prevent applications from exceed-
ing their allocated share. The OS assigns cores and their
associated private resources to a specific application. For
the shared last-level cache, we modify the OS page-coloring
algorithm so that applications are never given a page from
a different application’s color allocation.

To partition off-chip memory bandwidth, we use Globally-
Synchronized Frames (GSF)[22]. GSF provides strict
Quality-of-Service guarantees for minimum bandwidth and
the maximum delay of a point-to-point network—in our case
the memory network—by controlling the number of packets
that each core can inject per frame. We use a modified
version of the original GSF design, which tracks allocations
per application instead of per core, does not reclaim frames
early, and does not allow applications use the excess band-

296

Attribute Setting

CPUs 64 single-issue in-order cores @ 1GHz
L1 Instruction Cache Private, 32KB, 4-way set-associative, 128-byte lines

L1 Data Cache Private, 32KB, 4-way set-associative, 128-byte lines
L2 Unified Cache Shared, 8MB, 16-way set-associative, 128-byte lines, inclusive, 4 banks, 10 ns latency
Off-Chip DRAM 2GB, 4×3.2GB/sec channels, 70 ns latency

Table 2: Target machine parameters simulated by RAMP Gold.

Name Type Parallelism Working Set Bandwidth Demand

Blackscholes financial PDE solver coarse data parallel 2.0MB minimal
Bodytrack vision medium data parallel 8.0MB grows with cores
Fluidanimate animation fine data parallel 64.0MB grows with cores
Streamcluster data mining medium data parallel 16.0MB high
Swaptions financial simulation coarse data parallel 0.5MB grows with cores
x264 media encoder pipeline 16.0MB grows with cores

Tiny synthetic one thread does all work 1KB minimal
Greedy synthetic data parallel 16.0MB high

Table 3: Benchmark description. PARSEC benchmarks use simlarge input set sizes, except for x264 and fluidanimate, which use
simmedium due to limited physical memory capacity. PARSEC characterizations are from [7].

width. These changes make GSF more suited to our study
since we want to strictly bound the maximum bandwidth per
application. Implementing GSF required some modifications
to the target machine’s memory controller in RAMP Gold
to synchronize the frames and track application packet in-
jections. Due to the functional/timing split in RAMP Gold,
this modification was no more difficult than modifying a
software simulator would have been.

5.3 Modeling and Scheduling Framework
To explore the relationship between model accuracy and

model type for our problem space, we evaluate linear ad-
ditive models, quadratic response surface models, and non-
linear models. The OS scheduler uses the models of each
application to optimally allocate resources between a mix
of concurrently running applications. The algorithm maxi-
mizes an objective function, which serves to convert model
outputs into a measure of overall decision fitness. We eval-
uate three objective functions. A robust evaluation of this
framework requires full cross validation of possible alternate
schedules, which is computationally demanding.

5.4 Experimental Setup
Our experimental platform for this case study consists of

five Xilinx XUP FPGA boards. Each board is programmed
to simulate one instance of our target architecture. Table 2
lists the target machine parameters. We run six applica-
tions from the PARSEC benchmark suite [7], as well as
two synthetic microbenchmarks. Table 3 summarizes the
benchmarks. The performance models are built based on
applications running alone on a partition of the machine
but are tested against data collected from multiprogrammed
scheduling scenarios. We simulated all possible allocations
for each benchmark running alone, and then all possible
schedules of allocations for 3 pairs of benchmarks running
simultaneously, for a combined total of 68.5 trillion target
core-cycles. (A core-cycle is 1 clock cycle of execution on 1
core; simulating a 64-core CMP for 1,000,000 cycles would
be 64,000,000 core-cycles.)

5.5 Case Study Results
We found that predictive modeling has potential to suc-

cessfully manage some applications, depending on the sched-
uler’s objective function. For example, if the objective is to
minimize energy, the approach works quite well. However,
if the objective is to minimize the time it takes to com-
plete both applications, the naive baselines, such as splitting
the machine in half or time-multiplexing, often performed
as well or significantly better than model-based allocation.
Figure 2(a) presents an example of these results. More im-
portantly, our conclusions about the value of model-based
scheduling would have been different had we not simulated
the entire execution of benchmarks, with large input sets,
for all possible allocations.

Effect of Benchmark Input Set Size. We quantified the ef-
fect of benchmark configuration size by rerunning our exper-
iments using either the PARSEC simsmall size input sets or
only synthetic benchmarks. While we would expect different
inputs or simpler benchmarks to produce slightly different
results, Figure 2b reveals that these modifications signifi-
cantly change the conclusion. For this particular schedul-
ing problem, with both the small input set and synthetic
benchmarks our scheduling technique is very close to op-
timal performance. However, for the larger input set the
prediction-based schedule is 50% worse than optimal, and
naively dividing the machine in half is always better. The
reduced benchmarks improve the worst case while also eas-
ing the process of making good decisions, giving us an un-
warranted confidence in the scheduler’s abilities.

Effect of Testing All Possible Allocations. Full cross-
validation of our scheduler requires collecting data on all
possible schedules. We would otherwise have no idea what
the optimal or pessimal scheduling decisions are, and thus
no way to tell how well the scheduler is doing in compar-
ison. The space of scheduling performance is complicated
and discontinuous, so we are not guaranteed to capture true
global optima if we validate by only testing against a sample
of possible schedules.

Figure 3 illustrates how limited validation approaches may
skew our interpretation of experimental results. Figure 3a

297

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

PARSEC Large	
 PARSEC Small	
 Synthetic Only	

R
un

tim
e

N
or

m
al

iz
ed

 to
 O

pt
im

al
 S

ch
ed

ul
e	

(b) Data Set Size	

Effect of Data Set Size on Scheduling Problem Difficulty	

chosen sched.	

worst sched.	

naïve sched.	

best sched.	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

max_cycles	
 core_cycles	

R
un

tim
e

(N
or

m
al

iz
ed

 to
 B

es
t A

llo
ca

tio
n)
	

(a) Objective Function	

Scheduling Effectiveness as a Function of Objective for Blks. and StrmC.	

Best	

Time Multiplexing	

Split in Half	

Linear Model	

Quadratic Model	

KCCA Model	

Figure 2: (a) The performance of various scheduling methodologies and objective functions for one scheduling problem, normalized to
the globally optimal schedule’s performance. The scheduler tries to minimize each objective function. (b) The effect of benchmark size
on the difficulty of the scheduling problem. The average chosen schedule performance, global worst case and naive scheduling case are
normalized to the globally optimal schedule’s performance for each dataset. The scheduling decision is Blackscholes vs. Streamcluster,
the objective function is to minimize runtime.

0

20

40

60

80

100

120

Blks.vs.StrmC Blks.vs.Fluid Body.vs.StrmC

Pe
rc

en
ta

g
e

d
if
fe

re
n
ce

 (
ru

n
ti
m

e)
 b

et
w

ee
n

 c
h
o
se

n
 a

n
d
 o

p
ti
m

al
 s

ch
ed

u
le

s

(a)

0

20

40

60

80

100

120

Blks.vs.StrmC Blks.vs.Fluid Body.vs.StrmC

Pe
rc

en
t

er
ro

r
in

 p
er

ce
p
ti
o
n
 o

f
o
p
ti
m

al
 v

al
u
e

(b)

10% Sample

20% Sample

50% Sample

Figure 3: (a) The percentage difference in runtime between the average chosen schedule and the globally optimal schedule, for three
scheduling problems. (b) The percentage error between the perceived optimal schedule for a given validation sample size and the true
globally optimal schedule. Note that error in perception increases as sample size decreases, and can be a significant fraction of the
percentage difference in runtime from (a).

plots the percentage difference in runtime between the aver-
age chosen schedule and the globally optimal schedule, for
three scheduling problems. This difference illustrates how
far our scheduler really is from finding the best schedule, but
it can only be determined by evaluating the performance of
all possible schedules.

In Figure 3b, we vary the number of schedules examined
during validation, covering different subsets of the total pos-
sible schedules. For each validation sample set size, we take
many different samples and report the percentage error in
the average observed optima. The observed error varies be-
cause samples that are not inclusive of all possible sched-
ules may miss optimal points, and smaller samples are more
likely to exclude these important points. Note that the er-
rors in Figure 3b can be a significant fraction of the true
performance in Figure 3a for the smaller validation samples.

This data indicates that using reduced validation meth-
ods would have caused us to overestimate the quality of our
scheduling solutions. As the perceived optimum degrades,

our scheduler falsely appears to perform better. Only exam-
ining all possible schedules gave us an unbiased view of al-
gorithmic and modeling quality. In conclusion, we could not
have discovered the problem cases for our scheduling frame-
work had we done a study with only reduced benchmarks or
using only a small set of validation points. Gaining a more
complete understanding of scheduler performance with new
hardware was only possible by using FAME.

5.6 Simulator Speedup Results
To compare against RAMP Gold’s performance, we run

the PARSEC benchmarks inside Virtutech Simics [24], a
popular SAME simulator. We run Simics with varying levels
of architectural modeling detail: pure functional simulation,
Simics g-cache timing modules, and the Multifacet GEMS
[25] Ruby timing module.

We configure Simics to model the same case study target
machine as closely as possible. However, both g-cache and
GEMS Ruby modules implement timing for a MESI coher-

298

1

10

100

1000

10000

100000

blackscholes bodytrack fluidanimate streamcluster swaptions x264 BlksVsFluid BlksVsStrmC BodyVsStrmC mean

W
al

l
cl

o
ck

 t
im

e
in

 m
in

u
te

s

RAMP Gold

functional

gcache

ruby

Figure 4: Wallclock time of RAMP Gold and Simics simulations. The target machine has 64 cores. Possible Simics configurations are
functional modeling only, g-cache timing modules, and the GEMS Ruby module, with an interleave of 1 instruction. In the cases where
two applications are run, each gets 1/2 of the partitionable hardware resources.

0	

50	

100	

150	

200	

250	

300	

4	 8	 16	 32	 64	

func.onal	 gcache	 ruby	

Figure 5: Geometric mean speedup of RAMP Gold over Simics
across benchmarks. Possible Simics configurations are functional
modeling only, g-cache timing modules, and the GEMS Ruby
module, with an interleave of 1 instruction. The x-axis is target
cores.

ence policy, whereas RAMP Gold does not at present do so.
We configure Ruby to not simulate contention in the on-chip
interconnection network (neither g-cache nor RAMP Gold
do so presently). We are in the process of developing coher-
ence timing models for RAMP Gold, and we believe these
would have very little impact on simulation speed as they
would run in parallel to the functional model.

We vary the number of target machine cores simulated in
both RAMP Gold and Simics. The applications spawn as
many threads as the target machine has cores, but the work-
load size is fixed. Simics was run on 2.2GHz dual-socket
dual-core AMD Opteron processors with 4GB of DRAM.
Reducing the frequency at which Simics interleaved differ-
ent target processors offered a limited performance improve-
ment.

The longest running Simics simulation of a single bench-
mark point takes over 192 hours (8 days), whereas the
longest RAMP Gold simulation takes 66 minutes. Figure 4
plots the wall clock runtime of a 64-core target machine sim-
ulated by RAMP Gold and different Simics configurations

across benchmarks and pairs of co-scheduled benchmarks.
RAMP Gold is up to two orders of magnitude faster. Crit-
ically, this speedup allows the research feedback loop to be
tens of minutes, rather than hundreds of hours.

RAMP Gold runtimes generally improve as the number of
cores is increased because multithreading becomes more ef-
fective, whereas Simics’ performance degrades super-linearly
with the number of cores simulated. With 64-core target ma-
chines, RAMP Gold is even faster than Simics’s functional
simulation. Figure 5 shows the geometric mean speedup of
FAME over SAME across the different benchmarks and for
different SAME configurations. The maximum speedup is a
factor of 806×.

The slowdowns incurred by Simics are due nearly entirely
to host machine performance, as the benchmarks themselves
scale in performance across more target cores equivalently on
Simics and RAMP Gold. The fact that the slowdowns also
correlate with the size of the benchmarks’ inputs and work-
ing set suggests that host cache and TLB misses may present
a major performance bottleneck. Unfortunately, Simics is
closed-source, so we were not able to diagnose its poor per-
formance more precisely.

In terms of our case study, we calculate that just the ver-
ification of the scheduling decisions’ optimality would have
taken over 73,000 hours (8.3 years) of wall clock time using
Simics versus 257 hours with RAMP Gold. Table 4 includes
estimates for the entire case study. These estimates are gen-
erous to SAME, as they do not include increased simulation
time caused by decreased application performance due to
limited simulated resource allocation sizes. This application
slowdown was around 2–5× for RAMP Gold. Ironically, we
were not able to run Simics long enough to calculate the
actual slowdown, which is why we use estimates based on a
sample of 2 billion instructions.

While the extreme SAME simulation overhead could have
been partially mitigated by using a cluster of machines, the
latency of individual simulations would remain unchanged.
In our experience, long latencies are harmful to experimenter
productivity, as they require waiting days or weeks (33 days
worst case) for feedback on which design decisions proved
worthwhile, which studies should be done next, or even
whether a new mechanism is implemented correctly. We
believe performing a case study as presented here, incorpo-
rating both novel software and hardware, and operating over
realistic stretches of simulated time, would be completely
untenable with SAME methods.

299

Case Study Component FAME Total Est. SAME Total Median/Max FAME Median/Max SAME
Runtime (hours) Runtime (hours) Latency (hours) Latency (hours)

Model Sample Sets 49 2,848 0.5 / 2 44 / 196
Model Validation 145 16,150 0.5 / 2 44 / 196

Scheduling Validation 257 73,073 1 / 3 179 / 796
Misconfigured Experiments 82 8,612 1 / 3 179 / 796

Table 4: Comparison of case study simulation times with RAMP Gold (FAME) and Simics (SAME). Total hours could be concurrently
divided across multiple simulator instances. SAME times are estimated based on observed wall clock times for 2B target cycles, and
assuming unrestricted target machine resource allocations.

6. DISCUSSION
In our conversations with the broader architecture com-

munity, the use of FPGA-based simulation technology raises
several major concerns.

The larger development effort of FAME versus SAME is
perhaps the biggest valid concern. Simulator developers
need to learn a hardware description language and FPGA
CAD tools, and develop a highly concurrent hardware sim-
ulation model. In our experience, the inherent complexity
of FAME simulators is somewhat greater than SAME simu-
lators, but not vastly so. In any case, few researchers build
simulators from scratch, and so the effort to modify an ex-
isting simulator is a more important measure. For many
experiments, only the timing model needs to be changed,
and the entire timing model for RAMP Gold is only around
1000 lines of System Verilog code. The RAMP Gold func-
tional model is around 35,000 lines of System Verilog code,
but much new functionality can be added by simply chang-
ing the microcode in the existing pipeline. The massively
improved simulator performance is itself a significant boost
to developer productivity, as many tasks (verification, soft-
ware porting, calibration) require many simulation cycles.
A much bigger problem than simulator complexity for de-
veloper productivity is the poor state of FPGA CAD tools,
which are even worse than ASIC CAD tools. During the
2-year development of RAMP Gold, we encountered 78 for-
mally tracked bugs in four tools from two companies, ranging
from logic synthesis and simulation to formal verification.
We can only hope the tools will improve in quality.

The cost of FPGA boards is another common concern, but
when Multithreaded FAME techniques are used, the FPGA
hardware is far more cost-effective than conventional clus-
ters. For example, consider what our experiments would
have cost had we run them in the cloud, which would be far
cheaper than maintaining a large private cluster for most
institutions. The five XUP boards we used were attached
to a single workstation and cost $3750 and took 257 total
hours (11 XUP days) to run our case study, with a maxi-
mum latency of 3 hours for one experiment. Had we run
the experiments on Amazon EC2/S3, we estimate the cost
would have been about $12,500 for the 73,000 hours (3000
CPU days) it would take to run the case study2. The cloud
run costs a little over a factor of three more than our ini-
tial investment, yet this is only for one set of experiments.
We can continue to use the XUP boards for our architecture
research, amortizing this capital investment over 2–3 years
and hundreds of research experiments. Additionally, the la-

2We assume Amazon’s High-CPU Medium Instances [4],
which most closely match the machines on which we per-
formed our SAME experiments; each instance costs $0.17
per hour.

tency of individual experiments is not helped using a cluster,
which means many of our simulations would still take longer
than 33 days on EC2. FAME techniques dramatically lower
the cost of large-scale simulations compared to SAME.

Improving the performance of SAME simulation via sam-
pling is sometimes proposed as an alternative to FAME sim-
ulation. But serious questions remain for the practical ap-
plication of sampling for many multiprocessor experiments.
First, to greatly reduce simulation time, the sampling sys-
tem has to support flexible microarchitecture-independent
snapshots, which remain an open research problem for mul-
tiprocessors [6, 43]. Without snapshots, simulation time is
dominated by the functional warming needed to fast-forward
between sample points (ProtoFlex was developed, in part,
to accelerate functional warming [12]). Second, for parallel
systems, program behavior depends on microarchitectural
details, for example, due to operating system scheduling,
lock contention, or dynamic code adaptation, so detailed
timing models are needed between sample points, reducing
the speedup from sampling. Finally, it is not clear that fast,
accurate sampling simulators are actually easier to develop
and modify than a brute-force FAME simulator.

Obviously, not all architecture research projects need
FAME simulators. For example, SAME simulators likely
work well enough when trying to improve branch predic-
tors or pipeline designs of small-scale multiprocessors. For
experiments that do not require accurate timing models or
many cores, SAME can be accelerated through the use of
dynamic binary translation. However, we believe that many
current computer architecture research challenges concern
large core counts, detailed microarchitecture models, signif-
icant time durations, non-deterministic behavior, and dy-
namic software, in which case SAME is no longer tractable.

7. CONCLUSION
For many reasons, we believe the move to parallel com-

puting means the research community needs a boost in sim-
ulation performance. To clarify the many efforts at using
FPGAs to deliver that boost, we propose a four-level tax-
onomy for FPGA Architecture Model Execution (FAME).
By estimating experiments per day per dollar, we show im-
provements in cost-performance by factors of 200,000 be-
tween the lowest and highest FAME levels. We use a re-
search case study using RAMP Gold, which simulates 64
SPARC CPUs on a $750 Xilinx Virtex5 board, to demon-
strate the benefits of the highest FAME level. The 250×
decrease in simulation time versus a Software Architecture
Model Execution (SAME) simulator led to vastly different
conclusions than had we been constrained by slower SAME
simulation to fewer experiments with smaller input sets. We
believe that the dramatic improvement in simulation latency

300

and throughput offered by FAME simulators opens the door
for exciting research in computer architecture and hardware-
software co-design.

ACKNOWLEDGEMENTS
We’d like to thank the many members of the RAMP commu-
nity for their contributions to the various levels of the FAME
methodology over the last five years. We especially thank
SPARC International, Inc. for donating the SPARC v8 ver-
ification suite. Thanks to the ROS implementers for their
assistance on the RAMP Gold port, and to Kevin Klues in
particular for providing page coloring support to facilitate
our case study. We’d also like to thank Doug Burger, Derek
Chiou, John Davis, Joel Emer, Mark Hill, David Wood,
James Hoe, Chuck Thacker, Kees Vissers, and the anony-
mous reviewers for their insightful feedback on drafts of this
paper.

The RAMP collaboration was supported by funding from
NSF grant number CNS-0551739. The evaluation study was
funded by DARPA Award FA8650-09-C-7907. This research
was also supported by Microsoft (Award #024263) and In-
tel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional sup-
port comes from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.
Special thanks to Xilinx for their continuing financial sup-
port and donation of FPGAs and development tools. We
also appreciate the financial support provided by the Gigas-
cale Systems Research Center (GSRC).

8. REFERENCES
[1] Incisive Enterprise Palladium Series with Incisive XE Software,

http://www.cadence.com/rl/Resources/datasheets/
incisive enterprise palladium.pdf.

[2] MicroBlaze Soft Processor Core,
http://www.xilinx.com/tools/microblaze.htm, 2009.

[3] R. Alverson et al. The Tera Computer System. In Proc. of the
4th Int’l Conference on Supercomputing, 1990.

[4] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2).
Amazon Inc., http://aws.amazon.com/ec2/#pricing, 2010.

[5] K. Asanović et al. A view of the parallel computing landscape.
Commun. ACM, 52(10):56–67, 2009.

[6] K. Barr. Summarizing Multiprocessor Program Execution with
Versatile, Microarchitecture-Independent Snapshots. PhD
thesis, MIT, Sept 2006.

[7] C. Bienia et al. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proc. of
the 17th Int’l Conference on Parallel Architectures and
Compilation Techniques, 2008.

[8] S. Bird. Software Knows Best: A Case for Hardware
Transparency and Measurability. Master’s thesis, EECS
Department, University of California, Berkeley, May 2010.

[9] T. Brewer. Instruction set innovations for the Convey HC-1
computer. IEEE Micro, March/April 2010.

[10] D. Chiou, H. Angepat, N. P. Patil, and D. Sunwoo. Accurate
Functional-First Multicore Simulators. Computer Architecture
Letters, 8(2), July 2009.

[11] D. Chiou et al. FPGA-Accelerated Simulation Technologies
(FAST): Fast, Full-System, Cycle-Accurate Simulators. In
MICRO, 2007.

[12] E. Chung et al. ProtoFlex: Towards Scalable, Full-System
Multiprocessor Simulations Using FPGAs. ACM Trans. on
Reconfigurable Technology and Systems, 2009.

[13] J. Colmenares et al. Resource Management in the Tessellation
Manycore OS. In HotPar10, Berkeley, CA, June 2010.

[14] N. Dave et al. Implementing a functional/timing partitioned
microprocessor simulator with an FPGA. In Proc. of the
Workshop on Architecture Research using FPGA Platforms,
held at HPCA-12, Feb. 2006.

[15] J. Davis, C. Thacker, and C. Chang. BEE3: Revitalizing
Computer Architecture Research. Technical Report
MSR-TR-2009-45, Microsoft Research, Apr 2009.

[16] L. L. Dick et al. US Patent 5425036 - Method and apparatus
for debugging reconfigurable emulation systems,
http://www.patentstorm.us/patents/5425036.html.

[17] B. Fort et al. A Multithreaded Soft Processor for SoPC Area
Reduction. In FCCM ’06: Proc. of the 14th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, 2006.

[18] G. Gibeling, A. Schultz, and K. Asanović. RAMP architecture
and description language. In 2nd Workshop on Architecture
Research using FPGA Platforms, February 2006.

[19] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip
multiprocessor. Computer, 30(9):79–85, 1997.

[20] K. Klues et al. Processes and Resource Management in a
Scalable Many-core OS. In HotPar10, Berkeley, CA, June 2010.

[21] A. Krasnov et al. RAMP Blue: A Message-Passing Manycore
System In FPGAs. In Proc. of the Int’l Conference on Field
Programmable Logic and Applications, 2007.

[22] J. W. Lee, M. C. Ng, and K. Asanović. Globally-Synchronized
Frames for Guaranteed Quality-of-Service in On-Chip
Networks. In ISCA, 2008.

[23] R. Liu et al. Tessellation: Space-Time Partitioning in a
Manycore Client OS. In HotPar09, Berkeley, CA, March 2009.

[24] P. S. Magnusson et al. Simics: A Full System Simulation
Platform. IEEE Computer, 2002.

[25] M. M. K. Martin et al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. SIGARCH
Computer Architecture News, 33(4):92–99, 2005.

[26] J. Miller et al. Graphite: A Distributed Parallel Simulator for
Multicores. In HPCA, January 2010.

[27] S. Mukherjee et al. Wisconsin Wind Tunnel II: A Fast, Portable
Parallel Architecture Simulator. IEEE Concurrency, 2000.

[28] N. Njoroge et al. ATLAS: A Chip-Multiprocessor with
Transactional Memory Support. In Proceedings of the
Conference on Design Automation and Test in Europe
(DATE), Nice, France, April 2007, pages 1–6, 2007.

[29] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference
Manual. Version 1.0. Technical Report 9705, Department of
Electrical and Computer Engineering, Rice University, July
1997.

[30] M. Pellauer et al. Quick performance models quickly:
Closely-coupled partitioned simulation on FPGAs. In ISPASS,
2008.

[31] M. Pellauer et al. A-Port Networks: Preserving the Timed
Behavior of Synchronous Systems for Modeling on FPGAs.
ACM Trans. on Reconfigurable Technology and Systems, 2009.

[32] M. Pellauer et al. Soft Connections: Addressing the
Hardware-Design Modularity Problem. In DAC ’09: Proc. of
the 46th Annual Design Automation Conference, 2009.

[33] S. Reinhardt et al. The Wisconsin Wind Tunnel: virtual
prototyping of parallel computers. SIGMETRICS Performance
Evaluation Review, 1993.

[34] M. Rosenblum et al. Using the SimOS machine simulator to
study complex computer systems. ACM Trans. on Modeling
and Computer Simulation, 1997.

[35] J. Shalf. private communication, June 2009.

[36] G. E. Suh, C. W. O’Donnell, and S. Devadas. Aegis: A
Single-Chip Secure Processor. IEEE Design and Test of
Computers, 24(6):570–580, 2007.

[37] S. Swanson et al. Area-Performance Trade-offs in Tiled
Dataflow Architectures. In ISCA, 2006.

[38] Z. Tan et al. RAMP Gold: An FPGA-based Architecture
Simulator for Multiprocessors. In DAC ’10: Proceedings of the
47th Annual Design Automation Conference, 2010.

[39] C. Thacker. private communication, May 2009.

[40] C. Thacker. Beehive: A many-core computer for FPGAs,
January 2010.

[41] J. Wawrzynek et al. RAMP: Research Accelerator for Multiple
Processors. IEEE Micro, 27(2):46–57, 2007.

[42] M. Wehner, L. Oliker, and J. Shalf. Towards Ultra-High
Resolution Models of Climate and Weather. International
Journal of High Performance Computing Applications, 2008.

[43] T. Wenisch et al. SimFlex: Statistical Sampling of Computer
System Simulation. IEEE Micro, July 2006.

[44] E. Witchel and M. Rosenblum. Embra: Fast and Flexible
Machine Simulation. SIGMETRICS Performance Evaluation
Review, 1996.

301

