
Datacenter-Scale Network Research on FPGAs

Zhangxi Tan
Computer Science Division

UC Berkeley, CA
xtan@eecs.berkeley.edu

Krste Asanović
Computer Science Division

UC Berkeley, CA
krste@eecs.berkeley.edu

David Patterson
Computer Science Division

UC Berkeley, CA
pattrsn@eecs.berkeley.edu

ABSTRACT
We describe an FPGA-based datacenter network simulator
to allow researchers to rapidly experiment with O(10, 000)
node datacenter network architectures. We configure the
FPGA hardware to implement abstract models of key dat-
acenter building blocks including servers and all levels of
switches. We discuss design and implementation issues of
our FPGA models and show that it is practical to prototype
and scale the testbed with a few low-cost FPGA boards.

1. INTRODUCTION
Massive warehouse-scale computers (WSCs) [5] are the foun-
dation of widely used Internet services; e.g., search, so-
cial networking, email, video sharing, and online shopping.
The tremendous success of these services has led to the
rapid growth of datacenters to keep up with the increasing
demand. Recent advances such as modularized container-
based datacenter construction and server virtualization have
allowed modern datacenters to scale up from 10,000 servers
to 100,000 servers or more [11].

At this extreme scale, network infrastructure has become
one of the most critical data center components [8, 20] for
several reasons:

1. Current networks are extremely complex, and are diffi-
cult to scale out to larger configurations without com-
plete redesign.

2. Existing networks have many different failure modes.
Occasionally, correlated failures are found in replicated
million-dollar units.

3. Networking infrastructure has a significant impact on
server utilization, which is an important factor in dat-
acenter power consumption and cost-effectiveness.

4. Network infrastructure is crucial for supporting data
intensive Map-Reduce jobs.

5. Network infrastructure accounts for 18% of the monthly
datacenter costs, which is the third largest contribut-
ing factor [8]. In addition, existing large commer-
cial switches and routers command high margins and
charge a great deal for features that are rarely used in
datacenter.

As a result, datacenter network architecture has become an
active area of research, often focusing on new switch de-
signs [9, 10, 16, 20]. However, warehouse-scale network re-
search is very difficult to perform. Previous work [17] notes
that most of these new proposals are based on observations
of existing datacenter infrastructure and applications, and
lack a sound methodology to evaluate new designs. More-
over, most proposed designs have only been tested with a
very small testbed running unrealistic microbenchmarks, of-
ten built using off-the-shelf devices [7] that have limitations
when exploring proposed new features. The behavior ob-
served by running a test workload over a few hundred nodes
bears little relationship to the behavior of production runs
completed over thousands or tens of thousands of nodes.
The topology and switches used for small test clusters are
very different from those in a real environment. Dedicating
tens of thousands of nodes to network research is impracti-
cal even for large companies like Amazon and Microsoft, let
alone academic researchers.

For systems research, one possible solution is to use cloud
computing, such as Amazon EC2, when extreme scale is
needed. But EC2 nodes are already fully provisioned with
networking, and building an overlay network and testing at
scale in EC2 is only adequate for some areas of network
research, such as network configuration and management.
Cloud computing cannot be readily applied to hardware net-
work switch studies, as the network switches have to be em-
ulated at high fidelity using software models.

Unfortunately, simulating target devices using software is
prohibitively slow [19], given the growing complexity in tar-
get designs. To mitigate this software simulation gap, many
techniques have been proposed to reduce simulation time,
such as statistical sampling and parallel simulation with re-
laxed synchronization. These techniques assume the work-
load is static and independent of target architecture, but
datacenter networks exhibit highly dynamic target-dependent
behavior, as they are tightly coupled with computation servers
running very adaptive software networking stacks.

To address the above issues, we propose using Field Pro-
grammable Gate Arrays (FPGAs) to build a reconfigurable
simulation testbed at the scale of O(10,000) nodes. Each
node in the testbed is capable of running real datacenter
applications on a full operating system. In addition, our
network elements are heavily instrumented. This research
testbed will allow us to record the same behaviors adminis-

Appears in The Exascale Evaluation and Research Techniques Workshop (EXERT 2011) at ASPLOS 2011



trators observe when deploying equivalently scaled datacen-
ter software. We build our testbed on top of a cost-effective
FPGA-based full-system manycore simulator, RAMPGold [18].
Instead of mapping the real target hardware directly, we
build several abstract models with runtime configurable pa-
rameters of key datacenter components and compose them
together in FPGAs. In this paper, we show how to construct
a 10,000-node system model from several low-cost FPGA
boards connected with multi-gigabit serial links. The pro-
totype testbed has been successfully applied to evaluating
a novel network proposal based on circuit-switching tech-
nology [21] running application kernels taken from the Mi-
crosoft Dryad Terasort program.

2. DATACENTER NETWORK INFRASTRUC-
TURE BACKGROUND

Datacenters use a hierarchy of local-area networks (LAN)
and off-the-shelf switches. Figure 1 shows a typical data-
center network arranged in a Clos topology with three net-
working layers. At the bottom layer, each rack typically
holds ∼20–40 servers, each singly connected to a commod-
ity Top-of-Rack (ToR) switch with a 1Gbps link. These
ToR switches usually offer two to eight uplinks, which leave
the rack to connect up to several array switches to provide
redundancy and bandwidth. At the top of the hierarchy, dat-
acenter switches carry traffic between array switches usually
using 10Gbps links. All links use Ethernet as the physical-
layer protocol, with either copper or fiber cabling depending
on the connection distance.

Figure 1: A typical datacenter network architecture.

As we move up the hierarchy, one of the most challeng-
ing problems is that the bandwidth“over-subscription” ratio
(i.e. bandwidth entering from below versus bandwidth to
the level above) gets worse rapidly. This imbalance is due
to the cost of switch bandwidth, which grows quadratically
in the number of switch ports. The resulting limited data-
center bisection bandwidth significantly affects the design of
software and the placement of services and data, hence the
current active interest in improving network switch designs.

3. FPGA-BASED DATACENTER-SCALE EM-
ULATION

FPGA Architecture Model Execution (FAME) [19] has be-
come a promising vehicle for architectural investigation of
parallel computer systems. Groups in both academia and
industry have built various types of FAME simulators, which

can be classified in five levels that are analogous to differ-
ent RAID levels [19]. Higher FAME levels lower the sim-
ulator cost and improve performance over the lower levels,
while moving further away from the concrete RTL design of
the simulation target. As pointed out in our previous work
[17], datacenter-scale simulation requires simulators to han-
dle hundreds of thousands of concurrent events synchronized
to within 50 ns of simulated time across O(10, 000) server
nodes. We propose building a FAME-7 simulator based on
modules that fit in low-cost single-FPGA boards, using the
following three key techniques to improve efficiency [19]:

1. Abstracted Models A full-fledged implementation of any
datacenter component requires considerable design ef-
fort and hardware resources. Instead, we employ high-
level abstract models that greatly reduce these require-
ments and build a simplified version of each target
component, capturing important features but simpli-
fying or removing features that are rarely used in prac-
tice. We also separate functional models from timing
models to simplify parameterization of target timing.

2. Decoupled Design A function computed within a single
target clock cycle can be implemented with a variable
number of FPGA host clock cycles. For example, a
simple ring network on the FPGA can model an expen-
sive multiport switch crossbar in datacenter switches.

3. Host Multithreading Instead of replicating hardware
models to simulate multiple instances in the target,
we use multiple model threads running in a single host
hardware model to simulate different target instances.
Multithreading significantly improves FPGA resource
utilization and hides simulation latencies, such as those
from host DRAM access and timing-model synchro-
nization across different FPGAs.

Figure 2: FPGA Simulator Architecture.

Figure 2 shows the high-level simulator architecture for the
typical target datacenter configuration presented in Figure 1.
We map all server models along with the ToR switch models
into Rack FPGAs, and array and datacenter switch models
to separate Switch FPGAs. This partition enables a more
modularized model design that eases experimentation with
new array and datacenter switch designs. It also makes it
easy to scale up the size of the emulated datacenter. To fur-
ther simplify switch model design, we keep any switch model
within a single FPGA. Following the physical topology of the
target system, we connect Rack FPGAs to Switch FPGAs
through several time-shared multi-gigabit serial transceivers



using low-cost copper cables, such as standard SATA ca-
bles. Each FPGA has its own simulation scheduler that
synchronizes with adjacent FPGAs over the serial links at a
very fine granularity to satisfy simulation accuracy require-
ments. For example, a 10Gbps switch with a minimum flit
size of 64 bytes requires a maximum synchronization interval
of 51.2 ns. We reduce host communication latency by us-
ing our own protocol over the serial links, achieving FPGA-
FPGA communication latencies of around 20 FPGA logic
cycles, which is roughly the latency for a host DRAM access
on the FPGA. In addition, the host-multithreaded design
further helps to hide the simulator communication latency,
removing model synchronization latency as a simulator per-
formance bottleneck.

Every model in the design has numerous hardware perfor-
mance counters that periodically send performance statistics
to a control workstation over a separate gigabit Ethernet link
to avoid interrupting the simulation. Rack FPGAs support
more memory controllers than switch FPGAs to provide the
larger memory capacity and bandwidth required to simulate
software running on the server models. We statically par-
tition the host DRAM resources on each FPGA between
different server models and the ToR switch models.

We select multi-gigabit serial transceivers as the only inter-
FPGA connection instead of the high-speed parallel LVDS
links often seen on multi-FPGA boards to make the design
simpler and more modular. Specifically, parallel LVDS links
increase design complexity. To ensure reliable transmission,
designs require complicated dynamic calibration and special
eye-opening monitoring circuit on groups of I/O signals. In
addition, designs with LVDS links are less portable because
of varying I/O layouts on different boards, making connec-
tions between Rack FPGAs and Switch FPGAs less flexible.
Moreover, LVDS links increase both PCB board and FPGA
cost because they require more FPGA I/O pins and link
wires for a given link bandwidth. Finally, we found that
the multi-gigabit serial transceivers provide enough band-
width between FPGAs considering our overall simulation
slowdown of between 250× and 1000× of real time. For
example, 2.5Gbps transceivers are common on three-year-
old Xilinx Virtex 5 FPGAs. The bandwidth of a single
transceiver translates to 500Gbps to 2.5Tbps in the target,
which far exceeds the bandwidth between a few racks and
several array switches. Moreover, recent FPGAs have signif-
icantly enhanced serial transceiver performance, supporting
up to 28Gbps bandwidth [4] in the 28 nm generation.

3.1 Server Models
We build the server models on top of RAMP Gold, which is
an open-source cycle-accurate full-system FAME-7 architec-
ture simulator. RAMP Gold supports the full 32-bit SPARC
v8 ISA in hardware, including floating-point instructions
and precise exceptions. It also models sufficient hardware
to run an operating system, including MMUs, timers, and
interrupt controllers. Currently, we can boot the Linux
2.6.21 kernel and a manycore research OS [14]. We map
one server to one hardware thread in RAMP Gold. One
64-thread RAMP Gold hardware pipeline simulates up to
two 32-server datacenter racks. Each simulated server uses
a simplified fixed-CPI timing model. A more detailed tim-
ing model could be implemented, but it would reduce sim-

ulation scale as each server model would require additional
host hardware resources.

The simulation performance of a 64-thread configuration is
two orders of magnitude faster than state-of-the-art software
simulators for parallel processors, or a slowdown of ∼1000×
compared to real hardware. The server models are currently
the simulation bottleneck for the whole system, but perfor-
mance could be improved by reducing the number of threads
per hardware model as discussed in [18]. When packing more
pipelines onto a single FPGA to simulate more racks, an-
other potential concern is the host memory controller band-
width. However, our earlier analysis shows this is not a
problem for RAMP Gold [18]. A single pipeline only con-
sumes a maximum of 15% of the total bandwidth of a single
host DRAM channel when running real-world applications
on a research OS

3.2 Switch Models
There are two broad categories of datacenter switches: con-
nectionless packet switching, also known as datagram switch-
ing, and connection-oriented virtual circuit switching. In
the first case, each packet includes complete routing infor-
mation, and is routed by network devices individually. The
second case requires a pre-allocated virtual circuit path be-
fore transferring any packet. To demonstrate the flexibility
of our approach, we build FAME-7 models for both types of
switches.

The real challenges for modeling the packet switches used
in existing production datacenters arise from design com-
plexity and proprietary architecture specifications. To work
around these barriers, we build abstract models by simplify-
ing features that are seldom used in a datacenter. Here are
the abstractions we employed and the rationale behind our
choice:

1. Ignore Ethernet QoS related features (e.g. support of
IEEE 802.1p class of service (CoS)): Although QoS
features are available on almost every switch today,
datacenters only utilize switches for basic connectivity
without turning on QoS features.

2. Use simplified source routing: Many packet switches
use a large ternary CAM to hold flow tables and look
up the destination address for each packet. When an
unknown MAC address is seen, the forwarding en-
gine sends an interrupt to a slow-path control pro-
cessor that updates the table using software. Many
switches [2, 3] already support flow tables that have
at least 32K entries. Given the total number of ma-
chines in datacenters, the slow-path flow-table update
is rarely executed, making the TCAM lookup time con-
stant in practice. Besides, datacenter topologies do not
change frequently, and routes can be pre-configured
statically. We use source routing to simplify modeling
of packet routing, and we note that source routing is
actually a component of many datacenter-switch re-
search proposals. To emulate more complicated flow
table operations, we could implement d-left hash tables
[15] using host DRAM. Recent datacenter switches
that implement large flow tables, such as the Cisco
Nexus 5000, use similar techniques instead of TCAMs.



Figure 3: FAME model for virtual output queue switches.

3. Abstract packet processors: Commercial datacenter
switches include many pipelined packet processors that
handle different tasks such as MAC address learning,
VLAN membership, and so on. The processing time
of each stage is relatively constant regardless of packet
size, and the time can be as short as a few hundred
nanoseconds [6] to a few microseconds [2]. We sim-
ply employ FIFOs with runtime-configurable delays to
model packet processing.

Although commercial switch implementation details are gen-
erally not publicly available, the fundamentals of these switch
architectures are well known. Examples include the architec-
ture of a virtual output queue switch and common schedul-
ing algorithms. We build our abstracted model focusing
on these central well-known architectural features, and al-
low other parts that are unclear or of special interest to
researchers (e.g. packet buffer layout) to be configurable
during simulation.

Figure 3 shows the architecture of our abstracted simulation
model for output-queue switches, such as the Fulcrum Fo-
calPoint FM4000 [6]. One of the biggest differences between
existing commercial packet switches is the packet buffer size.
For instance, the Force 10 S60 switch has 1280MB of packet
buffering, the Arista Network’s 7048 switch has 768MB, and
the Cisco Systems’ 4948-10GE switch has 16MB. According
to our conversations with datacenter networking researchers
in industry, switch buffer management and configurations
have also become an active area for packet switching re-
searchers. To provide maximum flexibility for simulating a
wide range of switch buffer sizes and to keep the overall de-
sign simple, we place the physical storage of simulated switch
buffers in the host DRAM and all virtual queue pointers in

BRAMs on the FPGA.

To make efficient use of host DRAM burst accesses, we de-
signed a shared host cache connected by a ring-like inter-
connect to all switch models using the same host DRAM
channel. The host cache is composed of two simple buffers,
one for write and one for read, partitioned equally among
all physical ports. Due to the limited size of on-chip FPGA
BRAM, the write and read buffers only hold 64 bytes for
every physical port, which is the minimum flit size for many
packet switches. In addition, the write and read buffers for
each port have a write-lock to ensure they are kept coherent.

Inside each switch model, a key component is a queue man-
agement model responsible for all virtual queue pointer op-
erations. It also keeps track of queue status and performs
packet drops when necessary. The length of every simu-
lated virtual queue can be configured dynamically without
requring another FPGA CAD flow run before a simulation
starts. We select these configurable parameters according to
a Broadcom switch design [13]. Along with this module, a
performance-counter module, implemented with a collection
of BRAMs and LUTRAMs, maintains all statistics for every
virtual queue. The performance counter module reports all
of its content periodically to a remote PC through the giga-
bit frontend link, with which we can construct queue length
dynamics offline for every virtual queue running any work-
load. To send unicast statistics every 6.4μs in target time,
a 10Gbps 32-port output-queue switch model demands a
bandwidth of approximately 40Mbps on the frontend link.

Each model has an independent 3-stage enqueue pipeline
and a 4-stage dequeue pipeline that are controlled and syn-
chronized by global simulation timing control logic. Ideally,
the two pipelines send commands to the queue management



FAME Model Registers LUTs BRAMs Lines of Code

64-server model 9,981 (14%) 6,928 (10%) 54 (18%) 35,000
Circuit-swiched model 859 (1%) 1,498 (2%) 28 (9%) 2,550
Packet-switched model 814 (1%) 1,260 (2%) 24 (8%) 2,925

Table 1: FPGA resource usage and lines of code for different FAME models.

model through simple FIFOs in order to simplify and decou-
ple the control logic design. However, this appears to be a
significant area and performance overhead on FPGAs, con-
suming a large amount of distributed LUTRAM and mak-
ing routing very hard. Instead, we implement two indepen-
dent static thread schedulers for the two pipelines and replay
commands that were deferred due to dependencies.

To guarantee good simulation performance, the switch sched-
uler model processes scheduling decisions for multiple vir-
tual queues in every host FPGA clock cycle. To further
improve performance, given the hundreds or thousands of
virtual queues existing in our simulated switches, the paral-
lel scheduler model only processes active events that happen
between two scheduling quanta instead of naively scanning
all virtual queues. Overall, the simulation performance of
a single switch model has a slowdown of 150× compared
to real hardware. This is four times faster than a software
single-threaded network simulator used at Google [1], which
does not simulate packet payloads or support full software
stack scaling to 10,000 nodes as does our system.

Our circuit-switching models are based on a recent proposal
for container-based datacenters [21], which has two levels
of switch. In contrast to the complexity of the packet-
switched approach, the proposed circuit-switched model is
simple enough to be directly implemented on entry-level FP-
GAs. By employing a host-multithreaded architecture that
time-multiplexes packets from multiple target switch ports,
we can model several 16-port rack-level switches along with
a 128-port 10-Gbps high-radix array/datacenter switch with
full architecture details on a single FPGA.

4. IMPLEMENTATION
We code all models in SystemVerilog and map them to a
three-year old Xilinx Virtex-5 LX110T-1 target device. All
models run well at 100MHz on FPGA hardware. To verify
the correctness of our FPGA model, we use SystemVerilog
assertions and code coverage groups extensively. The work-
load we run are traffic patterns sampled from the Microsoft
Dryad Terasort application. Table 1 lists FPGA resource
consumption as well as design effort, measured in number of
lines of code. To validate our FPGA design, we also devel-
oped a cycle-accurate C software simulation model for each
FPGA model. In addition, we use micro benchmarks and
the TCP incast application [17] to verify the correctness of
our abstracted switch models.

Overall, the model of a rack of 64 servers consumes the most
FPGA resources, and also requires the most design effort to
support the full SPARC v8 standard. Abstract switch mod-
els for both circuit switching and packet switching have a
very small logic resource requirement, with < 1% resource
utilization on the FPGA we chose. For all three models,

BRAMs are still the limiting factor for overall simulation
density. On a four-FPGA board, such as BEE3, we can eas-
ily simulate up to 512 servers with 16 32-port ToR switches.

To scale to 10,000 servers, we could use a system with 20
BEE boards, as has been built before [12]. We would also
need two BEE3 boards to simulate a datacenter switch to-
gether with several array switches to connect rack switches
together. Note that the BEE3 board was designed for a dif-
ferent usage model three years ago, and uses older Virtex 5
FPGAs and is equipped with limited high-speed serial con-
nectors. If we used a board that has the latest 28 nm FPGAs
and optimized for high-radix FPGA–FPGA serial communi-
cations, we could greatly reduce the number of FPGAs used
and lower the overall system cost of a 10,000-node system
simulator from 88 FPGAs on 22 boards to 11 FPGAs on 11
boards.

5. COMPARING TO SOFTWARE MODELS
Both switch models are relatively easy to build with only
around 3,000 lines of SystemVerilog code. The circuit-switching
model is more straightforward and requires less design effort
due to a simpler target design. Although FAME models al-
low us to conduct datacenter experiments at enormous scale
with greater architecture detail, they do require more design
effort. For example, a comparable cycle-accurate software
packet-switch model only requires 500 lines of C++ code.
However, this does not mean a software C model is easier to
verify. We always develop the software model along with the
FAME model, and verify the correctness of the two models
against each other. The debugging of the software model
has never been accomplished well ahead of the correspond-
ing FAME model. On the other hand, the more detailed
FAME model helps to find many timing-related bugs in our
software simulator.

As a comparison, we also optimized and parallelized the
equivalent C++ simulation model using Pthreads. We com-
piled the C++ module using 64-bit GCC4.4 with ’-O3 -
mtune=native -march=native’, and measured the software
simulator in a trace-replay mode with the CPU cache al-
ready warmed up. We ran the software simulator on an 8-
Core Intel Xeon X5550 machine with 48GBmemory running
the latest Linux 2.6.34 kernel. Figure 4 shows slowdowns of
the multithreaded software model simulating different size
10Gbps switches under two types of workload, i.e. full
load with 64-byte packets and random load with random-
size packets. When simulating a small 32-port switch, the
single-thread software model has better performance than
our threaded 100MHz FAME-7 FPGA model. However,
the simulation performance drops quickly when increasing
the number of switch ports. Due to many fine-grained syn-
chronizations (approximately every 50 ns in target time),
software multithreading helps little when simulating small



switches. When simulating a large switch configuration, we
saw small sublinear speedups using two, or sometimes four,
threads but the benefit of using more threads diminishes
quickly. Profile results show that crossbar scheduling, which
scans multiple virtual queues, accounts for a large fraction
of the total simulation time. Other large overheads include
cache misses for first time accesses to virtual queue struc-
tures as well as updating in-memory performance counters
for each simulation quanta. On the other hand, CPU mem-
ory bandwidth is not at all a limiting factor, even when
simulating a large switch configuration. Moreover, Figure 4
also illustrates that the workload significantly affects the
simulation performance for large switch configurations.

Figure 4: Parallel software switch simulation perfor-
mance.

Note that we measured the software simulation performance
under an unrealistic setting. In a real usage scenario, switch
traffic will be generated dynamically by other models con-
nected to the switch, which requires many more synchro-
nizations over the input and output ports of the simulated
switch. When simulating a large system containing many
switches and servers, we believe it will be difficult to see
any performance benefit by partitioning the software model
across a high-performance cluster. Besides, future datacen-
ter switches are very likely to be high-radix switches. Sim-
ulating architectures in even greater detail could also easily
render the software approach impractical.

6. CONCLUSIONS
Our initial implementation and experience with applying the
prototype to some real-world datacenter network research
shows our FPGA-based approach is promising. Our future
work primarily involves improving system capability using
multiple FPGAs and scaling the software infrastructure run-
ning on our server model. We plan to quantitatively com-
pare both circuit-switching and packet-switching datacenter
network proposals using more real applications.

7. ACKNOWLEDGEMENT
This research is supported in part by gifts from Sun Mi-
crosystems, Google, Microsoft, Amazon Web Services, Cisco
Systems, Cloudera, eBay, Facebook, Fujitsu, Hewlett-Packard,
Intel, Network Appliance, SAP, VMWare and Yahoo! and
by matching funds from the State of California’s MICRO
program (grants 06-152, 07-010, 06-148, 07-012, 06-146, 07-
009, 06-147, 07-013, 06-149, 06-150, and 07-008), the Na-
tional Science Foundation (grant #CNS-0509559), and the

University of California Industry/University Cooperative Re-
search Program (UC Discovery) grant COM07-10240.

8. REFERENCES
[1] Glen Anderson, private communications, 2009.

[2] Cisco Nexus 5000 Series Architecture: The Building Blocks of
the Unified Fabric . .
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/
ps9670/white_paper_c11-462176.html, 2010.

[3] Force10 S60 High-Performance 1/10 GbE Access Switch,
http://www.force10networks.com/products/s60.asp, 2010.

[4] Xilinx Virtex 7 Series FPGAs,
http://www.xilinx.com/technology/roadmap/7-series-
fpgas.htm,
2010.

[5] L. A. Barroso and U. Hölzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2009.

[6] U. Cummings, D. Daly, R. Collins, V. Agarwal, F. Petrini,
M. Perrone, and D. Pasetto. Fulcrum’s FocalPoint FM4000: A
Scalable, Low-Latency 10GigE Switch for High-Performance
Data Centers. In Proceedings of the 2009 17th IEEE
Symposium on High Performance Interconnects, pages 42–51,
Washington, DC, USA, 2009. IEEE Computer Society.

[7] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios:
a hybrid electrical/optical switch architecture for modular data
centers. In SIGCOMM ’10, pages 339–350, 2010.

[8] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost
of a cloud: research problems in data center networks.
SIGCOMM Comput. Commun. Rev., 39(1):68–73, 2009.

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In SIGCOMM ’09,
pages 51–62, New York, NY, USA, 2009. ACM.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: a high performance, server-centric
network architecture for modular data centers. In SIGCOMM
’09, pages 63–74, New York, NY, USA, 2009. ACM.

[11] R. Katz. Tech titans building boom: The architecture of
internet datacenters. IEEE Spectrum, February 2009.

[12] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y.
Droz. RAMP Blue: A Message-Passing Manycore System In
FPGAs. In Proceedings of International Conference on Field
Programmable Logic and Applications, pages 54–61,
Amsterdam, The Netherlands, 2007.

[13] B. Kwan, P. Agarwal, and L. Ashvin. Flexible buffer allocation
entities for traffic aggregate containment. US Patent
20090207848, August 2009.

[14] R. Liu et al. Tessellation: Space-Time partitioning in a
manycore client OS. In HotPar09, Berkeley, CA, 03/2009 2009.

[15] M. Mitzenmacher, A. Broder, A. Broder, M. Mitzenmacher,
and M. Mitzenmacher. Using multiple hash functions to
improve ip lookups. In In Proceedings of IEEE INFOCOM,
pages 1454–1463, 2000.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: a scalable fault-tolerant layer 2 data center network
fabric. In SIGCOMM ’09, pages 39–50, New York, NY, USA,
2009. ACM.

[17] Z. Tan, K. Asanović, and D. Patterson. An FPGA-based
Simulator for Datacenter Networks. In The Exascale
Evaluation and Research Techniques Workshop (EXERT
2010), at the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 2010), March 2010.

[18] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanović and. RAMP gold: An
FPGA-based architecture simulator for multiprocessors. In
Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 463 –468, 2010.

[19] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and
D. Patterson. A case for FAME: FPGA architecture model
execution. In Proceedings of the 37th annual international
symposium on Computer architecture, ISCA ’10, pages
290–301, New York, NY, USA, 2010. ACM.

[20] C. Thacker. Rethinking data centers. October 2007.

[21] C. Thacker. A data center network using FPGAs, May 2010.


