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Abstract: Software implementations that test two triangles for intersection often favour speed over exact calculation.
They leave it to the user to choose an exact or a fast test depending on the domain of application. Hardware
implementations can not opt to make this distinction since users will always expect an accelerator hardware
to be applicable in all possible settings. This paper introduces a novel approach towards exact intersection
testing of triangles. It is based on the separating axes test and lends itself well to hardware implementation.
To be integrable into a hierarchical collision detection design this test needs to be extremely resource efficient.
Thus, it does not iterate until an exact solution is found, but instead categorises results as correct and possi-
bly incorrect. It is implemented using 18-bit fixed-point numbers, while still maintaining resolutions that can
keep up with double-precision floating-point implementations. The proposed test is integrated into a hierar-
chical collision detection FPGA-design accelerating collision queries by an order of magnitude. In a realistic
benchmark less than 0.9% of possibly incorrect results are reported without impairing system performance.

1 INTRODUCTION
In physically-based simulation most of the pro-

cessing effort is spent on collision detection (Plante
et al., 2001). Hence hardware acceleration of colli-
sion queries significantly speeds-up the overall simu-
lation and liberates the CPU for other tasks. Since
surfaces are often composed of triangles, a last step
in processing the query is usually intersection testing
of triangle pairs. When using hierarchical or spacial
subdivision approaches only a relatively small num-
ber of triangles will be singled out for testing. This
and the concurrent processing of the hierarchy ren-
ders the overall performance independent of the delay
of the triangle intersection test. Still, it is highly bene-
ficial to implement it in hardware as well, since it will
reduce the number of triangles transferred back to the
host. This reduces the delay caused by bus transfers
which has significant impact on overall performance.

Software implemented algorithms for testing two
triangles for intersection often favor speed over ex-
act calculation. Examples for this are the well known
intersection tests of Held (Held, 1996) and Möller
(Möller, 1997). They leave it up to the user to choose

an exact or a fast test depending on the domain of ap-
plication. Hardware implementations can not opt to
make this distinction since users will always expect an
accelerator hardware to be applicable in all possible
settings. Known approaches for exact collision detec-
tion, on the other hand, are usually iterative in nature.
In general this iterativeness arises through the use of
arbitrary precision libraries like CORE (Karamcheti
et al., 1999) or LEDA (Mehlhorn and Schirra, 2001)
in standard algorithms like the ones stated above.
This renders every arithmetic operation a potential it-
eration over the necessary precision. (Robbins and
Whitesides, 2003) uses Shewchuk’s orientation test
(Shewchuk, 1997) in combination with Möller’s in-
tersection test. This is more elegant, since it solely
needs to iterate the calculation of the 3D orientation
predicate given as the sign of a polynomial of de-
gree 3 in the coordinate values of four points. A well
known fact in hardware development is that unrolling
iterative algorithms renders them very resource con-
suming. Since in general one will want to operate
the triangle intersection concurrently to a hierarchy
or a spatial subdivision traversal, they both need to be



small to fit into the same chip. This avoids additional
delay caused by inter-chip communication. A very
fast and yet hardware efficient hierarchical collision
detection architecture based on k-DOPs was proposed
by (Raabe et al., 2006). It is also provably exact, thus
it does not return any false reports of non-collision. It
will be used in the following as a basis and the pro-
posed exact intersection test will be integrated into the
overall design. Usage of hierarchical intersection test
yields a logarithmic average run-time in realistic sce-
narios (Weller et al., 2006). An AABB based broad-
phase collision test was implemented in hardware in
(Woulfe et al., 2007). It could be applied prior to the
hierarchy traversal in future implementations.

2 EFSAT
2.1 Separating Axes Test
The separating axes approach as proposed in
(Gottschalk, 1996) tests two convex polytopes for in-
tersection by projecting them onto a set of test axes. If
the projections do not intersect it follows that the axis
is the normal of a plane separating the polytopes. If
neither any normal of any of the faces, nor any cross
products of edges of both polytopes are a separating
axis then the polytopes intersect.

Triangles can be interpreted as degenerated poly-
topes in 3D and thus the SAT approach can be applied
to them. Let Ã and B̃ be two triangles. In general Ã
and B̃ will life in different reference frames (RFs). To
test them for intersection, we need to transform them
into a common RF. Let this common RF be that of
Ã without loss of generality and let M be the accord-
ing transformation matrix. Let the resulting triangles
be B (with vertices W0, W1, and W2) and A = Ã (with
vertices V0, V1, and V2).

Using around indexing, the normals nA, nB and the
cross products Ck,l can now be calculated as follows.

nA := (V 1−V 0)× (V 2−V 0)

nB := (W 1−W 0)× (W 2−W 0)

Ck,l := (V k+1−V k)× (W l+1−W l)

(1)

Then the triangles’ points are projected onto any test
axis L out of this set by

pV k := V k ∗L pW l := W l ∗L (2)
The projection intervals on the axis are

IA := [min{pV 0 , pV 1 , pV 2} ,max{pV 0 , pV 1 , pV 2}]
IB := [min{pW 0 , pW 1 , pW 2} ,max{pW 0 , pW 1 , pW 2}]

(3)
If IA and IB do not intersect a separating axis

is found. It follows that the triangles are non-
intersecting. If none of the axes is separating the tri-
angles do intersect.

This test lends itself well to resource efficient
hardware implementation as was discussed in (Raabe
et al., 2008). The structure of this non-exact test
serves as a basis for the exact intersection test EFSAT
proposed in the following.

2.2 Pre-Processing

This calculation will (of course) not be computation-
ally exact if it is implemented using fixed-point or
floating-point types. Thus the images resulting from
the projections will differ from the mathematically
correct image. Size and sign of the error depend
on the size of the numbers and the rounding mode
used for arithmetic operations (e.g., IEEE floating-
point arithmetic defaults to rounding 0.0001 to 0.00
(error= 0.0001), and 0.001 to 0.01 (error=−0.001)).

To enable use of fixed-point data types it is imper-
ative to normalize the objects to prevent a tremendous
loss of precision. Thus, all triangles are normalized
relatively to the size of the biggest one. To enable
bounding of all subsequent calculations assume that a
hierarchical bounding-volume test was executed prior
to the triangle intersection test. We are using k-DOPs
as bounding-volumes, and thus obtain 2

√
3 as a bound

on the maximum distance of triangles fed into the in-
tersection test. Thus, numbers with 4-bit integral dig-
its are used. Any other bound will work as well.

2.3 Fixed Point Interval Arithmetic

An obvious solution is using an arbitrary precision
datatype. As previously discussed this is very re-
source consuming when implemented in hardware.
Therefore we choose not to provide an exact solu-
tion for every query, but to categorize the results in
exact and possibly incorrect. Due to the grave space
restriction imposed by the FPGA-implementation we
use fixed-point arithmetic, and exploit that we have
complete control over the rounding modes and bit
width of the numbers.

Let an,k be a fixed-point number of length n, of
which the k most significant bits are the integral part
of the number. m := n− k is the number of fractional
bits. Let ⊕ furthermore denote bit concatenation and
let a ∈ R, −2k−1 ≤ a < 2k−1− 1. Now let ban,kc be
the next smaller or equal fixed-point number of the
given dimensions and dan,ke be the next greater one.
The fixed-point resolution is then given by

EPSn,k := dan,ke−ban,kc= 0.0 · · ·0︸ ︷︷ ︸
m−1

1 (4)

Now we can initialize fixed-point intervals, so that
they contain the input data.

An,k(a) :=
[
An,k,An,k

]
=
[
ban,kc,dan,ke

]
(5)
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Figure 1: The actual projection using interval arithmetic can
be interpreted as a projection of the point intervals onto the
original axis. Then the minimum projection is underesti-
mated and the maximum projection is overestimated.

Figure 2: Transforming one triangle into the reference
frame of the other using fixed-point numbers contributes to
the derivation from the mathematically correct result. This
is respected in the size of the coordinate intervals.

If this is done to all coordinates of a triangle point the
resulting intervals can be visualized as a cube aligned
with the discretization grid induced by the fixed-point
data-type.

Now operators ⊗ ∈ {+, ·,−} can be defined on
intervals in a way, that the resulting interval contains
all possible outcomes of applying the operation to any
pair of numbers out of the intervals. Since linear op-
erators are used exclusively these operations can be
implemented very resource efficient using case dis-
crimination based on the signs of the interval bounds.
Since this is simple, but a bit lengthy it is left out
here. To prevent intermediate results from becoming
to large in bit-length they are reduced to the original
bit-length by rounding. This is easily done by round-
ing towards −∞ and, if it is supposed to be an upper
limit EPSn,k of the target type is added.

Now the projection Eq. 2 is applied to the interval
points using these interval operators and a test axis
also described using intervals. This can geometri-
cally be interpreted as a projection onto the original
test axis where the projection of the maximum possi-
ble value of the point will be overestimated to avoid
rounding errors. The minimum value will be underes-
timated accordingly. Fig. 1 illustrates this.

2.4 Testing Interval Images for Intersection

After applying the previously discussed data types
and operators, the points of the triangles can be pro-
jected using interval arithmetic. Since again intervals
result it is no longer clear, how they need to be trans-
formed into images. Therefore it is necessary to ge-
ometrically interpret the presented algorithm.
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Figure 3: Projecting the point intervals onto the test axis
can lead to different configurations of the resulting images
of the interval boundaries. Which case applies depends on
the distance of the point intervals and the relative distance
to the test axis.

Consider Fig. 2. Initializing the fixed-point intervals
with point coordinates will turn the points into cubes
of EPSn,k side length. Transforming triangle B into
A’s reference frame will turn those cubes into cuboids,
whose side lengths depend on the absolute values of
the original coordinates and of the matrix entries. The
actual projection of these cuboids results in a mini-
mum and a maximum projection each. From these we
can derive the projection interval Eq. 3. The bound-
aries of the projection interval are now intervals them-
selves, denoting the range the extremal points of the
triangle could possibly be projected on. The projec-
tion intervals can be pairwise intersecting or not.

Fig. 3 illustrates some of the cases that can occur.
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Figure 4: Only if two intervals that contain the minimum
and the maximum projection interval of one of the trian-
gles (e.g., Amin and Amax) each are non-intersecting it can
be derived, that the triangles are also non-intersecting.

Which case applies depends on the distance of the co-
ordinate intervals and the relative distance to the test
axis. The closer the point intervals are located and the
farther a point is from the test axis the more probable
it is that the projections of the point intervals intersect.

If the images of the point intervals are separated,
it can be derived which point contributes to the maxi-
mum and the minimum interval (Fig. 3(a)). If neigh-
boring images intersect this is no longer possible
(Fig. 3(b)). Still, in both of these cases a line segment
which is definitively occupied by the image can easily
be identified. This will be used to identify definitive
intersections with another triangle image. Fig. 3(c)
shows a configuration were all three images of the
point intervals intersect. No line segment is occupied
by the image for sure.

But in any case the greatest point projection can
vary only between the greatest maximum projection
and the greatest minimal projection. Let these be de-
noted by amax and amax. The smallest point projection
is located between the smallest minimum projection
and the smallest maximum projection. Let these be
denoted amin and amin respectively. Let the minimum
(and maximum) interval of a triangle A be denoted by
Amin := [amin,amin] (and Amax := [amax,amax])

Thus the images of the triangles become ’blurred’.
They now become intervals of intervals (compare
Eq. 3). Thus, it is now longer obvious, which con-
figurations of two triangle projections need to be in-
terpreted as intersecting and which implicate that the
triangles are non-intersecting.

The latter is the simpler of the two cases and thus
is tackled first. Consider the two intervals that con-
tain the extreme boundaries of each projected triangle
A = [amin,amax] and B = [bmin,bmax]). Only if these
two intervals are non-intersecting it can be derived,
that the triangles are also non-intersecting, since in
all remaining cases the mathematically correct pro-
jections might intersect (see Fig. 4). This accounts to
the following criterion:

(bmin > amax)∨
(
amin > bmax

)
⇒ separation (6)

Checking for intersections is more complicated. Es-
pecially configurations were triangle images do not
occupy a line segment for sure (see Fig. 3(c)) are
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Figure 5: If x ∈ Amax,y ∈ Bmax implies that x < y, then
the projections will intersect for sure only if x ∈ Amax,y ∈
Bmin⇒ y < x.

causing problems. If this applies to both triangles it
is impossible to identify cases were the images in-
tersect for sure. To cover all remaining configura-
tions multiple cases have to be discriminated. Con-
sider Fig. 5. If x ∈ Amax,y ∈ Bmax implies that x < y,
then the projections will only intersect for sure, if
x ∈ Amax,y ∈ Bmin⇒ y < x. This accounts to the fol-
lowing criterion:

case(amax < bmax) :
(
bmin < amax

)
⇔ intersection

(7)
Very analogously further criteria can be identified:

case
(
bmax < amax

)
: (amin < bmax)⇔ intersection

case(amin < bmin) :
(
amax < bmin

)
⇔ intersection

case
(
bmin < amin

)
: (bmax < amin)⇔ intersection

(8)

If the images are not definitively separate, but none of
the above cases applies we know that the maximum
intervals Amax and Bmax intersect and that the mini-
mum intervals Amin and Bmin intersect. In this case
we have to ensure, that the surely occupied spaces do
overlap, before an intersection can be derived.

All remaining cases :

(amin < bmax)∧
(
bmin < amax

)
⇔ intersection

(9)

If the images are neither intersecting nor separated
for sure, the result of the axis test is marked as pos-
sibly incorrect. We experimented with various ap-
proaches to provide an educated guess on the exact
outcome, but none yielded satisfying results. Thus
the simplest solution was chosen and all possibly in-
correct results are assumed to be intersections. This
is the weaker assumption and will be corrected by
any definitive separating axis found, since in this case
the triangles do not intersect for sure. If no separat-
ing axis was found, but any of the axes tests returned
a possibly incorrect intersection the overall result of
the triangle intersection test is ’possibly incorrect in-
tersection’. This enables the user to decide on how
to proceed. Here an exact software intersection test
could be applied for example. This way the number
of possibly incorrect results has a major impact on the
overall performance and must be decreased as much
as possible, without impairing resource consumption.



Figure 6: Two triangles that are relatively far from each
other considering their sizes. Since they are very small
considering the discretization grid induced by the data-type
used for the images, the latter still intersect.

2.5 Decreasing the Number of Possibly Wrong
Results

The target architecture is a Xilinx Virtex II (XC
2V6000, speed grade -4) on an Alpha Data ADM-
XRC-II board with 256 MB DDR-RAM at 100MHz
clock frequency. The FPGA features 144 18-bit mul-
tipliers and 6 million gate equivalents. Cascading the
multipliers to yield bit widths up to 32-bit is pro-
hibitively expensive since it quadruples the number
of multipliers used. For benchmarking we integrated
the previously introduced design into the hierarchical
collision detection architecture presented in (Raabe
et al., 2006). We used two identical objects (a car
headlight) with 5947 triangles. They are placed in
different distances from each other and with different
rotations. For each constellation, the time to detect
all intersecting triangles is determined. Due to the
18-bit restriction this yields relatively poor results. In
this simulation only 16.8% of the queries are exact
outcomes. This is unacceptable since it implies that
the host PC needs to retest almost all triangle pairs.
Therefore a very efficient and effective optimization
is proposed in the following. We already normalized
the triangles in Sec. 2.2 to enable fixed-point imple-
mentation. Still there can be very small triangles com-
pared to the largest one. In the presented framework
triangles of sizes close to the fixed-point resolution
cause numerical problems, even if the triangles are
not closely located with respect to their sizes (Fig. 6).
To avoid such configurations the triangle pair can be
re-normalize individually on-chip prior to the actual
intersection test. This decreases the fixed-point reso-
lution relatively to the distance of the triangles.

One way to accomplish this is to shift the barycen-
ter of the triangles into the origin and stretch them to
the outer limits of the fixed-point domain. The lat-
ter can be done individually for the coordinate axes to
maximize the effect without impairing the outcome
of the collision query. To enable efficient implemen-
tation, this is approximated by shifting an arbitrary
point of the triangles into the origin and shifting the
rest consistently. Afterward bit-wise or is applied to
the absolute values of the coordinates of all 6 triangle
points for their x-,y-, and z-coordinates. The number
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Figure 7: The EFSAT implementation is integrated into a
hierarchical collision detection accelerator hardware. The
overall design still yields a speed-up of an order of mag-
nitude compared to a state-of-the-art software implemen-
tation. The latter does not provide categorization of exact
results or any guarantees on correctness.

of leading zeros now denotes the number of bits in-
significant for the further calculation. All coordinates
are shifted accordingly. Now only the matrix multi-
plication that transforms B̃ into A’s reference frame
is implemented in 32-bit precision. The projection it-
self is done in 18-bit. Using this scheme 99.1% of the
results are exact. This will suffice for the vast major-
ity of applications and enables retesting in all others
without impairing the overall performance.

3 Results

3.1 Comparing EFSAT to Möller and SAT

The overall design still yields a speed-up of an order
of magnitude compared to a state-of-the-art software
implementation (Zachmann, 1998) of a hierarchical
collision detection running on a system with an identi-
cal memory interface (see Fig. 7). The latter does nei-
ther provide categorization of exact results, nor does
it provide any guarantees on correctness.

In terms of precision the presented approach can
even compete with double precision floating-point
implementations of the Möller and the SAT ap-
proach. Table 3.1 shows a comparison of the three ap-
proaches. As can be seen there exist cases where SAT
and Möller disagree. Even in some of these cases the
approach presented in this paper provides a definitive
answer to the query.

3.2 Resource Consumption

Implemented in VHDL and synthesized, placed and
routed with Xilinx ISE 8.1 the design’s resource con-
sumption is extraordinarily modest. It uses a total of
only 72 18-bit multipliers and 48% of available gates.



EFSAT Möller SAT %
Sep. Sep. Sep. 70.93
Sep. Sep. Int. 0
Sep. Int. Sep. 0.02
Sep. Int. Int. 0
Int. (p.i.) Sep. Sep. 0.13
Int. (p.i.) Sep. Int. 0
Int. (p.i.) Int. Sep. 0.04
Int. (p.i.) Int. Int. 0.77
Int. Sep. Sep. 0
Int. Sep. Int. 0
Int. Int. Sep. 0
Int. Int. Int. 28.13

Table 1: Comparing EFSAT with double precision floating-
point implementations of Möller and SAT.

4 CONCLUSION
This paper presents the EFSAT approach, a fixed-

point hardware implementation of the SAT algorithm,
which categorizes its results into exact and possibly
incorrect. An additional optimization improves the
resolution of the algorithm, so that it can compete
with double precision floating-point implementations
of Möller’s algorithm and the standard SAT. The ap-
proach is extremely resource efficient. It was imple-
mented and tested in VHDL. It utilizes a total of only
72 18-bit multipliers and 48% of available gate equiv-
alents. This enables fitting it into a Xilinx Virtex-
II XC 2V6000 together with a hierarchy traversal
module. The overall design is ten times faster than a
state-of-the-art software implementation running on a
system with identical memory bandwidth, which does
not provide any guarantees on correctness or catego-
rization of the results. This renders the EFSAT imple-
mentation resource efficient, fast, and exact.

5 FUTURE WORK
Due to definition 1 every test axis is orthogonal to

at least two triangle edges. Thus the projections of
the two triangle points defining this axis are identical.
This is exploited in the original SAT-test to reduce the
number of projections and comparisons. It remains
unclear if this holds for the given algorithm as well
and thus will be evaluated.

In all our experiments EFSAT returns correct an-
swers to collision queries concerning colinear trian-
gles, although only 11 axes are tested instead of the
17 necessary for this in the original SAT. It remains
an open problem if this can be generalized.

Currently we are working on a software imple-
mentation of the SAT algorithm using interval arith-
metic and floating-point numbers to provide a fast and
precise arithmetic filter.
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