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ABSTRACT

We present a taxonomy and modular implementation approach
for data-parallel accelerators, including the MIMD, vector-SIMD,
subword-SIMD, SIMT, and vector-thread (VT) architectural design
patterns. We have developed a new VT microarchitecture, Maven,
based on the traditional vector-SIMD microarchitecture that is con-
siderably simpler to implement and easier to program than previ-
ous VT designs. Using an extensive design-space exploration of
full VLSI implementations of many accelerator design points, we
evaluate the varying tradeoffs between programmability and imple-
mentation efficiency among the MIMD, vector-SIMD, and VT pat-
terns on a workload of microbenchmarks and compiled application
kernels. We find the vector cores provide greater efficiency than
the MIMD cores, even on fairly irregular kernels. Our results sug-
gest that the Maven VT microarchitecture is superior to the tradi-
tional vector-SIMD architecture, providing both greater efficiency
and easier programmability.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures—array and vector processors, MIMD, SIMD

General Terms
Design

1. INTRODUCTION

Data-parallel kernels dominate the computational workload in a
wide variety of demanding application domains, including graph-
ics rendering, computer vision, audio processing, physical simu-
lation, and machine learning. Specialized data-parallel accelera-
tors [6, 8, 10, 16, 22] have long been known to provide greater en-
ergy and area efficiency than general-purpose processors for codes
with significant amounts of data-level parallelism (DLP). With con-
tinuing improvements in transistor density and an increasing em-
phasis on energy efficiency, there has recently been growing inter-
est in DLP accelerators for mainstream computing environments.
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These accelerators are usually attached to a general-purpose host
processor, either on the same die or a separate die. The host pro-
cessor executes system code and non-DLP application code while
distributing DLP kernels to the accelerator. Surveying the wide
range of data-parallel accelerator cores in industry and academia
reveals a general tradeoff between programmability (how easy is it
to write software for the accelerator?) and efficiency (energy/task
and tasks/second/area). In this paper, we examine multiple alter-
native data-parallel accelerators to quantify the efficiency impact
of microarchitectural features intended to simplify programming or
expand the range of code that can be executed.

We first introduce a set of five architectural design patterns for
DLP cores in Section 2, qualitatively comparing their expected pro-
grammability and efficiency. The MIMD pattern [8] flexibly sup-
ports mapping data-parallel tasks to a collection of simple scalar
or multithreaded cores, but lacks mechanisms for efficient exe-
cution of regular DLP. The vector-SIMD [19, 22] and subword-
SIMD [6] patterns can significantly reduce the energy on reg-
ular DLP, but can require complicated programming for irregu-
lar DLP. The single-instruction multiple-thread (SIMT) [12] and
vector-thread (VT) [10] patterns are hybrids between the MIMD
and vector-SIMD patterns that attempt to offer alternative tradeoffs
between programmability and efficiency.

When reducing these high-level patterns to an efficient VLSI de-
sign, there is a large design space to explore. In Section 3, we
present a common set of parameterized synthesizable microarchi-
tectural components and show how these can be combined to form
complete RTL designs for the different architectural design pat-
terns, thereby reducing total design effort and allowing a fairer com-
parison across patterns. In this section, we also introduce Maven, a
new VT microarchitecture. Our modular design strategy revealed
a much simpler and more efficient implementation than the ear-
lier Scale VT design [9, 10]. Maven [2, 11] is based on a vector-
SIMD microarchitecture with only the minimum number of hard-
ware mechanisms added to enable the improved programmabil-
ity from VT, instead of the decoupled cluster microarchitecture of
Scale. Another innovation in Maven is to use the same RISC ISA
for both vector and scalar code, greatly reducing the effort required
to develop an efficient VT compiler. The Scale design required a
separate clustered ISA for vector code, which complicated com-
piler development [7].

To concretely evaluate and compare the efficiency of these pat-
terns, we have generated and analyzed hundreds of complete VLSI
layouts for the MIMD, vector-SIMD, and VT patterns using our
parameterized microarchitecture components targeting a modern
65 nm technology. Sections 4 describes our methodology for ex-



tracting area, energy, and performance numbers for a range of
microbenchmarks and compiled application kernels. Section 5
presents and analyzes our results.

Our results show that vector cores are considerably more effi-
cient in both energy and area-normalized performance than MIMD
cores, although the MIMD cores are usually easier to program. Our
results also suggest that the Maven VT microarchitecture is superior
to the traditional vector-SIMD architecture, providing greater effi-
ciency and a simpler programming model. For both VT and vector-
SIMD, multi-lane implementations are usually more efficient than
multi-core single-lane implementations and can be easier to pro-
gram as they require less partitioning and load balancing. Although
we do not implement a SIMT machine, some initial analysis indi-
cates SIMT will be less efficient than VT but should be easier to
program.

2. ARCHITECTURAL DESIGN PATTERNS

We begin by categorizing kernels encountered in data-parallel
applications, which usually include a mix of regular and irregular
DLP [10, 13, 18, 20] as illustrated in Figure 1. Regular DLP has
well-structured data accesses with regular address streams that are
known well in advance and includes well-structured control flow.
Irregular DLP has less-structured data accesses with dynamic and
difficult to predict address streams, and also has less-structured
data-dependent control flow. Extremely irregular DLP is probably
better categorized as task-level parallelism. Accelerators that han-
dle a wider variety of DLP are more attractive for many reasons.
First, it is possible to improve efficiency even on irregular DLP.
Second, even if efficiency on irregular DLP is similar to a general-
purpose processor, keeping the work on the accelerator makes it
easier to exploit regular DLP intermingled with irregular DLP. Fi-
nally, a consistent way of mapping regular and irregular DLP sim-
plifies programming. The rest of this section presents five architec-
tural patterns for the design of data-parallel accelerators, and de-
scribes how each pattern handles both regular and irregular DLP.

The MIMD pattern includes a large number of scalar or multi-
threaded cores, and one or more data-parallel tasks are mapped to
each core. Figure 2(a) shows the programmer’s logical view and
a typical microarchitecture for this pattern. All design patterns in-
clude a host thread (HT) that runs on the general-purpose processor
and is responsible for application startup, configuration, interaction
with the operating system, and managing the accelerator. We re-
fer to the threads that run on the accelerator as microthreads (UTs),
since they are lighter weight than the host threads. The primary
advantage of the MIMD pattern is its simple and flexible program-
ming model, with little difficulty in mapping both regular and irreg-
ular DLP. The primary disadvantage is that MIMD does not exploit
DLP to improve area and energy efficiency. The pseudo-assembly
in Figure 3(a) illustrates how we might map a portion of a simple
irregular loop to each uT. An example of the MIMD pattern is the
recently proposed 1000-core Rigel accelerator [8], with a single uT
per scalar core.

In the vector-SIMD pattern a control thread (CT) executes vec-
tor memory instructions to move data between memory and vector
registers, and vector arithmetic instructions to operate on vectors in
registers. As shown in Figure 2(b), each CT manages an array of
uTs that execute as if in lock-step; each uT is responsible for one
element of the vector and the hardware vector length is the number
of uTs. The HT allocates work at a coarse-grain to the CTs, and the
CT in turn distributes work to the pTs with vector instructions, en-
abling very efficient execution of fine-grain DLP. Typically, the CT

for (i =0; i < n; i++ )
C[i] = x * A[i] + B[2%*i];

(a) Regular DA, Regular CF

for (i =0; i < n; i++ )
E[C[i]] = D[A[i]l] + B[il;

(b) Irregular DA, Regular CF

for (i =0; i < n; i++ ) for (i =0; i < n; i++ )
x=C(CA[Ll >0) 7y : z; if ( A[i]l > 0)
Cli] = x * A[i] + B[i]; Clil = x * A[i]l + B[il;

(c) Regular DA, Irregular CF (d) Irregular DA, Irregular CF

for (i =0; i < nj; i++ )
C[i] = false; j = 0;
while ( !'C[i] & (j < m) )
if ( A[i] == B[j++] )
C[i] = true;

(e) Irregular DA, Irregular CF

Figure 1: Different Types of Data-Level Parallelism — Examples
expressed in a C-like pseudocode and are ordered from regular to
irregular DLP. DA = data access, CF = control flow.

is mapped to a control processor (CP) and the uTs are mapped spa-
tially and/or temporally across one or more vector lanes in the vec-
tor unit. The vector memory unit (VMU) executes vector memory
instructions, and the vector issue unit (VIU) handles hazard check-
ing and dispatch of vector arithmetic instructions. Figure 3(b) illus-
trate three ways vector-SIMD improves energy efficiency: (1) some
instructions are executed once by the CT instead of once for each
uT (inst. 1, 10-14); (2) for operations that uTs do execute (inst. 4—
9), the CP and VIU can amortize overheads (instruction fetch, de-
code, hazard checking, dispatch) over vlen elements; and (3) for
uT memory accesses (inst. 4-5, 9), the VMU can efficiently move
data in large blocks. Mapping regular DLP to the vector-SIMD pat-
tern is relatively straightforward. Irregular DLP requires the use of
vector flags to implement data-dependent conditional control flow,
as shown in Figure 3(b). More complicated irregular DLP with
nested conditionals can quickly require many independent flag reg-
isters and complicated flag arithmetic [21]. The TO vector micro-
processor [22] is an example of this pattern.

The subword-SIMD pattern, shown in Figure 2(c), uses wide
scalar registers and datapaths (often overlain on a double-precision
floating-point unit) to provide a “vector-like” unit. Unlike the
vector-SIMD pattern, subword-SIMD accelerators usually have
fixed-length vectors, memory alignment constraints, and limited
support for irregular DLP. The IBM Cell [6] exemplifies this pattern
with a subword-SIMD unit supporting scalar operations as well as
16 x 8-bit, 8 x 16-bit, 4 x 32-bit, and 2 x 64-bit vector operations.
In this work, we do not further consider the subword-SIMD pat-
tern, as the vector-SIMD pattern is better suited to exploiting large
amounts of regular and irregular DLP.

The SIMT pattern is a hybrid combining the MIMD pattern’s
logical view with the vector-SIMD pattern’s microarchitecture. As
shown in Figure 2(d), the SIMT pattern has no CTs; the HT is re-
sponsible for directly managing the uTs, usually in blocks of puTs.
The VIU executes multiple pTs’ scalar instructions using SIMD ex-
ecution as long as they proceed along the same control path. Un-
like vector-SIMD, which has a separate CT, the uTs must redun-
dantly execute some instructions (inst. 1-2, 5-7 in Figure 3(c)) and
regular data accesses must be encoded as multiple scalar accesses
(inst. 3, 8, 11), although these can then be dynamically coalesced,
at some area/energy overhead, into vector-like memory operations.
The lack of a CT also requires per uT stripmining calculations
(inst. 1). The real benefit of SIMT, however, is that it provides a
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Figure 2: Architectural Design Patterns — Programmer’s logical view and a typical core microarchitecture for five patterns: (a) MIMD,
(b) vector-SIMD, (c) subword-SIMD, (d) SIMT, and (e) VT. HT = host thread, CT = control thread, CP = control processor, uT = microthread,
VIU = vector issue unit, VMU = vector memory unit.



1 div m, n, nthr 1 load X, X_ptr 1 br.gte tidx, n, done 1 load X, X_ptr
2 mul t, m, tidx 2 loop: 2 add a_ptr, tidx 2 mov.sv VZ, x
3 add a_ptr, t 3 setvl vlen, n 3 load a, a_ptr 3 loop:
4 add b_ptr, t 4 load.v VA, a_ptr 4 br.eq a, 0, done 4 setvl vlen, n
s add c_ptr, t s load.v VB, b_ptr s add b_ptr, tidx s load.v VA, a_ptr
6 sub t, nthr, 1 6 cmp.gt.v VF, VA, O 6 add c_ptr, tidx 6 load.v VB, b_ptr
7 br.neq t, tidx, ex 7 mul.sv VT, x, VA, VF 7 load X, X_ptr 7 mov.sv VD, c_ptr
8 rem m, n, nthr 8 add.vv vc, VT, VB, VF 8 load b, b_ptr 8 fetch.v ut_code
9 ex: 9 store.v VC, c_ptr, VF 9 mul t, x, a 9 add a_ptr, vlen
10 load X, X_ptr 10 add a_ptr, vlen 10 add c, t, b 10 add b_ptr, vlen
11 loop: 1 add b_ptr, vlen 1 store c, c_ptr 1 add c_ptr, vlen
12 load a, a_ptr 12 add c_ptr, vlen 12 done: 12 sub n, vlen
13 br.eq a, 0, done 13 sub n, vlen (C) SIMT 13 br.neq n, 0, loop
14 load b, b_ptr 14 br.neq n, 0, loop 14
15 mul t, x, a 15 ut_code:
16 add c, t, b (b) Vector-SIMD 16 br.eq a, 0, done
17 store c, c_ptr 17 mul t, z, a
18 done: Figure 3: Pseudo-Assembly for Irregular DLP Example — Pseudo- 18 add c, t, b
9 add  aptr, 1 assembly implements the loop in Figure 1(d) for the (a) MIMD, 9 add d, tidx
2? Zg: z‘gti’ i (b) vector-SIMD, (c) SIMT, and (d) VT patterns. Assume *_ptr and n 2? do:c:re ¢ d
»  sub o 1 ’ are inputs. Vi = vector register i, VF = vector flag register, * . v = vector v sto
2 s 2 P
% br.neq m, 0, loop command, *.vv = vector-vector op, *.sv = scalar-vector op, nthr =
number of uTs, tidx = current microthread’s index. (VT
(a) MIMD

simple way to map complex data-dependent control flow with uT
scalar branches (inst. 4). If the uTs diverge at a branch, the VIU
uses internally generated masks to disable inactive uTs along each
path. The NVIDIA Fermi graphics processor [16] exemplifies this
pattern with 32 multithreaded SIMT cores each with 16 lanes.

The VT pattern is also a hybrid but takes a very different ap-
proach from SIMT. As shown in Figure 2(e), the HT manages a
collection of CTs, and each CT in turn manages an array of uTs.
Figure 3(d) shows example VT assembly code. Like vector-SIMD,
the CT can amortize control overheads and execute efficient vec-
tor memory instructions. Unlike vector-SIMD, the CT can use a
vector-fetch instruction (inst. 8) to indicate the start of a scalar in-
struction stream that should be executed by the uTs. Explicit stop
instructions (inst. 22) indicate a uT has finished the vector-fetched
stream, and all uTs reconverge at the next vector fetch. As in SIMT,
the VT VIU will try to execute across the puTs in a SIMD manner,
but a vector-fetched scalar branch (inst. 16) can cause the pTs to
diverge. Maven, introduced in this paper, and the earlier Scale [10]
processor are examples of VT.

3. MICROARCHITECTURE OF MIMD,
VECTOR-SIMD, AND VT TILES

In this section, we describe in detail the microarchitectures used
to evaluate the various patterns. A data-parallel accelerator will
usually include an array of tiles and an on-chip network to connect
them to each other and an outer-level memory system, as shown in
Figure 4(a). Each tile includes one or more tightly coupled cores
and their caches, with examples in Figure 4(b)—(d). In this paper,
we focus on comparing the various architectural design patterns
with respect to a single data-parallel tile. The inter-tile intercon-
nect and memory system are also critical components of a DLP
accelerator system, but are outside the scope of this work.

3.1 Microarchitectural Components

We developed a library of parameterized synthesizable RTL com-
ponents that can be combined to construct MIMD, vector-SIMD
and VT tiles. Our library includes long-latency functional units,

a multi-threaded scalar integer core, vector lanes, vector memory
units, vector issue units, and blocking and non-blocking caches.

A set of long-latency functional units provide support for inte-
ger multiplication and division, and IEEE single-precision floating-
point addition, multiplication, division, and square root. These
units can be flexibly retimed to meet various cycle-time constraints.

Our scalar integer core implements a RISC ISA, with basic
integer instructions executed in a five-stage, in-order pipeline but
with two sets of request/response queues for attaching the core to
the memory system and long-latency functional units. A two-read-
port/two-write-port (2r2w-port) 32-entry 32-bit regfile holds both
integer and floating-point values. One write port is for the inte-
ger pipeline and the other is shared by the memory system and
long-latency functional units. The core can be multithreaded, with
replicated architectural state for each thread and a dynamic thread
scheduling stage at the front of the pipeline.

Figure 5 shows the microarchitectural template used for all the
vector-based cores. A control processor (CP) sends vector instruc-
tions to the vector unit, which includes one or more vector lanes, a
vector memory unit (VMU), and a vector issue unit (VIU). The lane
and VMU components are nearly identical in all of the vector-based
cores, but the VIU differs significantly between the vector-SIMD
and VT cores as discussed below.

Our baseline vector lane consists of a unified 6r3w-port vector
regfile and five vector functional units (VFUs): two arithmetic units
(VAUS), a load unit (VLU), a store unit (VSU), and an address-
generation unit (VGU). Each VAU contains an integer ALU and a
subset of the long-latency functional units. The vector regfile can
be dynamically reconfigured to support between 4-32 registers per
uT with corresponding changes in maximum vector length (32—-1).
Each VFU has a sequencer to step through elements of each vector
operation, generating physical register addresses.

The vector memory unit coordinates data movement between
the memory system and the vector regfile using decoupling [5]. The
CP splits each vector memory instruction into a vector memory pop
issued to the VMU and a vector register access pop sent to the VIU,
which is eventually issued to the VLU or VSU in the vector lane. A
load pop causes the VMU to issue a vector’s worth of load requests
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to the memory system, with data returned to the vector load data
queue (VLDQ). As data becomes available, the VLU copies it from
the VLDQ to the vector regfile. A store pop causes the VMU to
retrieve a vector’s worth of data from the vector store data queue
(VSDQ) as it is pushed onto the queue by the VSU. Note that for
single-lane configurations, the VMU still uses wide accesses be-
tween the VLDQ/VSDQ and the memory system, but moves data
between the VLDQ/VSDQ and the vector lane one element at a
time. Individual uT loads and stores (gathers and scatters) are han-
dled similarly, except addresses are generated by the VGU and data
flows through separate queues.

The main difference between vector-SIMD and VT cores is how
the vector issue unit fetches instructions and handles conditional
control flow. In a vector-SIMD core, the CP sends individual vec-
tor instructions to the VIU, which is responsible for ensuring that all
hazards have been resolved before sending vector pops to the vector
lane. Our vector-SIMD ISA supports data-dependent control flow
using conventional vector masking, with eight single-bit flag regis-
ters. A uT is prevented from writing results for a vector instruction
when the associated bit in a selected flag register is clear.

In our VT core, the CP sends vector-fetch instructions to the VIU.
For each vector fetch, the VIU creates a new vector fragment con-
sisting of a program counter, initialized to the start address speci-
fied in the vector fetch, and an active uT bit mask, initialized to all
active. The VIU then fetches and executes the corresponding se-
quential instruction stream across all active uTs, sending a vector
pop plus active uT mask to the vector lane for each instruction. The
VIU handles a branch instruction by issuing a compare pop to one
of the VFUs, which then produces a branch-resolution bit mask. If
the mask is all zeros or ones, the VIU continues fetching scalar in-
structions along the fall-through or taken path. Otherwise, the uTs
have diverged and so the VIU splits the current fragment into two
fragments representing the uTs on the fall-through and taken paths,
and continues to execute the fall-through fragment while placing
the taken fragment in a pending vector fragment buffer (PVFB).
The uTs can repeatedly diverge, creating new fragments, until there
is only one uT per fragment. The current fragment finishes when it
executes a stop instruction. The VIU then selects another vector
fragment from the PVFB for execution. Once the PVFB is empty,
indicating that all the pTs have stopped executing, the VIU can be-
gin processing the next vector-fetch instruction.

Our library also includes blocking and non-blocking cache
components with a rich set of parameters: cache type (instruc-
tion/data), access port width, refill port width, cache line size, to-
tal capacity, and associativity. For non-blocking caches, additional
parameters include the number of miss-status-handling registers
(MSHR) and the number of secondary misses per MSHR.

3.2 Constructing Tiles

MIMD cores combine a scalar integer core with integer and
floating-point long-latency functional units, and support from one
to eight uTs per core. Vector cores use a single-threaded scalar in-
teger core as the CP connected to either a vector-SIMD or VT VIU,
with one or more vector lanes and a VMU. To save area, the CP
shares long-latency functional units with the vector lane, as in the
Cray-1 [19].

We constructed two tile types: multi-core tiles consist of four
MIMD (Figure 4(b)) or single-lane vector cores (Figure 4(c)), while
multi-lane tiles have a single CP connected to a four-lane vector
unit (Figure 4(d)). All tiles have the same number of long-latency
functional units. Each tile includes a shared 64-KB four-bank data

cache (8-way set-associative, 8 MSHRs, 4 secondary misses per
MSHR), interleaved by 64-byte cache line. Request and response
arbiters and crossbars manage communication between the cache
banks and cores (or lanes). Each CP has a 16-KB private instruction
cache and each VT VIU has a 2-KB vector instruction cache. Hence
the overall instruction cache capacity (and area) is much larger in
multi-core (64-72 KB) as compared to multi-lane (1618 KB) tiles.

3.3 Microarchitectural Optimizations

We explored a series of microarchitectural optimizations to im-
prove performance, area, and energy efficiency of our baseline
vector-SIMD and VT cores. The first was using a conventional
banked vector register file to reduce area and energy (see Fig-
ure 5(b)). While a monolithic 6r3w regfile simplifies vector lane
design by allowing each VFU to access any element on any clock
cycle, the high port count is expensive. Dividing the regfile into
four independent banks each with one write and two read ports sig-
nificantly reduces regfile area while keeping capacity constant. A
crossbar connects banks to VFUs. Registers within a uT are co-
located within a bank, and pTs are striped across banks. As a VFU
sequencer iterates through the uTs in a vector, it accesses a new
bank on each clock cycle. The VIU must schedule vector pops to
prevent bank conflicts, where two VFUs try to access the same bank
on the same clock cycle. The four 2r1w banks result in a greater ag-
gregate bandwidth of eight read and four write ports, which we take
advantage of by adding a third VAU (VAU2) to the vector lane and
rearranging the assignment of functional units to VAUs.

We developed another optimization for the banked design, which
removes integer units from the VAUs and instead adds four per-
bank integer ALUs directly connected to the read and write ports
of each bank, bypassing the crossbar (see Figure 5(b)). This saves
energy, and also helps performance by avoiding structural hazards
and increasing peak integer throughput to four integer VAUs. The
area cost of the extra ALUs is small relative to the size of the regfile.

We also investigated density-time execution [21] to improve
vector performance on irregular codes. The baseline vector ma-
chine takes time proportional to the vector length for each vector
instruction, regardless of the number of inactive uTs. Codes with
highly irregular control flow often cause significant divergence be-
tween the uTs, splintering a vector into many fragments of only a
few active uTs each. Density-time improves vector execution ef-
ficiency by “compressing” the vector fragment and only spending
cycles on active uTs. Bank scheduling constraints reduce the ef-
fectiveness of density-time execution in banked regfiles. Multi-lane
machines have even greater constraints, as lanes must remain syn-
chronized, so we only added density-time to single-lane machines.

The PVFB in our baseline VT machine is a FIFO queue with no
means to merge vector fragments. Hence once a vector becomes
fragmented, those fragments will execute independently until all
uTs execute a stop instruction, even when fragments have the same
PC. We developed two new schemes for VT machines to imple-
ment dynamic fragment convergence in the PVFB. When a new
fragment is pushed into the PVFB, both schemes will attempt to dy-
namically merge the fragment with an existing fragment if their PCs
match, OR-ing their active uT masks together. The challenge is to
construct a fragment scheduling heuristic that maximizes opportu-
nities for convergence by avoiding executing a fragment if it could
later merge with another fragment in the PVFB. Note the Maven
VT design uses the same scalar ISA for both the CP and the vector
uTs, with no explicit static hints to aid fragment convergence as are
believed to be used in SIMT architectures [16].



Per Core

Peak Throughput Power

Total Cycle

Num Num Num Arith Mem  Statistical Simulated Area Time
Configuration Cores  Regs uTs (ops/cyc) (elm/cyc) (mW) (mW) (mm?) (ns)
mimd-c4r32% 4 32 4 4 4 149 137 - 181 3.7 1.10
mimd-c4r64% 4 64 8 4 4 216 130 - 247 4.0 1.13
mimd-c4r1288 4 128 16 4 4 242 124 - 261 4.2 1.19
mimd-c4r2568 4 256 32 4 4 299 221 -298 4.7 1.27

Per Core Per Lane Peak Throughput Power Total Cycle

Num Num Max vlen Num Arith Mem  Statistical Simulated Area Time
Configuration Cores Lanes Range Regs (ops/cyc)  (elm/cyc) (mW) (mW) (mm?) (ns)
vsimd-c4v1r256+bit 4 1 8- 32 256 4c+ 16v 41+ 4s 396 213 -331 5.6 1.37
vsimd-c1v4r256+bit 1 4 32-128 256 lc+ 16v 414 4s 224 137 -252 3.9 1.46
vt-c4v1r256 4 1 8- 32 256 4c+8v 41+4s 428 162 - 318 6.3 1.47
vt-c4v1r256+b 4 1 8- 32 256 4c+8v 41+ 4s 404 147 -271 5.6 1.31
vt-c4v1r256+bi 4 1 8- 32 256 4c+ 16v 41+ 4s 445 172 - 298 5.9 1.32
vt-c4v1r256+bi+2s 4 1 8- 32 256 4c + 16v 414 4s 409 225 -304 5.9 1.32
vt-c4v1r256+bi+2s+dd 4 1 8- 32 256 4c + 16v 41+4s 410 168 — 300 5.9 1.36
vt-c1v4r256+bi+2st 1 4 32 256 lc+ 16v 41+ 4s 205 111 -167 3.9 1.42
vt-c1v4r256+bi+2s+mc 1 4 32 256 Ic+ 16v 414 4s 223 118 -173 4.0 1.42

Table 1: Subset of Evaluated Tile Configurations — Multi-core and multi-lane tiles for MIMD, vector-SIMD, and VT patterns. Configura-
tions with § are used in Section 5.3. statistical power column is from post-PAR; simulated power column shows min/max across all gate-level
simulations; configuration column: b = banked, bi = banked+int, 2s = 2-stack, d = density-time, mc = memory coalescing; num uTs column
is the number of uTs supported with the default of 32 registers/uT; arith column: xc + yv = x CP ops and y vector unit ops per cycle; mem

column: xI + ys = x load elements and y store elements per cycle.

Our first convergence scheme, called I-stack, organizes the
PVFB as a stack with fragments sorted by PC address, with newly
created fragments systolically insertion-sorted into the stack. The
VIU always selects the PVFB fragment with the numerically small-
est PC as the next to execute. The intuition behind 1-stack is to favor
fragments trailing behind in execution, giving them more chance to
meet up with faster-moving fragments at a convergence point.

The 1-stack scheme performs reasonably well, but is sub-optimal
for loops with multiple backwards branches, as fragments which
first branch back for another loop iteration are treated as if they
were behind slower fragments in the same iteration and race ahead.
Our second scheme, called 2-stack, divides the PVFB into two vir-
tual stacks, one for fragments on the current iteration of a loop and
another for fragments on a future iteration of a loop. Fragments
created from backwards branches are pushed onto the future stack,
while the VIU only pops fragments from the current stack. When
the current stack empties, the current and future stacks are swapped.

The final optimization we considered is a dynamic memory coa-
lescer for multi-lane VT vector units. During the execution of a uT
load or store instruction, each lane can generate a separate memory
address on each cycle. The memory coalescer looks across lanes for
opportunities to satisfy multiple uT accesses from a single 128-bit
memory access. This can significantly help performance on codes
that use uT loads and stores to access memory addresses with a unit
stride, as these would otherwise generate cache bank conflicts.

4. EVALUATION FRAMEWORK

This section describes the hardware and software infrastructure
used to evaluate the various microarchitectural options introduced
in the previous section, and also outlines the specific configurations,
microbenchmarks, and application kernels used in our evaluation.

4.1 Hardware Toolflow

We use our own machine definition files to instantiate and com-
pose the parameterized Verilog RTL into a full model for each tile
configuration. We targeted TSMC’s 65-nm GPLUSTC process us-
ing a Synposys-based ASIC toolflow: VCS for simulation, De-
sign Compiler for synthesis, and IC Compiler for place-and-route
(PAR). RTL simulation produces cycle counts. PAR produces cy-
cle time and area estimates. Table 1 lists IC Compiler post-PAR
power estimates based on a uniform statistical probability of bit
transitions, and the range of powers reported via PrimeTime across
all benchmarks when using bit-accurate activity for every net sim-
ulated on a back-annotated post-PAR gate-level model. The in-
accuracy of the IC Compiler estimates and the large variance in
power across benchmarks, motivated us to use only detailed gate-
level simulation energy results from PrimeTime.

Complex functional units (e.g., floating-point) are implemented
using Synopsys DesignWare library components, with automatic
register retiming to generate pipelined units satisfying our cycle-
time constraint. The resulting latencies were: integer multiplier (3)
and divider (12), floating-point adder (3), multiplier (3), divider (7),
and square-root unit (10).

We did not have access to a memory compiler for our target
process, so we model SRAMs and caches by creating abstracted
“black-box” modules, with area, timing, and power models suit-
able for use by the CAD tools. We used CACTI [14] to explore a
range of possible implementations and chose one that satisfied our
cycle-time requirement while consuming minimal power and area.
We compared CACTI’s predicted parameter values to the SRAM
datasheet for our target process and found them to be reasonably
close. Cache behavior is modeled by a cache simulator (written in
C++) that interfaces with the ports of the cache modules. The la-



Control Thread

Microthread Active uT Distribution (%)

Name vf vecld vecst int fp ld st amo br cmv tot loop nregs 1-25 26-50 51-75 76-100
. Vvadd 1 2u 2u 1 2 4 100.0
=% bsearch-cmv 1 lu lu 17 2 1 4 25 X 13 1.0 33 5.8 89.9
g bsearch 1 lu lu 15 3 5 1 26 x 10 77.6 124 5.1 4.8
'§_ bsearch (w/ 1-stack) 23.8 234 11.7 41.0
bsearch (w/ 2-stack) 10.1 268 49.2 13.9
viterbi 3 3u lu,4s 21 3 35 100.0
» Isort 3 3u,2s 3u 14 2 3 1 25 11 100.0
Té kmeans 9 7u,3s Su,ls 12 6 2 2 1 1 2 40 8 100.0
S dither 1 4u,1s Su,1s 13 1 2 24 8 02 0.4 0.7 98.7
i physics 4 6u,12s 1u,9s 5 56 24 4 16 132 x 32 69 150 287 49.3
:",:' physics (w/ 2-stack) 47 131 283 53.9
strsearch 3 Su lu 35 9 5 15 2 9% x 14 575 255 169 0.1

strsearch (w/ 2-stack)

148 305 547 0.1

Table 2: Microbenchmark and Application Kernel Statistics for VT Implementation — Number of instructions listed by type. Distribution
of active uTs with a FIFO PVFB unless otherwise specified in name column. Each section sorted from most regular to most irregular. vec
ld/st columns indicate numbers of both unit-stride (u) and strided (s) accesses; loop column indicates an inner loop within the vector-fetched
block; nregs column indicates number of registers a vector-fetched block requires.

tency between a cache-line refill request and response was set at
50 cycles. We specify the dimensions of the target ASIC and the
placement and orientation of the large black-box modules. The rest
of the design (including regfiles) was implemented using standard
cells, all automatically placed.

4.2 Tile Configurations

We evaluated hundreds of tile configurations using our hardware
toolflow. For this paper, we focus on 22 representative configura-
tions; Table 1 lists 13 of these, with the remaining 9 introduced
later in the paper. We name configurations beginning with a prefix
designating the style of machine, followed by the number of cores
(c), the number of lanes (v), and physical registers (r) per core or
lane. The suffix denotes various microarchitectural optimizations:
b =banked regfile, bi = banked regfile with extra integer ALUs, 1s =
1-stack convergence scheme, 2s = 2-stack convergence scheme, d =
density-time execution, mc = memory coalescing. Each type of
core is implemented with 32, 64, 128, and 256 physical registers.
For the MIMD cores, this corresponds to 1, 2, 4, and 8 uT's respec-
tively. For the vector cores, the maximum hardware vector length is
determined by the size of the vector regfile and the number of reg-
isters assigned to each uT (4-32). The vector length is capped at 32
for all VT designs, even though some configurations (i.e., 256 phys-
ical registers with 4 registers per uT) could theoretically support
longer vector lengths. We imposed this limitation because some
structures in the VT machines (such as the PVFB) scale quadrat-
ically in area with respect to the maximum number of active uTs.
Banked vector regfile designs are only implemented for 128 and
256 physical registers.

4.3 Microbenchmarks & Application Kernels

We selected several microbenchmarks and six larger application
kernels to represent the spectrum from regular to irregular DLP.

The vvadd microbenchmark performs a 1000-element vector-
vector floating-point addition and is the simplest example of regular
DLP. The bsearch microbenchmark uses a binary search algorithm
to perform 1000 look-ups into a sorted array of 1000 key-value
pairs. This microbenchmark exhibits highly irregular DLP with two

nested loops: an outer for loop over the search keys and an inner
while loop implementing a binary search for finding the key. We
include two VT implementations: one (bsearch) uses branches to
handle intra-iteration control flow, while the second (bsearch-cmv)
uses conditional moves explicitly inserted by the programmer.

The viterbi kernel decodes frames of convolutionally encoded
data using the Viterbi algorithm. Iterative calculation of survivor
paths and their accumulated error are parallelized across paths.
Each uT performs an add-compare-select butterfly operation to
compute the error for two paths simultaneously, which requires un-
predictable accesses to a lookup table. The rsort kernel performs
an incremental radix sort on an array of integers. During each iter-
ation, individual uTs build local histograms of the data, and then a
parallel reduction is performed to determine the mapping to a global
destination array. Atomic memory operations are necessary to build
the global histogram structure. The kmeans kernel implements the
k-means clustering algorithm. It classifies a collection of objects,
each with some number of features, into a set of clusters through an
iterative process. Assignment of objects to clusters is parallelized
across objects. The minimum distance between an object and each
cluster is computed independently by each pT and an atomic mem-
ory operation updates a shared data structure. Cluster centers are
recomputed in parallel using one uT per cluster. The dither kernel
generates a black and white image from a gray-scale image using
Floyd-Steinberg dithering. Work is parallelized across the diago-
nals of the image, so that each uT works on a subset of the diag-
onal. A data-dependent conditional allows puTs to skip work if an
input pixel is white. The physics kernel performs a simple New-
tonian physics simulation with object collision detection. Each pT
is responsible for intersection detection, motion variable computa-
tion, and location calculation for a single object. Oct-trees are also
generated in parallel. The strsearch kernel implements the Knuth-
Morris-Pratt algorithm to search a collection of byte streams for the
presence of substrings. The search is parallelized by having all uTs
search for the same substrings in different streams. The DFAs used
to model substring-matching state machines are also generated in
parallel.

Table 2 reports the instruction counts and distribution of active



void idlp( int c[], int a[], int b[], int n, int x ) {

1
2 int vlen = vt::config( 7, n ); // config vector unit
3 vt::HardwareVector<int> vx(x);

4 for (int i = 0; i < n; i += vlen ) {

5 vlen = vt::set_vlen(n-i); // stripmining

6

7 vt::HardwareVector<int*> vcptr(&c[il);

8 vt::HardwareVector<int> va, vb;

9 va.load(&al[i]); // unit-stride vector load

10 vb.load(&b[i]); // unit-stride vector load

1

12 VT_VFETCH( (vcptr,vx,va,vb), ({

13 if (va>0)

14 veptr[vt::get_utidx()] = vx * va + vb;

15 s

16 }

17 vt::sync_cv(); // vector memory fence

18}

Figure 6: Irregular DLP Example Using VT C++ Library —
Code for loop in Figure 1(d). Roughly compiles to assembly in
Figure 3(d). config() specifies number of required uT registers.
set_vlen() sets number of active uTs. get_utidx () returns uT’s
thread index. HardwareVector<T> type enables moving data in
and out of vector registers; compiler handles vector register allo-
cation. VT_VFETCH macro expands to vector fetch for given code
block. HardwareVector<T> objects act as vectors outside block
and as scalars inside block. Any valid C++ is allowed inside a
vector-fetched block excluding system calls and exceptions.

uTs for the VT implementations of two representative microbench-
marks and the six application kernels. viterbi is an example of reg-
ular DLP with known memory access patterns. rsort, kmeans, and
dither all exhibit mild control flow conditionals with more irregular
memory access patterns. physics and strsearch exhibits character-
istics of highly irregular DLP code: loops with data-dependent exit
conditionals, highly irregular data access patterns, and many condi-
tional branches.

4.4 Programming Methodology

Past accelerators usually relied on hand-coded assembly or com-
pilers that automatically extract DLP from high-level programming
languages [1,4,7]. Recently there has been a renewed interest in ex-
plicitly data-parallel programming methodologies [3,15,17], where
the programmer writes code for the HT and annotates data-parallel
tasks to be executed in parallel on all uTs. We developed a sim-
ilar explicit-DLP C++ programming environment for Maven. We
modified the GNU C++/newlib toolchain to generate code for the
unified ISA used on both CT and uTs, and also developed a VT
library to manage the interaction between the two types of thread
(see Figure 6).

For vector-SIMD, we were able to leverage the built-in GCC vec-
torizer for mapping very simple regular DLP microbenchmarks, but
the GCC vectorizer cannot automatically compile the larger appli-
cation kernels for the vector-SIMD tiles. For these more compli-
cated vector-SIMD kernels, we use a subset of our VT C++ library
for stripmining and vector memory operations along with GCC’s
inline assembly extensions for the actual computation. We used a
very similar vectorization approach as in the VT implementations,
but the level of programmer effort required for vector-SIMD was
substantially higher. Our struggle to find a suitable way to program
more interesting codes for the vector-SIMD pattern is anecdotal ev-
idence of the broader challenge of programming such accelerators,

and this helped motivate our interest in the VT programming model.

MIMD code is written using a custom lightweight threading li-
brary, and applications explicitly manage thread scheduling. For all
systems, a simple proxy kernel running on the cores supports basic
system calls by communicating with an application server running
on the host.

S. EVALUATION RESULTS

In this section, we first compare tile configurations based on their
cycle time and area before exploring the impact of various microar-
chitectural optimizations. We then compare implementation effi-
ciency and performance of the MIMD, vector-SIMD, and VT pat-
terns for the six application kernels. We present highlights from our
results here; more extensive results are available separately [11].

5.1 Cycle Time and Area Comparison

Tile cycle times vary from 1.10-1.47 ns (see Table 1), with criti-
cal paths usually passing through the crossbar that connects cores to
individual data cache banks. Figure 7(a) shows the area breakdown
of the tiles normalized to a mimd-c4r32 tile. The caches contribute
the most to the area of each tile. Note that a multi-core vector-SIMD
tile (vsimd-c4v1r256+bi) is 20% larger than a multi-core MIMD
tile with the same number of long-latency functional units and the
same total number of physical registers (mimd-c4r256) due to the
sophisticated VMU and the extra integer ALUs per bank. A multi-
lane vector-SIMD tile (vsimd-c Iv4r256+bi) is actually 16% smaller
than the mimd-c4r256 tile because the increased area overheads are
amortized across four lanes. Note that we added additional buffer
space to the multi-lane tiles to balance the performance across vec-
tor tiles, resulting in similar area usage of the memory unit for both
multi-core and multi-lane vector tiles. Across all vector tiles, the
overhead of the embedded control processor is less than 5%, since
it shares long-latency functional units with the vector unit.

Comparing a multi-core VT tile (vt-c4vI1r256+bi) to a multi-core
vector-SIMD tile (vsimd-c4v1r256+bi) shows the area overhead of
the extra VT mechanisms is only ~6%. The VT tile includes a
PVFB instead of a vector flag regfile, causing the regfile area to
decrease and the control area to increase. There is also a small area
overhead due to the extra VT instruction cache. For multi-lane tiles,
these VT overheads are amortized across four lanes making them
negligible (compare vt-cIv4r256+bi+2s vs. vsimd-c1v4r256+bi).

5.2 Microarchitectural Tradeoffs

Figure 8 shows the impact of increasing the number of phys-
ical registers per core or lane when executing bsearch-cmv. For
mimd-c4r¥*, increasing the number of uTs from 1 to 2 improves
performance but at an energy cost. The energy increase is due to a
larger regfile (now 64 registers per core) and more control overhead.
Supporting more than two uTs reduces performance due to the non-
trivial start-up overhead required to spawn and join the additional
uTs and a longer cycle time. In the vt-c4v] tile with a unified vector
regfile, adding more vector register elements increases hardware
vector length and improves temporal amortization of the CP, in-
struction cache, and control energy. At 256 registers, however, the
larger access energy of the unified regfile outweighs the benefits of
increased vector length. The performance also decreases since the
access time of the regfile becomes critical.

Figure 8 also shows the impact of regfile banking and adding per-
bank integer ALUs. Banking a regfile with 128 entries reduces reg-
file access energy but decreases performance due to bank conflicts
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Figure 8: Impact of Additional Physical Registers, Intra-Lane Regfile Banking, and Additional Per-Bank Integer ALUs — Results for
multi-core MIMD and VT tiles running the bsearch-cmv microbenchmark.

(see vi-c4vi+b configuration). Adding per-bank integer ALUs par-
tially offsets this performance loss (see vt-c4v1+bi configuration).
With the additional ALUs, a VT tile with a banked regfile improves
both performance and energy versus a VT tile with a unified regfile.
Figure 7(a) shows that banking the vector regfile reduces the regfile
area by a factor of 2x, while adding local integer ALUs in a banked
design only modestly increases the integer and control logic area.
Based on analyzing results across many tile configurations and ap-
plications, we determined that banking the vector regfile and adding
per-bank integer ALUs was the optimal choice for all vector tiles.

Figure 9 shows the impact of adding density-time execution and
dynamic fragment convergence to a multi-core VT tile running
bsearch. Adding just density-time execution eliminates significant
wasted work after divergence, improving performance by 2.5x and
reducing energy by 2x. Density-time execution is less useful on
multi-lane configurations due to the additional constraints required
for compression. Our stack-based convergence schemes are a dif-
ferent way of mitigating divergence by converging uTs when pos-
sible. For bsearch, the 2-stack PVFB forces uTs to stay on the
same loop iteration, improving performance by 6x and reducing
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Figure 9: Impact of Density-Time Execution and Stack-Based
Convergence Schemes — Results for multi-core VT tile running
bsearch and bsearch-cmv.

energy by 5x as compared to the baseline FIFO PVFB. Combin-
ing density-time and a 2-stack PVFB has little impact here as the
2-stack scheme already removes most divergence (see Table 2).
Our experience with other microbenchmarks and application ker-



] uT lest +mem éoaleséing

Normalized Energy / Task
w

vec ld/st

,_

i Il Il Il Il Il Il Il Il

0.1 02 03 04 05 06 0.7 0.8 09 1.0
Normalized Tasks / Sec

Figure 10: Impact of Memory Coalescing — Results for multi-
lane VT tile running vvadd.

nels suggest that for codes where convergence is simply not possi-
ble the addition of density-time execution can have significant im-
pact. Note that replacing branches with explicit conditional moves
(bsearch-cmv) performs better than dynamic optimizations for uT
branches, but uT branches are more general and simpler to program
for irregular DLP codes. Table 1 and Figure 7(a) show that the 2-
stack PVFB and density-time execution have little impact on area
and cycle time. Based on our analysis, the 2-stack PVFB is used
for both multi-core and multi-lane VT tiles, while density-time ex-
ecution is only used on multi-core VT tiles.

Figure 10 illustrates the benefit of vector memory accesses ver-
sus uT memory accesses on a multi-lane VT tile running vvadd.
Using uT memory accesses limits opportunities for access-execute
decoupling and requires six additional uT instructions for address
generation, resulting in over 5x worse energy and 7 x worse perfor-
mance for vvadd. Memory coalescing recoups some of the lost per-
formance and energy efficiency, but is still far behind vector instruc-
tions. This small example hints at key differences between SIMT
and VT. Current SIMT implementations use a very large number of
uTs (and large regfiles) to hide memory latency instead of a decou-
pled control thread, and rely on dynamic coalescing instead of true
vector memory instructions. However, exploiting these VT features
requires software to factor out the common work from the uTs.

5.3 Application Kernel Results

Figure 11 compares the application kernel results between the
MIMD, vector-SIMD, and VT tiles. The upper row plots over-
all energy/task against performance, while the lower row plots en-
ergy/task against area-normalized performance to indicate expected
throughput from a given silicon budget for a highly parallel work-
load. Kernels are ordered to have increasing irregularity from left
to right. We draw several broad insights from these results.

First, we observed that adding more pTs to a multi-core MIMD
tile is not particularly effective, especially when area is considered.
We found parallelization and load-balancing become more chal-
lenging for the complex application kernels, and adding puTs can
hurt performance in some cases due to increased cycle time and
non-trivial interactions with the memory system.

Second, we observed that the best vector-based machines are
generally faster and/or more energy-efficient than the MIMD cores
though normalizing for area reduces the relative advantage, and for
some irregular codes the MIMD cores perform slightly better (e.g.,
strsearch) though at a greater energy cost.

Third, comparing vector-SIMD and VT on the first four kernels,
we see VT is more efficient than vector-SIMD for both multi-core

single-lane (c4vI) and single-core multi-lane (c/v4) design points.
Note we used hand-optimized vector-SIMD code but compiled VT
code for these four kernels. One reason VT performs better than
vector-SIMD, particularly on multi-lane viterbi and kmeans, is that
vector-fetch instructions more compactly encode work than vector
instructions, reducing pressure on the VIU queue and allowing the
CT to run ahead faster.

Fourth, comparing c4v1 versus c/v4 vector machines, we see that
the multi-lane vector designs are generally more energy-efficient
than multi-core vector designs as they amortize control overhead
over more datapaths. Another advantage we observed for multi-
lane machines was that we did not have to partition and load-
balance work across multiple cores. Multi-core vector machines
sometimes have a raw performance advantage over multi-lane vec-
tor machines. Our multi-lane tiles have less address bandwidth to
the shared data cache, making code with many vector loads and
stores perform worse (kmeans and physics). Lack of density-time
execution and no ability to run independent control threads also
reduces efficiency of multi-lane machines on irregular DLP code.
However, these performance advantages for multi-core vector ma-
chines usually disappear once area is considered, except for the
most irregular kernel strsearch. The area difference is mostly due
to the disparity in aggregate instruction cache capacity.

Overall, our results suggest a single-core multi-lane VT tile with
the 2-stack PVFB and a banked regfile with per-bank integer ALUs
(vt-c1v4r256+bi+2s) is a good design point for Maven.

6. CONCLUSIONS

Effective data-parallel accelerators must handle regular and ir-
regular DLP efficiently and still retain programmability. Our de-
tailed VLSI results confirm that vector-based microarchitectures
are more area and energy efficient than scalar-based microarchitec-
tures, even for fairly irregular data-level parallelism. We introduced
Maven, a new simpler vector-thread microarchitecture based on the
traditional vector-SIMD microarchitecture, and showed that it is su-
perior to traditional vector-SIMD architectures by providing both
greater efficiency and easier programmability. Maven’s efficiency
is improved with several new microarchitectural optimizations, in-
cluding efficient dynamic convergence for microthreads and ALUs
distributed close to the banks within a banked vector register file.

In future work, we are interested in a more detailed comparison
of VT to the popular SIMT design pattern. Our initial results sug-
gest that SIMT will be less efficient though easier to program than
VT. We are also interested in exploring whether programming en-
vironment improvements can simplify the programming of vector-
SIMD machines to reduce the need for VT or SIMT mechanisms,
and whether hybrid machines containing both pure MIMD and pure
SIMD might be more efficient than attempting to execute very ir-
regular code on SIMD hardware.
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Figure 11: Implementation Efficiency and Performance for MIMD, vector-SIMD, and VT Patterns Running Application Kernels —
Each column is for different kernel. Legend at top. mimd-c4r256 is significantly worse and lies outside the axes for some graphs. There are
no vector-SIMD implementations for strsearch and physics due to difficulty of implementing complex irregular DLP in hand-coded assembly.
mcore = multi-core vector-SIMD/VT tiles, mlane = multi-lane vector-SIMD/VT tiles, r32 = MIMD tile with 32 registers (i.e., one uT).
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