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Abstract

We argue that the transition from laptops to handheld
computers will happen only if we rethink the design of
web browsers. Web browsers are an indispensable part
of the end-user software stack but they are too ineffi-
cient for handhelds. While the laptop reused the soft-
ware stack of its desktop ancestor, solid-state device
trends suggest that today’s browser designs will not be-
come sufficiently (1) responsive and (2) energy-efficient.
We argue that browser improvements must go beyond
JavaScript JIT compilation and discuss how parallelism
may help achieve these two goals. Motivated by a future
browser-based application, we describe the preliminary
design of our parallel browser, its work-efficient parallel
algorithms, and an actor-based scripting language.

1 Browsers on Handheld Computers
Bell’s Law of Computer Classes predicts that handheld
computers will soon replace and exceed laptops. Indeed,
internet-enabled phones have already eclipsed laptops in
number, and may soon do so in input-output capability
as well. The first phone with a pico-projector (Epoq)
launched in 2008; wearable and foldable displays are
in prototyping phases. Touch screens keyboards and
speech recognition have become widely adopted. Con-
tinuing Bell’s prediction, phone sensors may enable ap-
plications not feasible on laptops.

Further evolution of handheld devices is limited
mainly by their computing power. Constrained by the
battery and heat dissipation, the mobile CPU noticeably
impacts the web browser in particular: even with a fast
wi-fi connection, the iPhone may take 20 seconds to load
the Slashdot home page. Until mobile browsers become
dramatically more responsive, they will continue to be
used only when a laptop browser is not available. With-
out a fast browser, handhelds may not be able to support
compelling web applications, such as Google Docs, that
are sprouting in laptop browsers.

One may expect that mobile browsers are network-
bound, but this is not the case. On a 2Mbps network
connection, soon expected on internet phones, the CPU
bottleneck becomes visible: On a ThinkPad X61 lap-
top, halving the CPU frequency doubles the Firefox page
load times for cached pages; with a cold cache, the

load time is still slowed down by 50%. On an equiva-
lent network connection, the iPhone browser is 5 to 10-
times slower than Firefox on a fast laptop. The browser
is CPU-bound because it is a compiler (for HTML), a
page layout engine (for CSS), and an interpreter (for
JavaScript); all three tasks are on a user’s critical path.

The successively smaller form factors of previous
computer generations (workstations, desktops, and then
laptops) were enabled by exponential improvements in
the performance of single-thread execution. Future
CMOS generations are expected to increase the clock
frequency only marginally, and handheld application de-
velopers have already adapted to the new reality: rather
than developing their applications in the browser, as is
the case on the laptop, they rely on native frameworks
such as the iPhone SDK (Objective C), Android (Java),
or Symbian (C++). These frameworks offer higher per-
formance but do so at the cost of portability and pro-
grammer productivity.

2 An Efficient Web Browser
We want to redesign browsers in order to improve their
(1) responsiveness and (2) energy efficiency. While our
primary motivation is the handheld browser, most im-
provements will benefit laptop browsers equally. There
are several ways to achieve the two goals:

• Offloading the computation. Used in the Deepfish
and Skyfire mobile browsers, a server-side proxy
browser renders a page and sends compressed im-
ages to a handheld. Offloading bulk computations,
such as speech recognition, seems attractive, but
adding server latencies exceeds the 40ms threshold
for visual perception, making proxy architectures
insufficient for interactive GUIs. Disconnected op-
eration is inherently impossible.

• Removing the abstraction tax. Browser program-
mers pay for their increased productivity with an
abstraction tax—the overheads of the page layout
engine, the JavaScript interpreter, parsers for ap-
plications deployed in plain text, and other com-
ponents. We measured this tax to be two orders of
magnitude: a small Google Map JavaScript appli-
cation runs about 70-times slower than the equiv-
alent written using C and pixel frame buffers [3].
Removing the abstraction tax is attractive because



it improves both responsiveness (the program runs
faster) and energy efficiency (the program performs
less work). JavaScript overheads can be reduced
with JIT compilation, typically 5 to 10-times, but
browsers often spend only 15% of time in the inter-
preter. Abstraction reduction remains attractive but
we leave it out of this paper.

• Parallelizing the browser. Future CMOS genera-
tions will not allow significantly faster clock rates,
but they will be about 25% more energy efficient
per generation. The savings translate into addi-
tional cores, already observed in handhelds. Paral-
lelizing the browser improves responsiveness (goal
1) and to some extent also energy efficiency (goal
2): vector instructions improve energy efficiency
per operation, and although parallelization does not
decrease the amount of work, gains in program ac-
celeration may allow us to slow down the clock,
further improving the energy efficiency.

The rest of this paper discusses how one may go about
parallelizing the web browser.

3 What Kind of Parallelism?
The performance of the browser is ultimately limited by
energy constraints and these constraints dictate optimal
parallelization strategies. Ideally, we want to minimize
energy consumption while being sufficiently responsive.
This goal motivates the following questions:
1. Amount of parallelism: Do we decompose the
browser into 10 or 1000 parallel computations? The
answer depends primarily on the parallelism available in
handheld processors. In five years, 1W processors are
expected to have about four cores. With two threads per
core and 8-wide SIMD instructions, devices may thus
support about 64-way parallelism.

The second consideration comes from voltage scal-
ing. The energy efficiency of CMOS transistors in-
creases when the frequency and supply voltage are de-
creased; parallelism accelerates the program to make up
for the lower frequency. How much more parallelism
can we get? There is a limit to CMOS scaling benefits:
reducing clock frequency beyond roughly 3-times from
the peak frequency no longer improves efficiency lin-
early [6]. In the 65nm Intel Tera-scale processor, reduc-
ing the frequency from 4Ghz to 1GHz reduces the en-
ergy per operation 4-times, while for the ARM9, reduc-
ing supply voltage to near-threshold levels and running
on 16 cores, rather on one, reduces energy consumption
by 5-times [15]. It might be possible to design mobile
processors that operate at the peak frequency allowed
by the CMOS technology in short bursts (for example,
10ms needed to layout a web page), scaling down the
frequency for the remainder of the execution; the scal-
ing may allow them to exploit additional parallelism.

What are the implications of these trends on browser
parallelization? Consider the goal of sustained 50-way
parallelization execution. A pertinent question is how
much of the browser we can afford not to parallelize.
Assume that the processor can execute 250 parallel op-
erations. Amdahl’s Law shows that to to sustain 50-way
parallelism, only 4% of the browser execution can re-
main sequential, with the rest running at 250-way paral-
lelism. Obtaining this level of parallelism is challenging
because, with the exception of media decoding, browser
algorithms have been optimized for single-threaded ex-
ecution. This paper suggests that it may be possible to
uncover 250-way parallelism in the browser.
2. Type of parallelism: Should we exploit task paral-
lelism, data parallelism, or both? Data parallel architec-
tures such as SIMD are efficient because their instruc-
tion delivery, which consumes about 50% of energy on
superscalar processors, is amortized among the parallel
operations. A vector accelerator has been shown to in-
crease energy efficiency 10-times [9]. In this paper, we
show that at least a part of the browser can be imple-
mented in data parallel fashion.
3. Algorithms: Which parallel algorithms improve en-
ergy efficiency? Parallel algorithms that accelerate pro-
grams do not necessarily improve energy efficiency.
The handheld calls for parallel algorithms that are work
efficient—i.e., they do not perform more total work than
a sequential algorithm. An example of a work-inefficient
algorithm is speculative parallelization that misspecu-
lates too often. Work efficiency is a demanding re-
quirement: for some “inherently sequential” problems,
such as finite-state machines, only work-inefficient al-
gorithms are known [5]. We show that careful specula-
tion allows work-efficient parallelization of finite state
machines in the lexical analysis.

4 The Browser Anatomy
Original web browsers were designed to render hyper-
linked documents. Later, JavaScript programs, embed-
ded in the document, provided simple animated menus
by dynamically modifying the document. Today, AJAX
applications rival their desktop counterparts.

The typical browser architecture is shown in Figure 1.
Loading an HTML page sets off a cascade of events:
The page is scanned, parsed, and compiled into a doc-
ument object model (DOM), an abstract syntax tree of
the document. Content referenced by URLs is fetched
and inlined into the DOM. As the content necessary to
display the page becomes available, the page layout is
(incrementally) solved and drawn to the screen. After
the initial page load, scripts respond to events generated
by user input and server messages, typically modifying
the DOM. This may, in turn, cause the page layout to be
recomputed and redrawn.



Figure 1: The architecture of today’s web browser.

5 Parallelizing the Frontend
The browser frontend compiles an HTML document into
its object model, JavaScript programs into bytecode, and
CSS style sheets into rules. These parsing tasks take
more time that we can afford to execute sequentially:
Internet Explorer 8 reportedly spends about 3-10% of
its time in parsing [13]; Firefox, according to our mea-
surements, spends up to 40% time in parsing. Task-level
parallelization can be achieved by parsing downloaded
files in parallel. Unfortunately, a page is usually com-
prised of a small number of large files, necessitating par-
allelization of single-file parsing. Pipelining of lexing
and parsing may double the parallelism in HTML pars-
ing; the lexical semantics of JavaScript however prevents
the separation of lexing from parsing.

To parallelize single-file text processing, we have ex-
plored data parallelism in lexing. We designed the
first work-efficient parallel algorithm for finite state ma-
chines (FSMs), improving on the work-inefficient al-
gorithm of Hillis and Steele [5] with novel algorithm-
level speculation. The basic idea is to partition the input
string among n processors. The problem is from which
FSM state should a processor start scanning its string
segment. Our empirical observation was that, in lex-
ing, the automaton arrives to a stable state after a small
number of characters, so it is often sufficient to prepend
to each string segment a small suffix of its left neigh-
bor [1]. Once the document has been so partitioned, we
obtain n independent lexing tasks which can be vector-
ized with the help of a gather operation, which allows
parallel reads from a lookup table. On the CELL proces-
sor, our algorithm scales perfectly at least to six cores.
To parallelize parsing [14], we have observed that old
simple algorithms are a more promising starting point
because, unlike the LR parser family, they have not been

optimized with sequential execution in mind.

6 Parallel Page Layout
A page is laid out in two steps. Together, these steps
account for half of the execution time in IE8 [13]. In
the first step, the browser associates DOM nodes with
CSS style rules. A rule might state that if a paragraph is
labeled important and is nested in a box labeled second-
column, then the paragraph should use a red font. Ab-
stractly, every rule is predicated with a regular expres-
sion; these expressions are matched against node names,
which are paths from the node to the root. Often, there
are thousands of nodes and thousands of rules. This step
may take 100–200ms on a laptop for a large page, and a
magnitude longer on a handheld.

Matching a node against a rule is independent from
others such matches. Per-node task partitioning thus ex-
poses 1000-way parallelism. However, this algorithm
is not work-efficient because tasks redo common work.
We have explored caching algorithms and other sequen-
tial optimizations, achieving a 6-fold speedup vs. Fire-
fox 3 on the Slashdot home page, and then gaining, from
locality-aware task parallelism, another 5-fold speedup
on 8 cores (with perfect scaling up to three cores). We
are now exploring SIMD algorithms to simultaneously
match a node against multiple rules or vice versa.

The second step lays out the page elements accord-
ing to their styling rules. Like TEX, CSS uses flow
layout. Flow layout rules are inductive in that an ele-
ment’s position is computed from how the preceding el-
ements have been laid out. Layout engines thus perform
(mostly) an in-order walk of the DOM. To parallelize
this sequential traversal, we formalized a kernel of CSS
as an attribute grammar and reformulated the layout into
five tree traversal passes, each of which permits paral-
lel handling of its heavy leaf tasks (which may involve
image or font computations). Some node styles (e.g.,
floats) do not permit breaking sequential dependencies.
For these nodes, we utilize speculative parallelization.
We evaluated this algorithm with a model that ascribes
uniform computation times to document nodes for every
phase; task parallelism (with work stealing) accelerated
the baseline algorithm 6-fold on an 8-core machine.

7 Parallel Scripting
Here we discuss the rationale for our scripting language.
We start with concurrency issues in JavaScript program-
ming, follow with a parallelization scenario that we ex-
pect to be beneficial. We then outline our actor language
and discuss it briefly in the context of an application.

Concurrency JavaScript offers a simple concurrency
model: there are neither locks nor threads, and event
handlers (callbacks) are executed atomically. If the



DOM is changed by a callback, the page layout is re-
computed before the execution handles the next event.
This atomicity restriction is insufficient for preventing
concurrency bugs. We have identified two sources of
concurrency in browser programs—animations and in-
teractions with web servers. Let us illustrate how this
concurrency may lead to bugs in the context of GUI an-
imations. Consider a mouse click that makes a window
disappears with a shrinking animation effect. While the
window is being animated, the user may keep interacting
with it, for example by hovering over it, causing another
animation effect on the window. The two animations
may conflict and corrupt the window, for example by si-
multaneously modifying the dimensions of the window.
Ideally, the language should allow avoidance or at least
the detection of such “animation race” bugs.

Parallelism and shared state To improve responsive-
ness of the browser, we need to execute atomic call-
backs in parallel. To motivate such parallelization, con-
sider programmatic animation of hundreds of elements.
Such bulk animation is common in interactive data visu-
alization; serializing these animations would reduce the
frame rate of the animation.

The browser is allowed to execute callbacks in paral-
lel as long as the observed execution appears to handle
the events atomically. To define the commutativity of
callbacks, we need to define shared state. Our prelimi-
nary design aggressively eliminates most shared state by
exploiting properties of the browser domain. Actors can
communicate only through message passing with copy
semantics (i.e., pointers and closures cannot be sent).
The shared state that may serialize callbacks comes in
three forms. First, dependences among callbacks are in-
duced by the DOM. A callback might resize a page com-
ponent a, which may in turn lead the layout engine to re-
size a component b. A callback listening on the changes
to the size of b is executed in response. We discuss below
how we plan to detect independence of callbacks.

The second shared component is a local database with
an interface that allows inexpensive detection of whether
scripts depend on each other through accesses to the
database. We have not yet converged on a suitable data
naming scheme; a static hierarchical name space on a
relational interface may be sufficient. Efficiently imple-
menting general data structures on top of a relational in-
terface appears as hard as optimizing SETL programs,
but we hope that the web scripting domain comes with a
few idioms for which we can specialize.

The third component is the server. If a server is al-
lowed to reorder responses, as is the case with web
servers today, it appears that it cannot be used to syn-
chronize scripts, but concluding this definitively for our
programming model requires more work.

The scripting language Both parallelization and de-
tection of concurrency bugs require analysis of depen-
dences among callbacks. Analyzing JavaScript is how-
ever complicated by its programming model, which con-
tains several “goto equivalents”. First, data dependences
among scripts in a web page are unclear because scripts
can communicate indirectly through DOM nodes. The
problem is that nodes are named with strings values that
may be computed at run time; the names convey no
structure and need not even be unique. Second, the flow
of control is similarly obscured: reactive programming
is implemented with callback handlers; while it may be
possible to analyze callback control flow with flow anal-
ysis, the short-running scripts may prevent the more ex-
pensive analyses common in Java VMs.

We illustrate JavaScript programming with an exam-
ple. The following program draws a box that displays
the current time and follows the mouse trajectory, de-
layed by 500ms. The script references DOM elements
with the string name "box"; the challenge for analysis is
to prove that the script modifies the tree only locally.
The example also shows the callbacks for the mouse
event and for the timer event that draws the delayed box.
These callbacks bind, rather obscurely, the mouse and
the moving box; the challenge for the compiler is to de-
termine which parts of the DOM tree are unaffected by
the mouse so that they can be handled in parallel with
the moving box.

<div id="box" style="position:absolute;">
Time: <span id="time"> [[code not shown]] </span>

</div>
<script>
document.addEventListener (

’mousemove’,
function (e) { // called whenever the mouse moves

var left = e.pageX;
var top = e.pageY;
setTimeout(function() { // called 500ms later

document.getElementById("box").style.top = top;
document.getElementById("box").style.left = left;

}, 500);
}, false);

</script>

To simplify the analysis of DOM-carried callback de-
pendences, we need to make more explicit (1) the DOM
node naming, so that the compiler can reason about the
effects of callbacks on the DOM; and (2) the scope
of DOM re-layout, so that the compiler understands
whether resizing of a DOM element might resize an-
other element on which some callback depends. In ei-
ther cases, it may be sufficient to place a conservative
upper bound on the DOM subtree that encapsulates the
effect of the callback.

To identify DOM names at JIT compile time, we pro-
pose static, hierarchical naming of DOM elements. Such
names would allow the JIT compiler to discover already



during parsing whether two scripts operate on indepen-
dent subtrees of the document; if so, the subtrees and
their scripts can be placed on separate cores.

To simplify the analysis of control flow among call-
backs, we turn the flow of control into data flow as in
MaxMSP and LabView. The sources of dataflow are
events such as the mouse and server responses, and the
sinks are the DOM nodes. Figure 2 shows the JavaScript
program as an actor program. The actor program is freed
from the low-level plumbing of DOM manipulation and
callback setup. Unlike the FlapJax language [10], which
inspired our design, we avoid mixing dataflow and im-
perative programming models at the same level; imper-
ative programming will be encapsulated by actors that
share no state (except for the DOM and a local database,
as mentioned above).

Figure 2: The same program as an actor program.

To prove absence of dependences carried by the lay-
out process (see “Parallelism and shared state”), we will
rely on a JIT compiler that will understand the seman-
tics of the page layout. The compiler will read the DOM
and its styling rules, and will compute a bound on the
scope of the incremental layout triggered with a change
to a DOM element. For example, when the dimensions
of a DOM element are fixed by the web page designer,
its subtree cannot resize its parent and sibling elements.
The layout-carried dependences are thus proven to be
constrained to this subtree, which may in turn prove in-
dependence of callbacks, enabling their parallel execu-
tion.

A Document as an actor network In this section, we
extend programming with actors into the layout process.
So far, we used actors in scripts that were attached to the
DOM nodes (Figure 2). The DOM nodes were passive,
however; their attributes were interpreted by a layout en-
gine with fixed layout semantics. We now compute the
layout with actors. Each DOM element will be an ac-
tor that will collaborate with its neighbors on laying out
the page. For example, an image nested in a paragraph
sends to the paragraph its pixels so that the paragraph
can prepare its own pixel image. During layout compu-
tation, the image may influence the size of the paragraph
or vice versa, depending on styling rules.

What are the benefits of modeling scripts and layout
uniformly? First, programmable layout rules will allow

modifications to the CSS layout model. For example, an
application can plug in a math layout system. Second,
programmable layout will enable richer transforms, such
as non-linear fish-eye zooms of video frames. This task
is hard in today’s browsers because scripts cannot ac-
cess the pixel output of DOM nodes. Finally, the layout
system will reuse the backend infrastructure for parallel
script execution, simplifying the infrastructure.

A natural question is whether actors will lend them-
selves to an efficient implementation, especially in the
demanding layout computation. We discuss this ques-
tion in the context of a hypothetical application for view-
ing Olympic events, Mo’lympics, that we have been pro-
totyping. An event consists of a video feed, basic infor-
mation, and “rich commentary” made by others watch-
ing the same feed. Video segments can be recorded, an-
notated, and posted into the rich commentary. This rich
commentary might be another video, an embedded web
page, or an interactive visualization.

Our preliminary design appears to be implementable
with actors that have limited interaction through explicit,
strongly-typed message channels. The actors do not
require shared state; surprisingly, message passing be-
tween actors is sufficient. Once DOM nodes are mod-
eled as actors, it makes sense to distinguish between
the model actors and view actors. The model domain
contains those script actors that establish the application
logic. The view domain comprises the DOM actors and
animation scripts.

In the model domain, messages are user interface and
network events, which are on the order of 1000 bytes.
These can be transferred in around 10 clock cycles in
today’s STI Cell processor [11] and there are compiler
optimizations to improve the locality of chatty actors.
When larger messages must be communicated (such as
video streams or source code), they should be handled by
specialized browser services (video decoder and parser,
respectively). It is the copying semantics of messages
that allows this; such optimizations are well-known [4].

In the view domain, actors appear to transfer large
buffers of rendered display elements through the view
domain. However, this is a semantic notion; a view
domain compiler could eliminate this overhead given
knowledge of linear usage. This is another reason for
separating the model and view domains: specialized
compilers can make more intelligent decisions.

We have discussed how static DOM naming and
layout-aware DOM analysis allows analysis of callback
dependences. We have elided the concurrency analysis
and a parallelizing compiler built on top of this depen-
dence analysis. There are many other interesting ques-
tions related to language design, such as how to support
development of domain abstractions, e.g., for the input
devices that are likely to appear on the handheld.



8 Related work
We draw linguistic inspiration from the Ptolemy project
[2]; functional reactive programming, especially the
FlapJax project [10]; and Max/MSP and LabVIEW.
We share systems design ideas with the Singularity OS
project [7] and the Viewpoints Research Institute [8].

Parallel algorithms for parsing are numerous but
mostly for natural-language parsing [14] or large data
sets; we are not aware of efficient parallel parsers for
computer languages nor parallel layout algorithms that
fit the low-latency/small-task requirements of browsers.

Handhelds as thick clients is not new [12]; current ap-
plication platforms pursue this idea (Android, iPhone,
maemo). Others view handhelds as thin clients (Deep-
Fish, SkyFire).

9 Summary
Web browsers could turn handheld computers into lap-
top replacements, but this vision poses new research
challenges. We mentioned language and algorithmic
design problems. There are additional challenges that
we elided: scheduling independent tasks and provid-
ing quality of service guarantees are operating system
problems; securing data and collaborating effectively
are language, database, and operating system problems;
working without network connectivity are also language,
database, and operating system problems; and more. We
have made promising steps towards solutions, but much
work remains.
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