
Appears in35th IEEE/ACM International Symposium on Computer Architecture (ISCA), Beijing, China, June 2008.

Globally-Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks

Jae W. Lee, Man Cheuk Ng
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

{leejw, mcn02}@csail.mit.edu

Krste Asanović
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Abstract

Future chip multiprocessors (CMPs) may have hundreds
to thousands of threads competing to access shared re-
sources, and will require quality-of-service (QoS) support
to improve system utilization. Although there has been
significant work in QoS support within resources such as
caches and memory controllers, there has been less atten-
tion paid to QoS support in the multi-hop on-chip networks
that will form an important component in future systems.
In this paper we introduce Globally-Synchronized Frames
(GSF), a framework for providing guaranteed QoS in on-
chip networks in terms of minimum bandwidth and a max-
imum delay bound. The GSF framework can be easily
integrated in a conventional virtual channel (VC) router
without significantly increasing the hardware complexity.
We rely on a fast barrier network, which is feasible in an
on-chip environment, to efficiently implement GSF. Perfor-
mance guarantees are verified by both analysis and simu-
lation. According to our simulations, all concurrent flows
receive their guaranteed minimum share of bandwidth in
compliance with a given bandwidth allocation. The aver-
age throughput degradation of GSF on a 8×8 mesh network
is within 10 % compared to the conventional best-effort VC
router in most cases.

1 Introduction

Advances in fabrication technology allow the integra-
tion of many processors on a chip to form a chip mul-
tiprocessor (CMP), possibly in the form of a complex
system-on-a-chip (SoC) with custom application accelera-
tors (Figure 1). These platforms will be required to sup-
port a variety of complex application workloads, with pos-
sibly hundreds to thousands of concurrent activities com-
peting for shared platform resources. Without effective
quality-of-service (QoS) support, the gap between best-case
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Figure 1: A complex system-on-a-chip containing a chip-scale
multiprocessor and application accelerators communicating with
memory and I/O resources over a multi-hop on-chip network.

and worst-case throughput will continue to grow, requiring
overprovisioning and hence poor utilization of platform re-
sources [11, 12, 13, 18].

We believe future integrated platforms must implement
robust QoS support for bothperformance isolationanddif-
ferentiated services. Performance isolation is the property
that a minimum level of performance is guaranteed regard-
less of other concurrent activities (e.g., preventing denial-
of-service attacks to DRAM channels [21]). Differenti-
ated services is the ability to allocate each resource flexibly
among competing tasks.

Robust QoS support is only possible if all shared re-
sources are managed together, as an application’s guaran-
teed service level is determined by the weakest guarantee
for any of its shared resources. For example, allocating a
portion of off-chip memory bandwidth at a memory con-
troller is ineffective if the on-chip network does not guaran-
tee adequate bandwidth to transport memory requests and
responses. Even in a case where the on-chip network is not
a bandwidth bottleneck, tree saturation [27] can produce a
tree of waiting packets that fan out from a hotspot resource,



thereby penalizing remote nodes in delivering requests to
the arbitration point for the hotspot resource. Figure 2 pro-
vides a motivational example, showing how poorly multi-
hop on-chip networks perform with no QoS support. Al-
though there has been significant prior work in QoS support
for other on-chip resources such as memory controllers (of-
ten combined with on-chip bus) [3, 15, 18, 22] and shared
cache banks [13, 14, 23, 26], there has been less work
on QoS support for multi-hop on-chip networks in pro-
grammable platforms.

In this paper, we present a new scheme,Globally-
Synchronized Frames (GSF), to implement QoS for multi-
hop on-chip networks. GSF provides guaranteed and differ-
entiated bandwidth as well as bounded network delay with-
out significantly increasing the complexity of the on-chip
routers. In a GSF system, time is coarsely quantized into
“frames” and the system only tracks a few frames into the
future to reduce time management costs. Each QoS packet
from a source is tagged with a frame number indicating the
desired time of future delivery to the destination. At any
point in time, packets in the earliest extant frame are routed
with highest priority but sources are prevented from insert-
ing new packets into this frame. GSF exploits fast on-chip
communication by using a global barrier network to deter-
mine when all packets in the earliest frame have been deliv-
ered, and then advances all sources and routers to the next
frame. The next oldest frame now attains highest priority
and does not admit any new packets, while resources from
the previously oldest frame are recycled to form the new
futuremost frame.

Provided that the pattern of injected packets in each
frame does not oversubscribe the capacity of any hard-
ware link, the system can switch frames at a rate that sus-
tains any desired set of differentiated bandwidth flows with
a bounded maximum latency. Note that bandwidth and
latency are decoupled in this system, as multiple frames
can be pipelined through the system giving a maximum
latency of several frame switching times. The scheme
does not maintain any per flow information in the routers,
which reduces router complexity and also avoids penalizing
short-lived flows with a long route configuration step. The
scheme supports bursty traffic, and allows best-effort traffic
to be simultaneously supported with little loss of network
utilization compared to a pure best-effort scheme.

2 Related Work

We begin with a survey of related work which we divide
into three parts. We first examine schemes to manage re-
sources with centralized arbitration, such as a memory con-
troller or a shared bus, where providing QoS is relatively
easy because there is a single gateway through which all re-
quests pass. We next examine earlier work in distributed

QoS systems, where QoS is more difficult to provide as
each request passes through multiple stages of arbitration.
Finally, we examine other proposals for QoS in on-chip net-
works.

2.1 QoS Support for Resources with
Centralized Arbitration

Off-chip memory bandwidth is often a performance bot-
tleneck and is a natural target for QoS support. For ex-
ample, to target real-time applications, Philips’ TM-1 pro-
cessor supports bandwidth and latency guarantees among
one VLIW processor and four DMA engines [3]. More re-
cently, Nesbit et al. have proposed a QoS memory system
for CMPs based on a Fair Queueing (FQ) algorithm [22].
The FQ algorithm requires the memory controller to have
per-flow queues and maintain per-flow statistics such as vir-
tual start and finish times, which causes a scalability con-
cern for future manycore processors. The resource alloca-
tion management unit of the Cell Broadband Engine sup-
ports QoS for system memory and I/O interfaces [15]. To
reduce the overhead of per-flow data structures, each re-
quester is assigned to a resource allocation group (RAG)
and the system allocates a percentage of the managed re-
sources to each RAG.

There are also proposals for QoS provision for shared
on-chip caches. Suh et al. propose a non-uniform cache
partitioning scheme to minimize the overall miss rate, but
without consideration of guaranteed services to an individ-
ual thread [26]. Iyer’s cache controller in the CQoS frame-
work enforces the priority of each thread to allocate cache
lines appropriately [14]. Both schemes manage cache space
but not access bandwidth. Virtual Private Caches (VPC)
manage both shared cache bandwidth and storage [23].

The QoS-capable shared resources discussed in this sec-
tion are important building blocks for guaranteed QoS sys-
tems, but QoS support from the on-chip network is also re-
quired to make system-level QoS guarantees possible.

2.2 QoS Support for Resources with
Distributed Arbitration

Distributed shared resources, most notably multi-hop on-
chip and off-chip networks, require multiple stages of arbi-
tration, which make it more challenging to provide guaran-
teed service to a flow. Several approaches have been devel-
oped to address this issue, either for the IP networks, or for
multichip multiprocessor networks.

(Weighted) Fair Queueing [7] and Virtual Clock [32]
were developed for QoS in long-haul IP networks where
large buffers are available. These achieve fairness and high
network utilization, but each router is required to maintain
per-flow state and queues which would be impractical in an
on-chip network.
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Figure 2: Motivation for QoS in on-chip networks. All nodes generate traffic toward a hotspot shared resource located at (8,8) (indicated by
arrow) with injection rate of 0.05 (flits/cycle/node), and the bar graph shows accepted service rate per node by the hotspot resource. In (a),
locally-fair round-robin (RR) scheduling leads to globally-unfair bandwidth usage, penalizing remote nodes. The minimal-adaptive routing
in (b) eliminates the imbalance of traffic betweenx andy directions in (a), and possibly helps mitigate the problem in a lightly-congested
network, but does not fundamentally resolve the problem. Our proposed GSF scheme in (c) guarantees fair bandwidth allocation among
all sharers. All three networks achieve comparable averagethroughput. See Section 6.1 for detailed simulation setup.

In multi-rate channel switching [29], the source rate of
a flow is fixed at an integer multiple of a basic rate before
the source starts transmission and remains unchanged for
the duration of the flow. Because of the fixed rate, it can-
not claim unused bandwidth efficiently, which leads to low
network utilization.

Source throttling dynamically adjusts the traffic injection
rate at a source node primarily for congestion control [27].
This keeps the network from suffering overall throughput
degradation beyond the saturation point, but does not pro-
vide QoS to individual flows.

Age-based arbitration is known to provide strong global
fairness. Each packet (or flit) carries information to indi-
cate its age, either a counter updated at every hop [25], or
a timestamp issued when the packet first enters the network
from which age can be calculated by subtracting from the
current time [5]. The oldest packet wins in any arbitration
step. This approach lacks flexibility in bandwidth alloca-
tion because it does not allow for asymmetric resource al-
location, and requires sophisticated logic to handle aging,
arbitration and counter rollover.

Rotating Combined Queueing (RCQ) is designed for a
multiprocessor and provides predictable delay bounds and
bandwidth guarantees without per-flow queues at intermedi-
ate nodes (though it still maintains per-flow statistics) [16].

The idea of rotating priorities in a set of queues is similar
to GSF, but GSF further simplifies the router using global
information, which is only feasible in an on-chip environ-
ment. With RCQ, each packet is assigned a local frame
number using per-flow statistics upon arrival at every node
on the path. In contrast, the frame number in the GSF is
global, which eliminates expensive book-keeping logic and
storage at each node.

2.3 QoS-Capable On-Chip Networks

The on-chip environment has different opportunities and
challenges compared to the off-chip environment, leading to
different design tradeoffs. For example, on-chip networks
are buffer (power) limited while multiprocessor networks
are often pin-bandwidth limited. Network latencies differ
by multiple orders of magnitude, which affects the cost of
synchronization. The following briefly introduces several
proposals for QoS support in on-chip networks, represent-
ing the current state-of-the-art.

Æthereal uses pipelined time-division-multiplexed
(TDM) circuit switching to implement guaranteed per-
formance services [10]. Each QoS flow is required to
explicitly set up a channel on the routing path before
transmitting the first payload packet, and a flow cannot
use more than its guaranteed bandwidth share even if
the network is underutilized. To mitigate this problem,
Æthereal adds a best-effort network using separate queues,
but this introduces ordering issues between the QoS and
best-effort flows.

SonicsMX supports guaranteed bandwidth QoS without
explicit channel setup [30]. However, each node has to
maintain per-thread queues, which make it only suitable for
a small number of threads (or having multiple sources share
a single queue). The Nostrum [20] Network-on-Chip (NoC)
employs a variant of TDM using virtual circuits for allocat-
ing bandwidth. The virtual circuits are set up semi-statically
across routes fixed at design time and only the bandwidth is
variable at runtime, which is only suitable for application-
specific SoCs. The MANGO clockless NoC [2] partitions
virtual channels (VCs) into two classes: Guaranteed Ser-
vice (GS) and Best-Effort (BE). A flow reserves a sequence
of GS VCs along its path for its lifetime. Therefore, the



number of concurrent GS flows sharing a physical channel
is limited by the number of GS VCs (e.g., 8 in [2]). Felici-
jan et al. propose a clockless NoC which provides differen-
tiated services by prioritizing VCs. Though this approach
delivers improved latency for certain flows, no hard guaran-
tees are provided [8].

3 Globally-Synchronized Frames (GSF)

In this section, we present the design of GSF starting
from an idealized deadline-based arbitration scheme for
bandwidth guarantees. We then transform this scheme step-
by-step into an implementable GSF queueing and schedul-
ing algorithm.

3.1 Global Deadline-Based Arbitration
for Bandwidth Guarantees

GSF was originally inspired by deadline-based arbi-
tration, which is a generalization of age-based arbitra-
tion [1, 5, 6, 25]. In age-based arbitration, each packet
carries a global timestamp, issued when the packet enters
the network, and each arbiter (router) forwards the packet
with the earliest timestamp first. Instead of using the times-
tamp, we allow each source to assign a deadline other than
the current time according to a deadline assignment policy.
Our premise is that we can achieve a desired flow property,
including guaranteed minimum bandwidth, by controlling
deadline assignment policy, at least in an idealized setup.

Figure 3 shows a network from such an idealized setup,
where each queue is a perfect priority queue with infinite
capacity, capable of instantly dequeuing the packet with the
earliest deadline. Dotted rectangles are a network compo-
nent which Cruz [4] introduced and named “MUX”. Since
we assume zero-cycle delay for arbitration and queue by-
passing, the entire network conceptually reduces to a single
priority queue having four input ports and one output port,
with a total ordering among all packets according to their
deadlines.

To provide bandwidth guarantees, we assign the deadline
for then-th packet of Flowi (dn

i ) as follows:

dn
i (ρi) = MAX [current time, dn−1

i ] + Ln
i /(ρiC)

whereρi is the guaranteed minimum bandwidth of Flow
i represented as a fraction of channel bandwidthC (0 ≤
ρi ≤ 1) andLn

i is the length of then-th packet of Flowi.
This formula directly follows from what is known as the

virtual finish timein the Fair Queueing algorithm [7]. The
deadline specifies the time when a packet’s last bit arrives
at the destination if the channel were infinitely divisible and
shared by multiple packets simultaneously transmitting ac-
cording to their guaranteed shares (ρ’s), provided we ig-
nore the network traversal delay, which is dependent upon
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Figure 3: A three-node queueing network with perfect priority
queues with infinite capacity. Dotted rectangles are a network
component called “MUX”, which merges two incoming flows into
a single outgoing one. Each packet carries an associated deadline
and the priority queue can dequeue the packet having the earli-
est deadline. The arbiter and the priority queue are assumedto
have zero-cycle delay, which implies a packet just generated at any
source can be immediately forwarded to the sink at channel rateC

through the combinational path if the packet wins all arbitrations
on the path.

each flow’s distance from the destination. Figure 4 com-
pares three arbitration schemes: round-robin, age-based and
deadline-based with the deadline assignment policy pre-
sented above. Note that the deadline-based scheme provides
bandwidth distribution to all flows proportional to the ratio
of ρ’s at all congested links. This result holds even if we
have non-zero delay for arbitration and/or queue bypassing
as long as the priority queue has an infinite capacity. In such
a case, two flows sharing a congested link eventually enter
into the steady state of proportional bandwidth sharing after
a finite winning (losing) streak by the remote (local) node
starting when the two flows first meet at the congested link.
The length of the winning (losing) streak is determined by
the relative difference of the distance to the congested link.

Although deadline-based arbitration provides minimum
bandwidth guarantees to flows using the proposed policy
in the idealized setup, there are several issues that make
this scheme infeasible to implement. First, the scheme is
based on perfect priority (sorting) queues and infinite-sized
buffers. Second, there is a large overhead for sending and
storing the deadline along with the payload data. There-
fore, we propose a practical implementation approximating
the behavior of the ideal deadline-based arbitration, called
baseline GSF.

3.2 Baseline GSF

To make deadline-based arbitration practical, we adopt
a frame-based approach [31]. The original deadline-based
arbitration is a priority-based approach, where competing
packets’ priorities are compared to determine which packet
is allocated buffer space and switching bandwidth first. In
contrast, a frame-based approach groups a fixed number of
time slots into a frame and controls the bandwidth alloca-
tion by allocating a certain number of flit injection slots per
frame to each flow.

Figure 5 shows a step-by-step transformation towards



0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

injection rate (flits/cycle/source)

accepted throughput @ sink [flits/cycle]

Flow 2 ( 2=0.50)

Flow 1 ( 1=0.30)

Flow 3 ( 3=0.15)

Flow 4 ( 4=0.05)

(a) round-robin (RR) arbitration (b) age-based arbitration (c) deadline-based arbitration

injection rate (flits/cycle/source)

accepted throughput @ sink [flits/cycle]

Flows 1, 2

Flow 3

Flow 4

injection rate (flits/cycle/source)

accepted throughput @ sink [flits/cycle]

Flows 1, 2, 3, 4
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a frame-based, approximate implementation of deadline-
based arbitration. Framek is associated with packets whose
deadline is in the range of[kF + 1, (k + 1)F ], whereF is
the number of flit times per frame. The frame numberk is
used as a coarse-grain deadline. By introducing frames, we
enforce an orderingacrossframes but notwithin a frame be-
cause the service order within a frame is simply FIFO. The
baseline GSF arbitration is shown in Figure 5(c), where we
have a finite active frame window havingW frames (i.e.,
Framek through (k + W − 1)) and each active frame has
a dedicated frame buffer (FIFO) whose depth isB flits.
The head pointer indicates which frame buffer is currently
bound to the earliest frame (frame bufferj in the figure),
which we call thehead frame. Note that the baseline GSF
in Figure 5(c) is an asymptotic implementation of the ideal
deadline-based arbitration in Figure 5(a) because the former
reduces to the latter asW → ∞ andF → 1.

Here is a brief sketch of how the GSF network operates.
For each active frame, every flow is allowed to inject a cer-

tain number of flits, denoted byRi for flow i. Although our
scheme is similar to conventional frame-based bandwidth
allocation schemes, we allowW frames to overlap at any
given time to accommodate bursty traffic while preventing
an aggressive flow from injecting too much traffic into the
network.

Once a packet is injected into the network, it traverses
the network using only the frame buffers for its given frame
number. Therefore, there is no possibility of priority inver-
sion, where a lower-priority packet blocks a higher-priority
packet. Combined with earliest-frame-first scheduling for
bandwidth allocation, the head frame is guaranteed to drain
in a finite amount of time because only a finite sum of pack-
ets can be injected into a single frame by all flows. The
drained head frame buffers across the entire network are
reclaimed and allocated to a newer frame synchronously,
which is called an(active) frame window shift.

We define anepochas the period of time between adja-
cent frame window shifts, and the interval of thek-th epoch



Variables Range Description

Global parameters and variables*
W 2 ..∞ active frame window size
HF 0 .. (W − 1) current head frame
F 1 ..∞ frame size in flits
B 1 ..∞ frame buffer depth in flits
C (0, 1] channel bandwidth in flits/cycle

LMAX 1 ..∞ maximum packet length in flits
epoch** 0 ..∞ current epoch number

ek 1 .. eMAX interval ofk-th epoch
eMAX 1 ..∞ maximum epoch interval (=max∀k ek)
T epoch 0 .. eMAX epoch timer

Per-flow variables
ρi 0 .. 1 a fraction of bandwidth allocated to

Flow i (normalized toC)
Ri 0 .. F flit slots reserved for Flowi

in a single frame
IFi 0 .. (W − 1) current injection frame of Flowi
Ci -LMAX .. Ri available credit tokens for Flowi

to inject flits toIFi

* Global variable with a subscripti denotes a local copy of the
variable maintained by Flowi.
** not implemented in hardware

Table 1: Variables and parameters used in GSF.

(i.e., the period of time when framek is the header frame)
is denoted byek. We also defineeMAX ≡ max∀k ek. Ta-
ble 1 summarizes variables and parameters used in the GSF
algorithm. More detailed description of each network com-
ponent’s operation follows.

Packet injection process: Algorithm 1 describes a
packet injection algorithm used by the baseline GSF net-
work. Flow i can inject packets into the active frame
pointed to byIFi as long as it has a positive credit bal-
ance (Ci > 0) for the frame (Lines 2-4). The flow can go
overdrawn, which allows it to send a packet whose size is
larger thanRi. To preserve bandwidth guarantees, a flow
with negative credit balance cannot inject a new packet un-
til its balance becomes positive again.

If the flow has used up all reserved slots in FrameIFi, it
can use reserved slots further in the future by incrementing
IFi by one (modW ) (Lines 5-13) until it hits the tail of the
active frame window. Once the flow uses up all reserved
slots in the active frame window, it must stall waiting for a
frame window shift to open a new future frame. Note that
this injection process is effectively implementing a token-
bucket filter [4] with(ρ, σ) = (Ri/eMAX , Ri∗W ) assuming
the active frame window shifts at everyeMAX cycles.

Switching bandwidth and buffer allocation: Frame
buffer allocation is simple because every packet is assigned
a frame at the source, which determines a sequence of frame
buffers to be used by the packet along the path. There
can be contention between packets within a frame but not
across frames. In allocating switching bandwidth, we give
the highest priority to the earliest frame in the window.

Frame window shifting algorithm: Algorithm 2 shows
an algorithm used to shift the active frame window. Source
injection control combined with earliest-frame first schedul-
ing yields a finite drain time for the head frame, bounded

Algorithm 1 GSF packet injection algorithm into source
queue for Flowi (⊕W : moduloW addition)
Initialize: epoch= 0, HFi = HF = 0
Initialize: Ri = Ci = ⌊ρiF ⌋
Initialize: IFi = 1
1: AT EVERY PACKET GENERATION EVENT:
2: if Ci > 0 then
3: SourceQueuei.enq(packet, IFi)
4: Ci = Ci − packet.size()
5: else {used up all reserved slots in FrameIFi}
6: while (IFi ⊕W 1) 6= HFi andCi < 0 do
7: Ci = Ci + Ri

8: IFi = IFi ⊕W 1
9: end while

10: if Ci > 0 then
11: SourceQueuei.enq(packet, IFi)
12: Ci = Ci − packet.size()
13: end if
14: end if

by eMAX . Therefore, we shift the active frame window at
everyeMAX cycles by default. Every flow maintains a lo-
cal copy (T epoch

i ) of the global epoch timer (T epoch) and
decrements it at every clock tick (Lines 9-10). Once the
timer reaches zero, all the flows synchronously increment
the head frame pointerHFi (modW ) to reclaim the frame
buffer associated with the earliest frame.

The frame window shifting algorithm does not allow a
flow to inject a new packet into the head frame (Lines 4-7).
Otherwise, we would have a very loose bound on the worst-
case drain time of the head frame (eMAX), which would
degrade network throughput.

Algorithm 2 GSF frame window shifting algorithm (⊕W :
moduloW addition)

Initialize: Tepoch
i = eMAX

Initialize: HFi = HF = 0
1: FOR ALL FLOWS, AT EVERY CLOCK TICK:
2: if Tepoch

i == 0 then
3: HFi = HFi ⊕W 1
4: if HFi == IFi then
5: IFi = IFi ⊕W 1
6: Ci = MIN(Ri, Ci + Ri)
7: end if
8: Tepoch

i = eMAX

9: else
10: Tepoch

i = Tepoch
i − 1

11: end if

In effect, the GSF network implementsW logical net-
works sharing physical channels, and each logical network
is associated with one frame at any point in time. TheW
logical networks receive switching bandwidth according to
priorities which rotate on every frame window shift. A log-
ical network starts as the lowest-priority logical network
when it is just assigned to a new frame, and is promoted
throughout the lifetime of the frame to eventually become
the highest-priority network, after which it finally gets re-



claimed for the new futuremost frame.
The baseline GSF network provides the following guar-

anteed bandwidth to flowi if (1) none of the physical chan-
nels along the path are overbooked and (2) the source queue
(SourceQueuei) has sufficient offered traffic to sustain the
reserved bandwidth:

Guaranteed bandwidthi = Ri/eMAX

The proof sketch is simple. Flowi can injectRi flits
into each frame, and the network opens a new frame every
eMAX cycles. Because the network does not drop any pack-
ets and has a finite buffer size, the guaranteed bandwidth
holds. In addition, the worst-case network delay is bounded
by WeMAX because a packet injected ink-th epoch must
be ejected from the network by the beginning of (k+W )-th
epoch.

Although the baseline GSF scheme provides guaranteed
services in terms of bandwidth and bounded network de-
lay, there are several drawbacks to the scheme. First, frame
buffers are underutilized, which degrades overall through-
put for a given network cost. Second, it is difficult to bound
eMAX tightly, which directly impacts the guaranteed band-
width. Even with a tight bound, it is too conservative to
wait for eMAX cycles every epoch because the head frame
usually drains much faster.

To address these two issues without breaking QoS guar-
antees, we propose two optimization techniques:carpool
lane sharingandearly reclamation of empty head frames.

3.3 Carpool Lane Sharing of Frame
Buffers: Improving Buffer Utilization

One observation in the baseline GSF scheme is that guar-
anteed throughput does not really depend on the active
frame window size,W . The multiple overlapping frames
only help claim unused bandwidth to improve network uti-
lization by supporting more bursty traffic. As long as we
provide a dedicated frame buffer for the head frame at each
router to ensure a reasonable value ofeMAX , we do not
compromise the bandwidth guarantees.

We propose carpool lane sharing to relax the overly re-
strictive mapping between frames and frame buffers. Now
we reserve only one frame buffer to service the head frame
(like a carpool lane), called the head frame buffer, but allow
all active frames, including the head frame, to use all the
other frame buffers. Each packet carries a frame number
(modW ) in its head flit, whose length is⌈log2 W ⌉ bits, and
the router services the earliest frame first in bandwidth and
buffer allocation. The frame window shifting mechanism
does not change. Note that head-of-line blocking of the
head frame never happens because we map frame buffers
to virtual channels (allocated on a per-packet basis) and the

head frame buffer at each router serves as an escape channel
for packets that belong to the head frame.

According to our evaluation, the carpool lane sharing
scheme increases the overall throughput significantly be-
cause more frame buffers are available to a packet at each
node. That is, any packet can occupy any frame buffer, ex-
cept that the head frame buffers are reserved only for pack-
ets in the head frame. To support best-effort traffic, we can
simply assign a special frame number (W , for example)
which represents the lowest priority all the time.

3.4 Early Reclamation of Empty Frames:
Increasing Frame Reclamation Rate

One important factor affecting the overall throughput in
the GSF network is the frame window shift rate. According
to our analysis, only a small fraction ofek ’s ever come close
to eMAX , which implies that the head frame buffer is often
lying idle waiting for the timer to expire in each epoch.

Therefore, we propose to use a global barrier network to
reclaim the empty head frame as quickly as possible. In-
stead of waiting foreMAX cycles every epoch, we check
whether there is any packet in the source or network buffers
that belongs to the head frame. If not, we retire the head
frame immediately and allocate its associated buffers to the
new futuremost frame. Note early reclamation does not
break the original bandwidth guarantees, because we al-
ways see a net increase, or at worst no change, in available
flit injection slots.

Figure 6 shows that early reclamation provides over30%
improvement in network throughput in exchange for a small
increase in area and power for the barrier network. The
barrier network is only a small fraction of the cost of the
primary data network, as it uses only a single wire commu-
nication tree and minimal logic.

4 Implementation

The GSF frame structure fits well into the architecture of
a conventional virtual channel (VC) router, requiring only
relatively minor modifications. This section discusses the
GSF router architecture and the fast on-chip barrier net-
work.

4.1 GSF Router Architecture

Figure 7 shows a proposed GSF router architecture. This
router implements both carpool lane buffer sharing and
early frame reclamation on top of the baseline GSF. Starting
from a baseline VC router, we describe various aspects and
design issues in the GSF router.

Baseline VC router We assume a three-stage pipelined
VC router with lookahead routing [9] as our baseline. The
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Figure 6: Frame life time analysis for comparison of frame recla-
mation rates with and without early reclamation. Although the
estimatedeMAX

= 1500 is within 10% of the observed worst-
caseeMAX , the early reclamation increases the frame reclamation
rate by>30%, which leads to corresponding improvement in the
average throughput. See Section 6.1 for simulation setup. We use
a hotspot traffic pattern with injection rate of 0.05 flits/cycle/node.

three stages are next-hop routing computation (NRC) in par-
allel with virtual channel allocation (VA), switch allocation
(SA) and switch traversal (ST).

Added Blocks Each router node keeps a local copy of
the global head frame (HF ) variable. This variable incre-
ments (modW ) at every frame window shift triggered by
the global barrier network. Each VC has a storage to main-
tain the frame number (modW ) of the packet it is servic-
ing. The frame number at each VC is compared against
HF to detect any packet belonging to the head frame. Then
the global barrier network gather information to determine
when to shift the frame window appropriately.

Next-Hop Routing Computation (NRC) In order to
reduce the burden of the VA stage, which is likely to be
the critical path of the router pipeline, we precalculate the
packet priority at this stage. The packet priority can be ob-
tained by(frame num−HF ) (modW ). The lowest num-
ber has the highest priority in VC and SW allocation. When
calculating the routing request matrix, NRC logic is respon-
sible for masking requests to VC0 from non-head frames,
because VC0 is reserved for the head frame only.

VC and SW allocation VC and SW allocators perform
priority-based arbitration, which selects a request with the
highest priority (the lowest number) precalculated in the
previous NRC stage. The GSF router uses standard credit-
based flow control.

4.2 Global Synchronization Network

The latency of the global synchronization network af-
fects the overall network throughput because higher laten-
cies leave VC0 (the carpool channel) idle for longer. Al-
though our proposed router is generally tolerant to the la-
tency of the barrier network if the frame size (F ) is reason-
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Figure 7: A GSF router architecture for 2D mesh network. Newly
added blocks are highlighted while existing blocks are shown in
gray.

ably large, the impact is more visible for a traffic pattern
having a high turnaround rate of frame buffers.

One way to achieve barrier synchronization is to use a
fully-pipelined dimension-wise aggregation network [27].
In this network, assuming a 2D mesh, the center node of
each column first collects the status of its peers in the same
column. Then, it forwards the information to the center
node of its row where the global decision is made. A broad-
cast network, which operates in reverse of the aggregation
network, informs all nodes to rotate their head frame point-
ers (HF ). Fork-aryn-cube (or mesh) network, the latency
of the synchronization will be2n⌈k−1

2 ⌉ cycles assuming
one-cycle per-hop latency.

Alternatively, we can implement a barrier network using
combinational logic which might take multiple fast clock
cycles to settle. This requires significantly less area and
power, and provides lower latency as cross-chip signal prop-
agation is not delayed by intermediate pipeline registers.
If propagation takesN fast clock cycles, we could sample
each router’s state and read the barrier signal everyN cy-
cles to determine when to perform a frame window shift.
For evaluation, we use a variable number of cycles up to
2n⌈k−1

2 ⌉ cycles.

5 System-Level Design Issues

A QoS-capable on-chip network sits between processors
running the software stack and shared platform resources.
This section addresses issues in interacting with these two



ends of the system to provide robust QoS support.
Admission control: Admission control is a software

process that should guarantee that no channel in the network
is oversubscribed. That is, supposeSc = {i1, i2, · · · , in} is
a set of flows that pass through Channelc. Then∀ Channel
c in the network,

∑
i∈Sc

Ri ≤ F should hold. To keep net-
work utilization high, each flow can be granted more than
the minimum number of slots required where possible, as
the maximum number of flits in flight from flowi at any
given time is upper bounded byWRi. If a new flow en-
ters into a previously reserved channel, the software stack
redistributes the excess injection slots according to its ex-
cess bandwidth sharing policy. Note that our GSF scheme
does not require any explicit channel setup, and so only the
Ri control register at each source must be changed. If there
are multiple clock domains, possibly with dynamic voltage-
frequency scaling (DVFS), any channelc should provide at
least the sum of guaranteed bandwidths on the channel to
preserve QoS guarantees.

Specifying bandwidth requirements: To specify re-
quested bandwidth, one can use either a relative measure
(e.g., 10 % of available bandwidth) as in [24] or an abso-
lute measure (e.g., 100 MB/s). If a relative measureρi is
given,Ri can be set to beρiF . If an absolute measureBW
(in flits/cycle) is used,Ri can be set to be (BW ∗ eMAX ).
eMAX is a function of traffic pattern, bandwidth reserva-
tion, frame size, packet size, global synchronization latency,
and so on, and it is generally difficult to obtain a tight bound.
(Currently, we rely on simulation to get a tight bound.)

GSF-based integrated QoS framework: We can ex-
tend the domain of GSF arbitration into other QoS-capable
shared resources, such as memory bandwidth at a shared
memory controller. A single global deadline (frame num-
ber) assigned at the source could also be used to manage
end-point bandwidth usage to create a GSF-based integrated
QoS system. We leave development of this integrated QoS
environment for future work.

6 Evaluation

In this section, we evaluate the performance of our pro-
posed GSF implementation in terms of QoS guarantees and
average latency and throughput. We also discuss tradeoffs
in the choice of network parameters.

6.1 Simulation Setup

Table 2 summarizes default parameters for evaluation.
We implemented a cycle-accurate network simulator based
on thebooksimsimulator [28]. For each run, we simu-
late 0.5 million cycles unless the simulation output saturates
early, with 50 thousand cycles spent in warming up.

We use an 8×8 2D mesh with four traffic patterns where
the destination of each source at Node (i, j) is determined

Simulation parameters Specifications

Common parameters
Topology 8x8 2D mesh
Routing dimension-ordered

Router pipeline VA/NRC - SA - ST
(per-hop latency) (3 cycles)

Credit pipeline delay 2 cycles
(including credit traversal)

Number of VCs per channel (V) 6
Buffer depth (B) 5 flits / VC

Channel capacity (C) 1 flit / cycle
VC/SW allocation scheme iSlip [19] (baseline) or GSF

Packet size 1 or 9 flits (50-50 chance)
Traffic pattern variable

GSF parameters
active frame window size (W) same as number of VCs

frame size (F) 1000 flits
global barrier latency (S) 16 cycles

Table 2: Default simulation parameters

as follows: hotspot (d(i,j) = (8, 8)), transpose (d(i,j) =
(j, i)), nearest neighbor (d(i,j) = (i + 1, j + 1) (mod 8))
and uniform random (d(i,j) = (random(), random())).
Hotspot and uniform random represent two extremes of net-
work usage in terms of load balance for a given amount of
traffic. The other two model communication patterns found
in real applications, e.g. FFT for transpose, and fluid dy-
namics simulation for nearest neighbor.

6.2 Fair and Differentiated Services

We first evaluate the quality of guaranteed services in
terms of bandwidth distribution. Figure 8 shows examples
of fair and differentiated bandwidth allocation in accessing
hotspot nodes. Figure 8 (a) and (b) illustrate QoS guar-
antees on a 8×8 mesh network and (c) on a 16×16 torus
network. In both cases, the GSF network provides guaran-
teed QoS to each flow. We are able to achieve this without
significantly increasing the complexity of the router partly
because the complex task of prioritizing packets to provide
guaranteed QoS is offloaded by the source injection process,
which is globally orchestrated by a fast barrier network. We
make the case for using a simple secondary network (bar-
rier network) to control a primary high-bandwidth network
to improve the efficiency of the primary network (i.e., to
provide more sophisticated services in our case).

For all the simulation runs we performed, we confirmed
that bandwidth is shared among all flows in compliance
with the given allocation. Therefore, for the rest of this sec-
tion, we focus on non-QoS aspects such as average through-
put and tradeoffs in parameter choice.

6.3 Cost of Guaranteed QoS and
Tradeoffs in Parameter Choice

The cost of guaranteed QoS with GSF is additional hard-
ware including an on-chip barrier network and potential
degradation of average latency and/or throughput. Un-
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less a router hasa priori knowledge of future packet ar-
rivals, it must reserve a certain number of buffers for fu-
ture high-priority packets although there are waiting pack-
ets with lower priorities. This resource reservation is es-
sential for guaranteed QoS but causes resource underuti-
lization, degrading average-case performance. Therefore,
it is our primary design goal to provide robust average-case
performance over a wide range of network configurations
and workloads. Note that robust performance by the GSF
framework entails setting QoS parameters appropriately for
a given workload.

Figure 9 shows the average latency versus offered load
over three different traffic patterns. For uniform ran-
dom traffic, we allocate⌊F/64⌋ = 15 flit injection slots
per frame to each source (not to each source-destination
pair), and these slots are shared by all packets from the
same source. For the other traffic patterns, each source-
destination pair is regarded as a distinct flow and allocated
flit slots considering the link sharing pattern.

We first observe that the GSF network does not increase
the average latency in the uncongested region. The net-
work saturation throughput, which is defined as the point at
which packet latency is three times the zero-load latency (as
in [17]), is degraded by about 12% in the worst case. The
performance impact of barrier synchronization overhead is

the most visible in uniform random traffic because it has the
lowest average epoch interval (eAV G ≡ (

∑N−1
k=0 ek)/N ).

Assuming 16-cycle barrier synchronization latency (S =
16), S/eAV G ratios are 0.32, 0.15 and 0.09 for uniform ran-
dom, transpose and nearest neighbor, respectively.

There are two main reasons for degradation of network
saturation throughput: underutilization of the head frame
VC (VC0) and finite frame window. Because VC0 at each
node is reserved to drain packets in the head frame, only (V -
1) VCs are available for packets in the other active frames.
The finite frame window prevents a flow from injecting
more traffic than its reserved flit slots in the active frame
window even when there are unclaimed network resources.

Figure 10 explains the impact of these two factors on av-
erage accepted throughput. With a small number of virtual
channels, e.g.V =2, the throughput gap between GSF and
baseline is dominated by underutilization of VC0 and in-
creasing the window size fromV to 2V does not improve
throughput much. As the number of VCs increases, the
gap narrows, and the performance gain from a wider win-
dow becomes more significant. To have enough overlap of
frames to achieve over 90% of the throughput of the base-
line VC router, the number of VCs should be at least four in
this network configuration. With 8 VCs, the GSF achieves
a comparable network throughput at the cost of increased
average latency. We choose the6 × 5 (virtual channels×
buffers) configuration by default.

In choosing the window size (W ), a larger window is de-
sirable to overlap more frames, thereby increasing overall
network throughput. However, the performance gain only
comes with a cost for more complex priority calculation
and arbitration logic. According to our simulation, increas-
ing W to be larger than 2V gives only marginal throughput
gain. Therefore, we choose the frame window size (W ) to
beV by default as a reasonable design tradeoff.
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Figure 11: Throughput of GSF network normalized to that of the
baseline VC router with variableF (frame window size). Two
traffic patterns (hotspot and uniform random) and three synchro-
nization costs (1, 8 and 16 cycles) are considered.
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Figure 10: Tradeoff in buffer organization with hotspot anduniform random traffic patterns. VC buffer configuration is given byV × B.
The frame window size (W ) is assumed to be V or 2V. For both traffic patterns, havingV ≥ 4 achieves 90% or higher throughput compared
to the baseline VC router. Generally, increasing VCs improves the throughput at the cost of increased average latency.6 × 5, our default,
is a sweet spot for the specific router architecture we use.

In Figure 11, we explore the choice of frame size (F ).
A long frame (whose size is≥ 1000 in this configuration)
amortizes the overhead of barrier synchronization and ef-
fectively increases the size of injection window to support
more bursty traffic, which is likely to improve the network
throughput. The downside is larger source buffers and po-
tential discrimination of remote nodes within a frame. The
choice depends on workloads, synchronization overhead
and system size.

7 Conclusion

In this paper, we introduced Globally-Synchronized
Frames (GSF) to provide guaranteed QoS from on-chip net-
works in terms of minimum bandwidth and maximum de-
lay bound. We show that the GSF algorithm can be easily
implemented in a conventional VC router without signifi-
cantly increasing its complexity. This is possible because
the complex task of prioritizing packets to provide guaran-
teed QoS is pushed out to the source injection process at

the end-points. The end-points and network are globally or-
chestrated by a fast barrier network made possible by the
on-chip implementation. Our preliminary evaluation of the
GSF network shows promising results for robust QoS sup-
port in on-chip networks.
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