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Abstract
Computer architects have long used simulators to ex-

plore microarchitectures and quantitatively analyze de-

sign tradeoffs. Though attractive because of their low

cost and ease of modification, these software simulators

suffer from poor performance. In this paper, we present

RAMP Gold, an FPGA-based manycore simulator that

outperforms software simulators by orders of magnitude.

It models up to 64 in-order issue SPARC V8 cores and

a shared memory hierarchy. We describe the implemen-

tation of RAMP Gold in detail and analyze its perfor-

mance. We then conclude, proposing RAMP Gold’s use

in the exploration of several important research problems

that currently suffer greatly from the poor performance

of software simulators.

1 Introduction
Computer architects have traditionally evaluated instruc-

tion sets and microarchitectures by executing represen-

tative programs and measuring one or more figures of

merit: clock cycles per instruction, execution time, and

power are among the most common. Decades ago, re-

searchers commonly prototyped their designs by fabri-

cating integrated circuits and running benchmarks di-

rectly on the hardware. Albeit time-consuming, building

a chip had several benefits: architects could run long-

running, realistic programs on the hardware, and furnish-

ing real implementations lent more credence to the value

of their innovations.

As feature size shrank, transistor count soared, and

clock rate rapidly rose, the VLSI design effort became

intractible for most research groups. Many architects

turned to software-based microarchitecture simulators to

evaluate their designs. Although this shift reduced pro-

totyping time dramatically, it came with the cost of a

10,000x performance penalty.

Contemporaneous with the sea change towards simu-

lation was the advent of standardized benchmark suites.

For a fixed compiler and instruction set, the benchmark

binaries stayed the same. This fact allowed architects to

employ a variety of techniques to cope with high simula-

tion latency: multi-mode simulation, statistical sampling

[16], and trace-based simulation, to name a few. (ci-

tations) Short, representative phases of benchmark pro-

grams, known as sim points, could be pre-determined,

so portions of a benchmark could be simulated on a de-

tailed model of the microarchitecture, while the lion’s

share of the dynamic instructions were only functionally

simulated, or perhaps used to warm the caches.

Though expedient, treating benchmarks as static ob-

jects has the disadvantage of using yesterday’s programs

to evaluate tomorrow’s architectures. Conversely, using

tomorrow’s programs eliminates the benefits of memo-

izing representative benchmark phases. This problem is

exacerbated by the increasing popularity of autotuning

[14], which changes program behavior–even algorithm

selection–based upon subtle changes in the microarchi-

tecture. The net result is that it will be difficult to cap-

ture meaningful performance data from new applications

without simulating entire programs (and, hence, long in-

struction traces). Going forward, it will likely become

intractable to explore ever-expanding design spaces with

software simulators.

An additional challenge that software-based simula-

tion has yet to overcome is the end of the era of ever-

increasing single-thread performance [1]. Like other

programs, software simulators doubled in performance

every 18 months without any programming effort. In

the multicore era, these performance gains must instead

come from leveraging thread-level parallelism, some-

thing that microarchitecture simulators have not done

with great success. Instead, researchers typically simu-

late multiple threads of execution with a single simulator

thread, making simulations take even longer.

One alarming consequence of the high latency of soft-

ware simulation can be observed by comparing papers

accepted by ISCA in 1998 with those in 2008. In a ten-

year period, the number of instructions simulated in a

typical run increased only twofold. In this period, how-

ever, the chip multiprocessor became ubiquitous. Taking

into account the number of simulated cores, the number
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of instructions per core actually fell by almost a factor

of two. Combined with a sixfold increase in processor

clock frequencies in the last decade, the amount of simu-

lated time has fallen by a factor of 11 in the last 10 years,

from 400 ms to under 40 ms. Put another way, archi-

tects are now attempting to model the complex interac-

tion of multiple processor cores by simulating programs

for fewer than four OS scheduling quanta!

To help overcome this crisis in microarchitecture re-

search evaluation, we present RAMP Gold, an FPGA-

based architecture simulator that can track detailed mi-

croarchitectural state and timing information while ex-

ecuting at nearly 100 MIPS. RAMP Gold’s significant

speedup over software simulators is not only of utility to

architects: it is only 100x slower than realtime, so we

expect it to be additionally viable as a software develop-

ment platform.

The rest of this paper is organized as follows. In Sec-

tion 2, we discuss related software- and FPGA- based

simulation techniques. In Section 3, we present the

RAMP Gold simulator architecture. In Section 4, we

describe its hardware implementation in detail. In Sec-

tion 5, we discuss the infrastructure support we provide

to make RAMP Gold a robust development platform.

In Section 6, we evaluate the simulator’s performance.

In Section 7, we discuss our future directions and con-

clude.

2 Related Work
As architecture research began to focus more on imple-

mentation and less on instruction set design, it became

unnecessary for every research group to maintain its

own simulator. Undoubtedly, the popularity of software-

based microarchitectural simulators is part and parcel

of their standardization. Among the most widely used

are SimpleScalar [2], ASIM [5], SESC [9], and RSIM

[10]; additionally, there have been commercial efforts,

like Simics1 [7].

Field programmable gate arrays (FPGAs) have been

employed at various levels of abstraction in the de-

sign, implementation, and evaluation of computer ar-

chitectures. Several commercial efforts have attacked

the slow speed of register transfer level (RTL) simu-

lation by providing FPGA-accelerated logic simulation

and verification. Quickturn was a notable early product

in this vein; Cadence Palladium [3] is a modern exam-

ple. These functional verification devices operate at rela-

tively low speed–about 1 MHz–but should be contrasted

with software-based RTL simulation, which may run at

1It is interesting to note, however, that SIMICS has deprecated sup-

port for instrumenting individual loads and stores, thus making it nearly

useless for modeling the timing of the memory hierarchy. Simics is

used mostly by OS and device driver writers; computer architects are

merely a secondary market for this tool.

1 KHz or slower on a fast workstation.

Rather than using FPGAs to simulate RTL, other

projects have mapped processors directly to FPGAs, en-

abling higher clock rates. Early projects under the um-

brella of the Research Accelerator for Multiple Proces-

sors (RAMP) fall into this category, namely RAMP Blue

[6], a 1008-core message-passing machine, and RAMP

Red [13], another multicore simulator used to investi-

gate issues in transactional memory. Both projects used

Xilinx FPGAs on Berkeley Emulation Engine 2 (BEE2)

boards [4].

One disadvantage of direct RTL mapping is that tim-

ing is a property of the functional implementation. Some

designers have augmented direct RTL-mapped systems

with simple timing models by clock-gating various com-

ponents to get correct behavior while faking the desired

timing. RAMP Blue 2 [6] is an example of such a system.

Unfortunately, such a system implies a tight coupling be-

tween the timing and function because the timing model

is a wrapper around each functional component.

The lack of modularity in these direct RTL-mapped

systems with timing wrappers led to FPGA implemen-

tations of simulators that separately model the function

and timing of the target system, a trick that has been

used in software simulators. HASIM [12], a hardware-

accelerated port of ASIM, employs split timing and func-

tional models.

3 RAMP Gold Architecture

Conventional wisdom in computer architecture led to the

proliferation of similar uniprocessor designs, but there

is not yet any conventional wisdom for manycore de-

signs [15]. Our target machine model–a 64-core, single-

socket, tiled CMP–is only one point in this vast design

space, but it is a simple baseline microarchitecture that

can be modified to explore a broad range of manycore

topics.

A target core is a single-issue, in-order SPARC V8

with private L1 data and instruction caches. Up to 64

such cores are connected to a shared, unified L2 cache

and coherence network. The L2 is pumped by one or

more on-die memory controllers.

RAMP Gold, the host machine, models this target sys-

tem with high performance and low cost by employing

two important techniques. First, the timing and func-

tion of the target system are modeled separately. This

design enables an arbitrary implementation of the tim-

ing and functional models as long as their interfaces

are consistent, leading to the second technique, host-

multithreading. We describe both in detail in the follow-

ing sections.
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3.1 Split Functional and Timing Models
Like many architecture simulators, RAMP Gold splits its

target model into two components: a functional model

and a timing model. The functional model implements

the target processor ISA and shared memory system,

while the timing model controls when instructions are

executed by the functional model and determines how

many target cycles a given operation takes. Decoupling

the functional and timing behavior of the target model

in such a way allows the design to be modularized, and

makes it possible to vary the timing dependent behavior

of the target model without requiring any changes to the

functional model.

Cache modeling provides one demonstration of the

benefits of using split functional and timing models. In a

target model without such a functional/timing split, the

straightforward way to model a cache of a given size

would be to directly implement it. The limited on-chip

memory resources available in an FPGA would severely

limit the maximum size of the cache that could be mod-

eled without using off chip memory, and using off chip

memory to model the cache would result in significantly

reduced performance. With split timing and functional

models, cache behavior can be simulated using a timing

model which only maintains the cache state necessary to

determine whether a given memory access would result

in a cache hit or miss. Instead of tracking all the data res-

ident in the modeled cache, the timing model only needs

to store and update the cache tags and other metadata

associated with each cache line. The functional model

handles the execution of the load or store instruction, and

the timing model causes the thread which performed the

memory access to stall if it determines that the memory

access would have resulted in a cache miss. This al-

lows for the efficient simulation of much larger caches

than would otherwise be possible. We have implemented

such a cache model, whose parameters (within certain

bounds) are set at run time. This enables us to simulate

the impact of different cache organizations on program

performance without requiring a resynthesis of the de-

sign.

Modeling a functional unit (for example, an FPU) with

an arbitrary execution latency provides another exam-

ple of the utility of the split functional/timing model

paradigm. To model an FPU with a single target cy-

cle latency in an FPGA based simulator without a func-

tional/timing split would require an FPU which could ex-

ecute a given operation in a single host cycle. This would

necessitate the use of a low clock frequency for the entire

pipeline, resulting in poor performance. However, using

a split functional/timing model allows the execution of a

single target cycle to be emulated in any number of host

cycles. This permits the use of a pipelined FPU with a

multicycle latency, and therefore doesn’t require a dra-

matic reduction of the clock frequency of the pipeline.

3.2 Host Multithreading
Previous FPGA based multiprocessor simulators have

mapped many instances of processor designs imple-

mented in RTL directly to FPGAs. For example, the

RAMP Blue project mapped 1008 32-bit Xilinx Mi-

croBlaze RISC cores onto a rack of 21 BEE2 boards

(each consisting of 4 Xilinx VirtexII Pro 70 FPGAs, re-

sulting in 12 cores per FPGA) to emulate a manycore

distributed-memory message-passing target architecture

[6]. RAMP Gold takes a different approach. Instead of

implementing many physical copies of a target proces-

sor, it time-multiplexes multiple hardware thread con-

texts onto a single target model–a technique we call host
multithreading. We emphasize that a host-multithreaded

simulator need not model a multithreaded target.

Using host multithreading to share a single execu-

tion engine among many virtualized processors has many

benefits for the RAMP Gold design. It enables an area

efficient FPGA implementation, as a single pipeline can

be used to model the behavior of many target processors.

Our current implementation simulates up to 64 proces-

sor cores using a single physical pipeline, and multiple

such pipelines can fit on a single FPGA. Additionally,

host multithreading allows a deeply pipelined execution

engine to be used without the need for any bypass paths.

Since at most one instruction from each virtual proces-

sor is in the pipeline at any point in time, there is never

a need to transmit a result from one pipeline stage to an

earlier stage. The lack of bypass networks and forward-

ing logic in the critical path means the pipeline can run

at a higher clock frequency than would otherwise be pos-

sible. Host multithreading also effectively hides many

of the latencies encountered during a simulation. For

example, handling a cache miss doesn’t require stalling

the entire pipeline. The other hardware thread contexts

can continue executing and by the next time the context

which caused the miss is scheduled to execute, the cache

miss will likely have been resolved. The net result is high

simulation throughput.

4 RAMP Gold Microarchitecture
In this section, we describe the implementation of RAMP

Gold’s functional pipeline, memory system, floating

point unit, pipeline inspector interface and front end link.

4.1 Pipeline
Figure 1 illustrates the architecture of RAMP Gold’s

functional pipeline. The pipeline is deep to achieve low

clock period; provided that the target machine has at least

as many threads as there are stages, it is hazard-free. The

pipeline supports up to 64 independent SPARC V8 hard-

ware contexts through the use of fine-grained hardware
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Figure 1: RAMP Gold Integer Pipeline

multithreading. Instructions from different threads are

issued by a static round-robin scheduler. When a long

latency instruction (such as a host cache miss) is encoun-

tered, the instruction is not committed but is instead re-

issued on that thread’s next fetch turn. If this ‘replayed’

instruction has completed by its second trip through the

pipeline, it is then able to commit. Ideally, long-latency

events can be sufficiently hidden by the interleaved exe-

cution of other threads that the commit rate is kept high.

Internally, the functional pipeline only directly imple-

ments a subset of the SPARC V8 ISA. Microcode is used

to handle complex instructions that require a sequence

of operations (e.g. atomic operations such as SWAP)

and infrequent operations such as traps. Although us-

ing microcode adds some complexity to the decode logic,

it eliminates the need for more expensive structures in

the pipeline and simplifies the overall design. For exam-

ple, direct implementation of the SPARC indexed-store

instruction would require a register file with three read

ports, which, on the Xilinx Virtex 5 FPGA, doubles its

size. Instead, we keep the register file small by im-

plementing indexed stores using two microcode instruc-

tions: an effective address calculation and a store.

Our register file implementation supports up to 7 regis-

ter windows. The contents of the register file for a single

thread occupy 128 32-bit words in block RAM. Eight of

these words are used to store ancillary processor state and

microcode-mode registers. The 64-way multithreaded

register file consumes eight 36Kb block RAMs. Other

special architectural registers such as the PC, nPC and

processor state register are mapped to distributed LU-

TRAMs.

To accelerate digital signal processing, most FPGAs

include some “hard” DSP blocks, which have become

progressively more feature-rich over successive FPGA

generations. In the Virtex 5, each DSP block is capa-

ble of performing 48-bit two’s complement addition and

subtraction as well as bitwise logic operations and 48-bit

pattern detection. We have found that the computation

required by most SPARC instructions (including all sim-

ple ALU operations and effective address calculations)

can be performed using a single DSP block. The pattern

detector is used to generate the integer condition codes.

Currently, the functional pipeline consumes 14% of

the LUT resources and 23% of the block RAM resources

on a single Xilinx Virtex5 LX110T FPGA. We believe

that we can fit three pipelines in one FPGA, allowing us

to simulate up to 192 target cores.

4.2 Memory System
We currently use a single-channel DDR2 memory con-

troller running at 233 MHz which is based on the BEE3

memory controller design [8]. It supports a dual-rank

SODIMM up to 2GB in size. At present, we use the 2GB

DRAM only for target memory, though in the future we

envision that microarchitectural state such as target cache

tags might also be stored in DRAM.

To reduce memory traffic and improve performance,

we built a small per-thread host instruction cache and a

unified host data cache. For the sake of simplicity, the
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Figure 2: RAMP Gold Host Cache

data cache is direct-mapped and uses a write-back/write-

allocate policy. The cache line size is 32 bytes to match

the minimum DDR2 burst size. Each of the 64 host

threads is allotted a 256-byte instruction cache. The uni-

fied data cache is 16KB in size and is shared between

all threads. As a result, data in the cache is automat-

ically kept coherent. The data cache supports multiple

hits under a single miss. In order to support the SWAP

instruction (which is implemented using three microcode

instructions that must be executed atomically), the data

cache locks the cache line until the SWAP instruction

has retired. The integration of the data cache with the

pipeline is illustrated in Figure 2. The I & D caches (in-

cluding tags) are mapped to two 18Kb block RAMs and

eight 36Kb block RAMs.

4.3 Floating-Point Unit
In order to accelerate floating point operations, we inte-

grated a floating-point register file and functional units

which perform single- and double-precision add and

multiply operations into the pipeline. Load, store, add,

multiply, and other simple floating-point instructions

are handled entirely in hardware; complex instructions,

namely integer conversion, divide, and square root, gen-

erate a trap and are emulated in supervisor mode.

Our current design uses Xilinx Floating Point IP

blocks to implement the add and multiply functional

units. These blocks map efficiently onto the DSP units

available on the FPGA, but unfortunately are not 100%

IEEE 754 compliant; consequently, we trap on denor-

malized numbers and emulate the offending operation in

the supervisor.

The floating point functional units extended the

pipeline depth to 16 stages.

4.4 Pipeline Inspector
The pipeline inspector is an interface used by the front-

end machine to inject instructions directly into the

pipeline and read back their results without affecting tar-

get timing. This powerful feature allows the front-end

machine to read and write the target memory and proces-

sor state, which facilitates debugging software running

on the target. In the future, we plan to implement simula-

tion checkpointing using this functionality. The pipeline

inspector can also be used to retrieve target model perfor-

mance information. Each target model includes a num-

ber of 64-bit performance counters which log events such

as the number of retired instructions. These counter val-

ues can be read by an application running on the target

as well as the front end machine.

4.5 Front-end Link
The FPGA board connects to a front-end machine

through a gigabit Ethernet link. This link provides a

communication channel between the front-end machine

and the pipeline inspector, giving the front end machine

full control over the simulator and the target model.

5 Infrastructure
The RAMP Gold infrastructure includes a number of de-

velopment and debugging tools which combine to form

a complete and versatile design and verification environ-

ment. A recent version of the SPARC GCC toolchain and

a runtime environment which uses a proxy kernel to em-

ulate basic OS functionality enable RAMP Gold’s users

to build and run C and C++ programs without any modi-

fications. Using this infrastructure we were able to build

and run the SPEC CPU2000 and SPLASH2 benchmarks,

as well as Damascene (part of the ParLab content-based

image retrieval application) on RAMP Gold. Figure 3

summarizes our infrastructure.

Figure 3: RAMP Gold Infrastructure
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5.1 Toolchain
Our toolchain is built directly from the latest version

of GCC without any modifications. GCC is compiled

to use our modified version of newlib (a C library in-

tended for use on embedded systems). We have ex-

tended newlib to support multithreaded applications and

run C++ code. We wrote our own implementations of

the 17 system calls required by newlib, recursive locks

to support thread-safe C library functions, and execu-

tion startup routines (crt0.s) for C++ programs. Single-

threaded binaries compiled with our toolchain are ABI-

compatible with OpenSolaris, and as a result the same

binary can run on RAMP Gold and Sun servers. Multi-

threaded binaries are object-code compatible but must

be linked against a different implementation of POSIX

threads to run on Sun machines. The RAMP Gold devel-

opment environment provides bare metal access to hard-

ware threads via the HardThreads API [11]. Synchro-

nization primitives such as barriers and locks are pro-

vided and the BLAS and LAPACK libraries have been

ported to support scientific computing applications.

5.2 Proxy Kernel
The proxy kernel handles bootstrapping, traps and sys-

tem calls. The bootstrapping code initializes stack

frames for each thread, copies command line arguments

to thread 0’s stack, and transfers control to it. Thread 0

starts running user code, while the other threads spin un-

til they receive an active message. Active messages are

currently implemented by polling special memory loca-

tions, though we intend to implement them using inter-

rupts in the near future. When an active thread wants to

spawn a new hardware thread, it packs the thread id and

target PC into an active message and writes it to a des-

ignated location in memory. When an active message is

delivered, the receiving thread jumps to the target PC ad-

dress. When the thread is done executing, it returns to

the polling loop.

Whenever the user code traps due to an illegal action

or a system call, the PC is set to the trap handler which

resides in the proxy kernel. The floating point emulation

code also lives in the proxy kernel and is invoked when

a floating point trap occurs. If a system call cannot be

serviced locally, the proxy kernel issues a request to the

front-end machine to handle it and waits for the result.

5.3 Front-End Machine
The front-end machine uses the pipeline inspector in-

terface to load a program and command line arguments

into the target’s memory and signal it to begin execution.

It periodically polls a target memory location to deter-

mine whether the proxy kernel has requested that it han-

dle a system call. Whenever the front-end machine re-

ceives such a request, it reads the system call arguments

from the target memory, executes the system call locally,

writes the results back to the target memory, and signals

the target to proceed.

The front-end machine can communicate with three

different implementations of the target architecture: C-

Gold (our in-house functional simulator written in C),

the SystemVerilog RTL code simulated using Modelsim,

and the synthesized design running on the FPGA. When

developing or porting a program, we verify that it is func-

tionally correct by running it on C-Gold prior to trying it

out on hardware. While we are developing RTL code, we

iterate between simulating it on Modelsim and testing it

on the actual hardware. These multiple implementations

of the target architecture allow us to get debugging infor-

mation at any level of detail we need.

5.4 Applications: Damascene
We successfully compiled and ran the C version of Dam-

ascene on RAMP Gold using our infrastructure. This

application takes advantage of bulk synchronous paral-

lelism (which is a natural fit to the hard threads model),

uses floating point operations heavily, calls BLAS and

LAPACK routines, and has a 1.2GB working set. We

have stress tested the RAMP Gold hardware (including

the pipeline and the memory subsystem) and the infras-

tructure by running this application for extended periods

of time.
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Figure 4: High level pipe and filter diagram of Dama-

scene

Figure 4 outlines the high level pipe and filter diagram

of the application. The first module takes the input image

and produces four channels (luminance L, chrominance

a, chrominance b, and texton). The second module of

the algorithm extracts a set of local cues from each of

the input channels. In the third module, these local cues

are linearly combined into a single multiscale probabil-

ity boundary signal (mPb). An affinity matrix W (which
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encodes the similarity between pixels) is constructed by

using the intervening contour cue which is the maximum

value of mPb along a line connecting two pixels. The

affinity matrix is then used to calculate a set of eigenvec-

tors and eigenvalues which represent segmentations of

the image. The contours embedded in the eigenvectors

are extracted by using a bank of eight Gaussian direc-

tional derivative filters. The information from the dif-

ferent eigenvectors and eigenvalues is combined into a

spectral probability boundary signal. Finally, the local

cue information and spectral information are combined

to form a global probability of boundaries.

6 Simulator Performance
The primary goal of RAMP Gold is to accelerate the

rate at which architects can simulate manycore systems,

and as such simulator performance is the key metric with

which we evaluate its success. In this section, we exam-

ine the performance of existing software simulators and

measure RAMP Gold’s performance while running a mi-

crobenchmark and programs from the SPLASH2 bench-

mark suite.

6.1 Software Simulator Performance
Simics is a popular architecture simulator which has been

often been used by architects to prototype and evalu-

ate new microarchictectural ideas. As such, it provides

a reasonable baseline against which to compare RAMP

Gold’s performance. Running on a high end workstation

and simulating 16 SPARC processor cores in a purely

functional mode, Simics achieves approximately 8 MIPS

of simulated performance. In a comparable configuration

(with the timing model disabled), RAMP Gold’s perfor-

mance is over an order of magnitude faster, clocking in

at 85 MIPS. Modeling the timing behavior of a cache

in Simics (using the gcache module) slows performance

tenfold to 0.8 MIPS. This is akin to using RAMP with

the timing model turned on, which runs at 45.6 MIPS.

These results are summarized in Figure 5.
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Figure 5: Simulator Performance comparison

6.2 RAMP Gold Performance
RAMP Gold’s functional pipeline currently runs at 100

MHz. As the functional pipeline is single-issue, the

upper bound on simulator performance is 100 MIPS.

This level of performance can only be achieved, how-

ever, if there are no host stalls. Host cache misses and

other long-latency simulator events, such as contention

for the shared integer multiplier, reduce functional sim-

ulation performance. To evaluate RAMP Gold’s perfor-

mance in the absence of these performance-limiting fac-

tors, we wrote a synthetic, compute-bound benchmark

which causes few host cache misses and does not use

multi-cycle instructions.

Figure 6 shows the simulator’s execution performance

on this synthetic microbenchmark for power-of-two sim-

ulated core counts between 1 and 64. In functional-only

mode, we achieve the full simulator throughput of 100

MIPS when the number of target cores can cover the

functional pipeline depth of 16. For fewer target cores,

the fraction of peak performance achieved is given by
# cores

pipeline depth .
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Figure 6: Synthetic CPU-bound Workload Performance

One function of the timing model is to keep all host

threads lined up on the same target cycle. Since some

instructions may replay through the functional pipeline

(e.g. because of a host cache miss), the timing model

does not allow the functional model to issue instructions

corresponding to target cycle n + 1 until all instructions

corresponding to target cycle n have committed. As a

result, every simulated target cycle has one functional

pipeline depth of wasted host cycles. This performance

penalty is shown in Figure 6. The fraction of peak perfor-

mance achieved is approximately # cores
# cores+pipeline depth .

Thus, when simulating 64 cores, we achieve 80 MIPS

on our synthetic benchmark, but only 50 MIPS with 16

cores.

Instructions that must replay through the functional

pipeline limit simulator performance. Complex instruc-

tions like multiply, divide, and indexed-store require at
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least one replay. Moreover, the host memory hierarchy

can itself become a bottleneck, as host cache misses also

cause replays. Unsurprisingly, we found that on realis-

tic workloads, the unified 16KB data cache is inadequate

when more than a single core is being simulated. Con-

flict misses are the primary reason for this: if two threads

attempt to consume conflicting cache lines at the same

time, then they will both miss once per load or store,

rather than once per cache line.

We run a subset of the SPLASH2 benchmark suite

with 16 cores and the timing model enabled to quan-

tify RAMP Gold’s performance on realistic workloads.

FMM and Ocean are full applications (a fast multipole

solver and an ocean simulator) while FFT and Cholesky

are computational kernels (a complex 1D FFT and a

blocked sparse Cholesky factorization). Figure 7 shows

RAMP Gold’s performance on these benchmarks for var-

ious target L1 data cache sizes. Since we are running 16

threads, peak functional performance (100 MIPS) would

be about 6.7 million target cycles per second. As we

are currently limited by the coupling of the timing and

functional model described above, the peak performance

with 16 threads is about 3.3 million target cycles per

second. Cholesky nearly achieves this bound, but the

other benchmarks suffer from varying degrees of conflict

misses in the host cache.
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Figure 7: SPLASH2 Benchmark Performance

Figure 7 additionally echoes the benefits of split func-

tion and timing in two ways. First, the same synthesized

design was used to model multiple target cache sizes.

Second, the simulator’s performance is approximately

independent of target machine parameters.

We further investigate the performance impact of the

unified host cache by running Ocean with a fixed prob-

lem size while varying the number of simulated cores.

The performance results are plotted in Figure 8; the per-

formance of the synthetic compute-bound workload are

provided as well for comparison. Peak performance

��

���

���

���

���

���

���

	��


��

���

�� ��� ��� ��� ��� ��� ��� 	��

�
��
�
�

����� ������������������

Figure 8: SPLASH2 Ocean Performance

occurs at 16 cores when the functional pipeline’s la-

tency can be covered. Increasing the number of cores

beyond the pipeline depth makes the simulator perfor-

mance worse because the cache miss rate is even higher2.

Even at the peak at 16 cores, however, the synthetic

workload realizes four times the throughput.

6.3 Improving Simulator Performance
RAMP Gold performs well when executing programs

that do not destructively interfere in the host data cache.

Sadly, data-parallel workloads tend to have access pat-

terns that pathologically cause host cache conflicts. We

plan to attack this problem in two ways: by reducing the

miss penalty and reducing the miss rate.

Although the unified host cache can service a hit un-

der a miss, it blocks on a second outstanding miss. Es-

pecially in the presence of a high host cache miss rate,

this policy effectively serializes multiple threads’ mem-

ory accesses, eliminating the latency-hiding benefits of

host-multithreading. Building an MSHR file and servic-

ing multiple misses in parallel will significantly reduce

the host cache miss penalty.

We can reduce the host cache miss rate in one of two

ways without increasing its on-chip memory footprint.

On one hand, we could make it set-associative. Unfortu-

nately, high associativity may be needed to significantly

reduce the miss rate. On the other hand, we could give

each thread a private host cache and keep them coherent.

This option will likely increase the miss penalty because

of the need to examine extra state on a miss, but it has

the benefit of not requiring a nonblocking cache for rea-

sonable performance.

The host cache design space is large. In the coming

weeks, we plan to use RAMP Gold to simulate itself to

2Although the simulator’s performance falls as the core count is in-

creased, the number of target cycles required to execute the benchmark

falls, as one would expect.
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explore this space so that we can bridge the gap between

realized and peak simulator performance.

7 Conclusions and Future Work
We conclude by proposing three exciting research op-

portunities that would be intractable with traditional

software-based architecture simulators but are enabled

by RAMP Gold.

As microarchitectures have become increasingly com-

plex, autotuning has become a popular means by which

to obtain high performance for a given kernel on a variety

of hardware implementations. A compelling extension

of autotuning is hardware-software cotuning. The prob-

lem, stated simply, is to find the tuple of microarchitec-

ture and kernel variant that maximizes some metric (e.g.

FLOPS) subject to some constraints. Unfortunately, the

design space is extremely large, suffering from combi-

natorial explosion even with a limited number of archi-

tectural and algorithmic parameters. Techniques like sta-

tistical sampling that have been used to speed software

simulations do not apply in this scenario because the bi-

nary changes with the microarchitecture. With RAMP

Gold, we can explore dozens of trillion-instruction pro-

gram runs in a single day on a single FPGA to cope with

state explosion and make hardware-software cotuning a

reality.

Modeling the thermal behavior of CPUs is an impor-

tant but computationally expensive problem. Thermal

time constants are on the order of tens of milliseconds, so

to model complex thermal effects, several seconds must

be simulated at a high level of microarchitectural detail.

Much of the analysis can ordinarily be performed offline,

but if we wish to tackle the problem of operating system

policies for thermal management, then we need feedback

from the thermal model to the simulated operating sys-

tem. To run such simulations in a reasonable amount

of time, we propose to perform a full-system simulation

on RAMP Gold and run a thermal model on a GPU on

the front-end machine. Every few thousand target cy-

cles, a package of activity factors is exported to the GPU,

and up-to-date thermal information is sent back to the

simulated OS. Such a simulation will not impact RAMP

Gold’s high performance and will allow simulations on a

thermal timescale to run in only tens of minutes.

In a manycore system, the DRAM is a key shared re-

source whose management is critical to system through-

put. Current software simulators cannot tractably model

instruction traces of sufficient length to allow architects

to confidently draw conclusions about DRAM schedul-

ing policies. To cope with this limitation, previous work

has simulated only a small number of cores and often

uses trace-based simulation with a cache model. Al-

though trace-based simulation can be accurate for in-

order issue cores, it cannot accurately model programs

that synchronize through shared memory. As we can

tractably simulate a large number of dynamic instruc-

tions without resorting to traces, this area of research

should be revisited in greater detail with RAMP Gold.

In RAMP Gold we have built a high-performance mi-

croarchitecture simulator that eclipses the performance

of software-based simulators by orders of magnitude. It

is even fast enough to serve as a software development

platform. We plan to utilize RAMP Gold in our many-

core architecture research and consider the above three

problems to be part of our exciting future work.
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