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Abstract

Today’s “high productivity” programming languages
such as Python lack the performance of harder-to-
program “efficiency” languages (CUDA, Cilk, C with
OpenMP) that can exploit extensive programmer knowl-
edge of parallel hardware architectures. We com-
bine efficiency-language performance with productivity-
language programmability using selective embedded
just-in-time specialization (SEJITS). At runtime, we
specialize (generate, compile, and execute efficiency-
language source code for) an application-specific and
platform-specific subset of a productivity language,
largely invisibly to the application programmer. Be-
cause the specialization machinery is implemented in
the productivity language itself, it is easy for efficiency
programmers to incrementally add specializers for new
domain abstractions, new hardware, or both. SEJITS
has the potential to bridge productivity-layer research
and efficiency-layer research, allowing domain experts
to exploit different parallel hardware architectures with
a fraction of the programmer time and effort usually re-
quired.

1 Motivation
With the growing interest in computational science,

more programming is done by experts in each application
domain instead of by expert programmers. These do-
main experts increasingly turn to scripting languages and
domain-specific languages, such as Python and MAT-
LAB, which emphasize programmer productivity over
hardware efficiency. Besides offering abstractions tai-
lored to the domains, these productivity-level languages
(PLLs) often provide excellent facilities for debugging
and visualization. While we are not yet aware of large-
scale longitudinal studies on the productivity of such
languages compared to traditional imperative languages

such as C, C++ and Java, individual case studies have
found that such languages allow programmers to express
the same programs in 3–10× fewer lines of code and in
1/5 to 1/3 the development time [17, 4, 8].

Although PLLs support rapid development of ini-
tial working code, they typically make inefficient use
of underlying hardware and provide insufficient perfor-
mance for large problem sizes. This performance gap
is amplified by the recent move towards parallel pro-
cessing [1], where today’s multicore CPUs and many-
core graphics processors require careful low-level or-
chestration to attain reasonable efficiency. Consequently,
many applications are eventually rewritten in efficiency-
level languages (ELLs), such as C with parallel exten-
sions (Cilk, OpenMP, CUDA). Because ELLs expose
hardware-supported programming models directly, they
can achieve multiple orders of magnitude higher per-
formance than PLLs on emerging parallel hardware [3].
However, the performance comes at high cost: the ab-
stractions provided by ELLs are a poor match to those
used by domain experts, and moving to a different hard-
ware programming model requires rewriting the ELL
code, making ELLs a poor medium for exploratory work,
debugging and prototyping.

Ideally, domain experts could use high-productivity
domain-appropriate abstractions and achieve high per-
formance in a single language, without rewriting their
code. This is difficult today because of the implemen-
tation gap between high-level domain abstractions and
hardware targets, as depicted in Figure 1. This imple-
mentation gap not only already a problem, but is further
widening. Domains are specializing into sub-disciplines,
and available target hardware is becoming more het-
erogeneous, with hyperthreaded multicore, manycore
GPUs, and message-passing systems all exposing radi-
cally different programming models.

In this paper we observe that the metaprogramming
and introspection facilities in modern scripting languages

1



!"#$%&''

())*+,"&+-.'

/0'1*"&2-#3'

())*+,"&+-.'
4%5%*-)%#'

())*+,"&+-.'6-3"+.'%7)%#&8'3"9%'
6%8+$.'&#"6%:-;8'<+&='*+3+&%6'5+%<'

-2')"#"**%*')%#2-#3".,%'+3)*+,"&+-.8'

1"#"**%*'
1#-$#"33+.$'

>7)%#&'

>7)%#&')"#"**%*')#-$#"33%#'="8'
*+3+&%6'9.-<*%6$%'-2'"))*+,"&+-.'

6%8+$.'&#"6%:-;8'

())*+,"&+-.!

1*"&2-#3!

?
0
'@
.
2#
"
8&
#A
,&
A
#%
!

!"#$%&'('&)"*+',-,'+',)

./,/&&'&).&/01,2)

345"'*56)7/6',)819')

.,19:5;("+6)7/6',)819')

<1,2/&)

519')

=**1+/+'9)

519')

>?@)A-'5"/&"B/;1*)

./,/&&'&)C"*9"*#D)

8EF3)

F=@=)

Figure 1. Left: Implementation gap between productivity-level languages (PLL) and efficiency-
level languages (ELL). Right: Specialized embedded just-in-time specialization (SEJITS)
schematic workflow.

such as Python and Ruby can bridge the gap between the
ease of use of PLLs and the high performance of ELLs.
We propose the use of just-in-time specialization of PLL
code, where we dynamically generate source code in an
ELL within the context of a PLL interpreter. Unlike most
conventional JIT approaches, our JIT specialization ma-
chinery is selective, allowing us to pay the overhead of
runtime specialization only where performance can be
improved significantly, leaving the rest of the code in the
PLL. Further, our JIT machinery is embedded in the PLL
itself, making it easy to extend and add new specializ-
ers, while taking advantage of PLL libraries and infras-
tructure. Selective embedding of specialized JITs sup-
ports the rapid development and evolution of a collection
of efficient code specializers, made accessible to domain
experts through domain-appropriate abstractions.

2 Making JIT Specialization Selective and
Embedded

The key to our approach, as outlined in Figure 1
(right), is selective embedded just-in-time (JIT) special-
ization. The domain programmer expresses her code in a
PLL using provided class libraries of domain-appropriate
abstractions. Rather than executing computations di-
rectly, however, the library functions generate source
code at runtime in a lower-level ELL, such as C with
parallel extensions. This specific subset of the code is
then JIT-compiled, cached, dynamically linked, executed
via a foreign-function interface (on possibly exotic tar-
get hardware), and the results returned to the PLL, all
at runtime and under the control of the PLL interpreter.
From the domain programmer’s view, the process is in-
distinguishable from doing all computation directly in
the PLL, except (ideally) much faster.

SEJITS inherits standard advantages of JIT compila-
tion, such as the ability to tailor generated code for par-

ticular argument values or function compositions, or for
other characteristics known only at runtime. However,
as the name suggests, SEJITS realizes additional bene-
fits by being selective and embedded.

Selective. A SEJITS specializer targets a particu-
lar function or set of functions and a particular ELL
platform (say, C+OpenMP on a multicore CPU, or
CUDA [12] on a GPU). Specialization occurs only for
those specific functions, and only if all of the following
are true: (1) function specializers exist for the target plat-
form, (2) the ELL specialization of the function is much
faster than the PLL implementation, (3) the function is
likely to be executed many times (e.g. an inner loop),
amortizing the one-time overhead of specialization and
reducing overall running time. While conventional JIT
compilers such as HotSpot [16] also make runtime de-
cisions about what to specialize, in SEJITS the benefit
of specialization is not just avoiding overhead at run-
time, but also completely avoiding any additional mech-
anism for nonspecialized code by falling back to the PLL
when no appropriate 〈function, ELL platform〉 special-
izer exists. We therefore sidestep the difficult question
of whether PLL language constructs outside the special-
ized subset can be JIT-ed efficiently.

The programmer can also explicitly disable all spe-
cialization in order to use the PLL’s debugger or other
features during exploratory work, in which case all com-
putations are performed in the PLL directly.

Embedded. Embedding in a PLL provides both bet-
ter productivity-level abstractions and simpler efficiency-
level implementations. Modern PLL features such as
iterators, abstract classes, and metaprogramming allow
specialized abstractions to appear to the domain expert as
language extensions or mini-embedded-DSLs [7] rather
than as procedural libraries.

Embedding also helps the implementers of the spe-
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cialized JITs, because the specialization machinery is
implemented in the PLL itself by exploiting modern PLL
features, as described in Section 4.1. As a result, we
avoid rebuilding JIT compiler infrastructure (parser, an-
alyzer, etc.). The effect is that writing new specializers is
much easier, and integrating them more seamless, than if
the JIT machinery were outside the PLL interpreter.

3 Case Studies
Our SEJITS approach is most easily illustrated by

example. We have prototyped two specializers, one in
Python and one in Ruby, both of which rely on the in-
trospection features of modern PLLs to perform special-
ization, and we have tested our approach on real prob-
lems from high-performance computing and computer
vision. These problems are noteworthy because the orig-
inal implementations of the algorithms by domain re-
searchers used productivity languages, but ultimately the
algorithms had to be rewritten in efficiency languages to
achieve acceptable performance on parallel hardware.

Both case studies focus on providing high-level ab-
stractions for stencils, an important class of nearest-
neighbor computations used in signal and image process-
ing and structured-grid algorithms [10]. In a typical sten-
cil kernel, each grid point updates its value based on the
values of its nearest neighbors, as defined by the stencil
shape. For example, a three-dimensional 7-point stencil
computes a new value for each point in a 3D grid based
on the values of its 7 nearest neighbors.

In the first case study, Ruby classes and methods pro-
viding stencil abstractions are JIT-specialized to C code
annotated with OpenMP pragmas. In the second, Python
functions providing the abstractions are JIT-specialized
to CUDA [12] code for execution on Nvidia Graphics
Processors. In both case studies, the introspection and
function-interposition features of the PLLs effect spe-
cialization, including using information about the actual
arguments at runtime to generate more efficient code.

In our early experiments, we focus on the following
questions:

• How does the performance and scalability of JIT-
specialized code compare to ELL code handcrafted
by an expert programmer? This provides an upper
bound on how well we can do.

• Which aspects of JIT specialization overhead are
fundamental and which can be mitigated by further
engineering? This tells us how close we can expect
to come to the upper bound.

• How does the approximate programmer effort re-
quired to write PLL code compare to the effort re-
quired for an expert to code the same functional-

ity in an ELL? This helps quantify the tradeoff be-
tween raw performance and programmer productiv-
ity, highlighting the fact that “time to solution” is
often as important as achievable peak performance.

We first describe how each prototype performs spe-
cialization and execution and presents its abstractions to
the domain programmer. We then discuss the results for
both case studies together.

3.1 Case Study 1: Ruby and OpenMP
Abstractions. Our first case study provides Ruby

JacobiKernel and StencilGrid classes whose meth-
ods can be JIT-specialized to C with OpenMP pragmas
(annotations) for parallelizing compilers. StencilGrid
implements an n-dimensional grid as a single flat ar-
ray indexed based on the actual dimensions of the grid
instance. JacobiKernel provides the base class that
the programmer subclasses to implement her own stencil
kernel; the programmer overrides the kernel function1,
which accepts a pair of StencilGrid objects, to define
the desired stencil computation. As the code excerpt in
Figure 2 shows, StencilGrid provides a neighbors
function that returns a point’s neighbors based on a
user-supplied description of the grid topology (function
not shown), and Ruby iterators each interior and
each border over the interior and border points of the
grid, respectively.

The Ruby programmer must subclass from
JacobiKernel and use our iterators; other than
that, the function to be specialized can contain arbitrary
Ruby code as long as any method calls are reentrant.

Specialization. When the user-provided kernel
method is called, the JacobiKernel instance parses the
method’s code using the RubyParser library [20], which
returns a symbolic expression (Sexp) representing the
parse tree. The parse tree is then walked to generate ELL
code using information about the kernel method’s argu-
ments (which are instances of StencilGrid) to build
an efficient parallel C implementation. In our initial im-
plementation, the ELL language is C with OpenMP [14]
pragmas that a compiler can use to parallelize the code in
a target-architecture-appropriate way. An example Ruby
kernel function and the corresponding generated ELL
code are shown in Figure 2.

Execution. Using RubyInline [19], the C code is in-
visibly compiled into a shared object file, dynamically
linked to the interpreter, and called using Ruby’s well-
documented foreign function interface. Since the gener-

1Currently, the kernel method must return the actual body of the
kernel as text, hence the << (here-document) notation in the Ruby
code of Figure 2, but this implementation artifact will soon be elimi-
nated.
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class LaplacianKernel < JacobiKernel
def kernel
<<EOF

def kernel(in_grid, out_grid)
in_grid.each_interior do |center|
in_grid.neighbors(center,1).each do |x|
out_grid[center] = out_grid[center]

+ 0.2 * in_grid[x]

end
end
end
EOF

end
end

VALUE kern_par(int argc, VALUE* argv, VALUE self) {
unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)

for (t_8=1; t_8<256-1; t_8++) {
for (t_7=1; t_7<256-1; t_7++) {
for (t_6=1; t_6<256-1; t_6++) {
int center = INDEX(t_6,t_7,t_8);
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));

...

out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));

;}}}

return Qtrue;}

Figure 2. Example of a Laplacian kernel implemented in the Ruby stencil framework. Source in
Ruby (left) passes through the specialization system to generate inlined C code (right). Note
that the code defining neighbors is not shown.

ated kernel operates on Ruby data structures, there is no
overhead for marshalling data in and out of the Ruby in-
terpreter. RubyInline also attempts to avoid unnecessary
recompilation by comparing file times and function sig-
natures; the Ruby specializer machinery also performs
higher-level caching by comparing the parsed code with
a previously cached parse tree to avoid the overhead of
ELL code regeneration.

Experiments. We implemented three stencil kernels
using the Ruby framework: Laplacian, Divergence, and
Gradient, implemented as 7-pt stencils on a 3D grid. The
stencils differ in which points are vector quantities and
which are scalars; in each case, we use separate input
and output grids. We ran these on both a 2.6 GHz Intel
Nehalem (8 cores, with 2-way SMT for a total of 16 hard-
ware threads) and a 2.3 GHz AMD Barcelona (8 cores).
For comparison, we also ran handcrafted C+OpenMP
versions of the three kernels using the StencilProbe [22]
microbenchmark. For both implementations, NUMA-
aware initialization is used to avoid deleterious NUMA
effects resulting from the “first-touch” policy on these
machines, whereby memory is allocated at the first core’s
memory controller. We discuss results of both case stud-
ies together in Section 3.3.

3.2 Case Study 2: Python and CUDA
Abstraction. In our second case study, we pro-

vide abstractions in Python and generate ELL code for
CUDA [12]. Our stencil primitive accepts a list of
filter functions and applies each in turn to all elements
of an array. A filter function can read any array ele-
ments, but cannot modify the array. This constraint al-
lows us to cache the array in various ways, which is im-
portant for performance on platforms such as a GPU,

where caches must be managed in the ELL code. Our
category-reduce primitive performs multiple data-
dependent reductions across arrays: given an array of
values each tagged with one of N unique labels, and a
set of N associative reduction operators corresponding
to the possible labels, category-reduce applies the ap-
propriate reduction operator to each array element. If
there is only one label, category-reduce behaves like
a traditional reduction.

Specialization. Our prototype relies on function dec-
orators, a Python construct that allows interception of
Python function calls, to trigger specialization. The
Python programmer inserts the decorator @specialize
to annotate the definitions of the function that will call
stencil and/or category-reduce as well as any fil-
ter functions passed as arguments to these primitives.
The presence of the decorator triggers the specializer
to use Python’s introspection features to obtain the ab-
stract syntax tree of the decorated function. Decorated
functions must be restricted to the embedded subset of
Python supported by our specializer. Specifically, since
our efficiency layer code is statically typed, we perform
type inference based on the dynamic types presented to
the runtime and require that all types be resolvable to
static types supported by NumPy [13]. Type inference
is done by examining the types of the input arguments
to the specialized function and propagating that informa-
tion through the AST. In addition, we must be able to
statically unbox function calls, i.e. lower the code to C
without the use of function pointers. As development
proceeds, we will continue expanding the supported sub-
set of Python. If the specializer can’t support a particular
Python idiom or fails to resolve types, or if no decorators
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are provided, execution falls back to pure Python (with
an error message if appropriate).

Execution. If all goes well, the specializer generates
CUDA code, and arranges to use NumPy [13] to ease
conversion of numerical arrays between C and Python
and PyCUDA [9] to compile and execute the CUDA code
on the GPU under the control of Python. The specializer
runtime also takes care of moving data to and from GPU
memory.

Experiments. We used these two primitives to imple-
ment three computations that are important parts of the
gPb (Global Probability of Boundaries) [11] multi-stage
contour detection algorithm. gPb was an interesting case
study for two reasons. First, this algorithm, while com-
plicated, provides the most accurate known image con-
tours on natural images, and so it is more representa-
tive of real-world image processing algorithms than sim-
pler examples. Second, the algorithm was prototyped in
MATLAB, C++, and Fortran, but rewriting it manually in
CUDA resulted in a 100× speedup [3], clearly showing
the implementation gap discussed in Section 1.

The stencil computations we implemented correspond
to the colorspace conversion, texton computation, and lo-
cal cues computations of gPb. The Python code for local
cues, the most complex of the three, requires a total of
five stencil filters to extract local contours out of an im-
age: quantize, construct histograms, normalize/smooth
histogram, sum histograms, and χ2 difference of his-
tograms. We show results on two different Nvidia GPUs:
the 16-core 9800GX2 and the 30-core Tesla C1060.

The one-time specialization cost indicates the time
necessary to compile the PLL into CUDA. The per-call
specialization cost indicates time needed to move data
between the Python interpreter and the CUDA runtime,
and the execute time reflects GPU execution time. Not
shown are pure Python results without specialization,
which took approximately 1000× longer than our JIT-
specialized version on the C1060. For simple functions,
like the colorspace conversion function, we approach
handcoded performance. Our most complex code, the
local cue extractor, ran about 4× slower than handcoded
CUDA, which we feel is respectable. We also note
good parallel scalability as we move to processors with
more cores, although it’s important to note that some of
that performance boost came from architectural improve-
ments (e.g. a better memory coalescer).

3.3 Results and Discussion
Performance. Table 1 summarizes our results. For

each JIT-specializer combination, we compare the per-
formance of SEJITS code against handcrafted code writ-
ten by an expert; the slowdown column captures this

penalty, with 1.0 indicating no performance penalty rel-
ative to handcrafted code. We report both the fixed over-
head (generating and compiling source code) and the per-
call overhead of calling the compiled ELL code from the
PLL. For example, the second row shows that when run-
ning the Laplacian stencil using our Ruby SEJITS frame-
work on the 16-core Nehalem, the running time of 0.614
seconds is 2.8× as long as the 0.219-second runtime of
the handcrafted C code. The same row shows that of the
total SEJITS runtime, 0.271 seconds or 44% consists of
fixed specialization overhead, including source code gen-
eration and compilation; and 0.12 seconds or 20.2% is
the total overhead accrued in repeatedly calling the spe-
cialized code.

Several aspects of the results are noteworthy. First,
the Ruby examples show that it is possible for SEJITS
code to achieve runtimes no worse than 3 times slower
than handcrafted ELL code. In fact, the Barcelona
results show that once specialized, the Laplacian and
Gradient kernel performance is not only comparable to
handcrafted C, but in some cases faster because the
JIT-specialized kernels contain hardcoded array bounds
while the C version does not. On Nehalem, all kernels
are slower in Ruby, due in part to the different code struc-
ture of the two in the ELL; as the code generation phase
is quite primitive at the moment, a few simple changes to
this phase of the JIT could result in much better perfor-
mance.

The Python examples overall perform substantially
worse than Ruby, but a larger percentage of the slow-
down is due to specialization overhead. Most of this
overhead is coming from the CUDA compiler itself,
since in our prototype we specialize functions that may
be called very few times. The colorspace conversion ex-
ample shows this: the execution overhead is less than
0.02 seconds, whereas the specialization overhead is es-
sentially the time required to run the CUDA compiler.

More importantly, our parallel primitives are currently
not optimized, which is why the Localcues and Tex-
ton computation runs 3 − −12× slower with SEJITS
than handcoded CUDA. For example, the read-only in-
put data for a stencil filter could be stored in the GPU’s
texture cache, eliminating copying of intermediate data
between filter steps. As another example, the implemen-
tation strategy for parallel category reduction on CUDA
depends strongly on the parameters of the particular re-
duction: for large numbers of categories, our handcrafted
CUDA code uses atomic memory transactions to on-chip
memory structures to deal with bin contention. As well,
the size of data being accumulated dictates how interme-
diate reduction data is mapped to the various GPU on-
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@specialize

def min(a, b):
if a > b: return b
else: return a

@specialize

def colMin(array, element, [height, width],
[y, x]):

val = element

if (y > 0):
val = min(val, array[y-1][x])

if (y < height-1):
val = min(val, array[y+1][x])

return val

@specialize

def kernel(pixels):
return stencil(pixels, [filter], [])

__device__ int min(...);
__global__ void colMin(int height,

int width,int* dest, float* array)
{

const int y=blockIdx.y*blockDim.y+threadIdx.y;
const int x=blockIdx.x*blockDim.x+threadIdx.x;
int element=array2d[y*width+x];
int* ret=&dest[y*width+x];

int val = element;
if (y > 0) {
val = min(val, array[(y-1)*width+x]);

}

if (y < height - 1) {
val = min(val, array[(y+1)*width+x]);

}

*ret = val;

}

Figure 3. Illustration of simple kernel. Source in Python (top) calls the stencil primitive with
functions decorated with @specialize, which then generates CUDA code for functions called
inside our parallel primitives.

chip memory structures. Although we have experience
hand-coding such scenarios, we have not yet incorpo-
rated this knowledge into the specializer, though all the
necessary information is available to the SEJITS frame-
work at runtime. Our broader vision is that specialization
allows these details to be encapsulated in specializers to
enable runtime generation of efficient code.

We do not show results for running the PLL-native
versions of the computations. Python was about three or-
ders of magnitude slower than handcrafted C, and Ruby
about two orders of magnitude slower. This is not sur-
prising, but it emphasizes that SEJITS is much closer to
the performance of handwritten code than it is to the per-
formance of the PLL itself.

Programmer effort. All in all, these are useful re-
sults for domain programmers. The original rewrite of
gPb in CUDA [3] took many engineer-months of work
by a researcher who is both a domain expert and a CUDA
expert. The difficulty lay in using the GPU memory
hierarchy properly, partitioning the data correctly, and
debugging CUDA code without the high-level debug-
ging tools provided by PLLs. Using our Python SEJITS
framework and Python’s debugging tools, it took one af-
ternoon to get all three kernels running reasonably fast on
the GPU. Similarly, the Ruby stencils took only an hours
to write with SEJITS, compared to a day for OpenMP.
Besides consisting of fewer lines of code, the PLL code
was developed with the full benefits of the Ruby debug-
ging facilities (interactive command prompt, breakpoint
symbolic debugger, etc.) These results encourage us that
it is indeed possible to get competitive performance from
PLL source code in a programmer-invisible and source-

portable manner.

4 Discussion
While these two examples are not sufficient to gener-

alize, we believe SEJITS presents a significant opportu-
nity. For example, even handling the thirteen computa-
tional “motifs” that recur in many applications [1] would
be a productive step forward. Here we discuss the oppor-
tunities and challenges of pursuing such a path.

4.1 Why Now?
In 1998, John Ousterhout [15] made the case for us-

ing scripting languages for higher-level programming be-
cause they are designed to glue together components in
different languages while providing enough functional-
ity to code useful logic in the scripting language itself.
In particular, good “glue facilities” include the ability to
dynamically link object code created by other compilers,
make entry points available to the scripting language via
a foreign function interface, and support translating data
structures back and forth across the boundary.

In 1998, the most widespread scripting languages
were Tcl and Perl. Tcl was expressly designed as a glue
language and succeeds admirably in that regard, but with
no type system and few facilities for data abstraction or
encapsulation, it is not rich enough to support the do-
main experts we target. Perl is considerably more pow-
erful, but both it and Tcl fall short in introspection sup-
port, which is necessary for the embedding aspect of our
approach that leads to ease of extensibility. Java supports
introspection, but has weak glue facilities and a low level
of abstraction—the same program typically requires 3–
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Language & CPU, Hand Slow- Specialization Execution
computation #cores coded SEJITS down Overhead Overhead
Ruby Laplacian Barcelona, 8 0.740 0.993 1.34 0.250 (25%) 0.003 (0.3%)
Ruby Laplacian Nehalem, 8 0.219 0.614 2.80 0.271 (44%) 0.120 (20.2%)
Ruby Divergence Barcelona, 8 0.720 0.973 1.35 0.273 (28%) 0.000 (0.0%)
Ruby Divergence Nehalem, 8 0.264 0.669 2.53 0.269 (40%) 0.136 (20.3%)
Ruby Gradient Barcelona, 8 1.260 1.531 1.22 0.271 (18%) 0.000 (0.0%)
Ruby Gradient Nehalem, 8 0.390 0.936 2.40 0.268 (29%) 0.278 (29.7%)
Python Colorspace GX2, 16 0.001 0.469 469.00 0.448 (96%) 0.020 (4.3%)
Python Colorspace C1060, 30 0.001 0.596 596.00 0.577 (97%) 0.018 (3.0%)
Python Textons GX2, 16 2.294 7.226 3.15 2.470 (34%) 2.462 (34.1%)
Python Textons C1060, 30 0.477 5.779 12.12 3.224 (56%) 2.077 (35.9%)
Python Localcues GX2, 16 0.565 5.757 10.19 2.600 (45%) 2.592 (45.0%)
Python Localcues C1060, 30 0.263 3.323 12.63 2.235 (67%) 0.825 (24.8%)

Table 1. Performance results (all times in seconds) comparing SEJITS vs. handcrafted ELL
code. Ruby results reflect 10 iterations of the stencil (“inner loop”).

10× as many lines to express than in typical scripting
languages [17]. Popular domain-specific languages like
MATLAB and R have weak glue facilities and introspec-
tion; while JIT specialization could be applied, it could
not be embedded, and new specializers would be more
difficult to write and integrate, requiring recompiling or
relinking the PLL interpreter or runtime for each change.

Modern scripting languages like Python and Ruby fi-
nally embody the combination of features that enable
SEJITS: a high level of abstraction for the programmer,
excellent introspection support, and good glue facili-
ties. For these reasons, they are ideal vehicles for SE-
JITS. Although the interception/specialization machin-
ery can be implemented in any language with aspect-
oriented support, we exploit specific Python and Ruby
features for both ease of extensibility and better perfor-
mance. In Ruby, when a method is successfully spe-
cialized, the instance on which the method was called is
converted to a singleton. This allows all fixed overheads
associated with specialization to be eliminated on subse-
quent invocations—the only check necessary is whether
the method must be re-specialized because the function
signature has changed or because (in our example) the
StencilGrid arguments have different sizes. In Python
we used the function decorator mechanism to intercept
function calls; our current lack of a cache for generated
source code results in penalties on subsequent invoca-
tions, although Python has the necessary functionality to
support such a cache.

4.2 Benefits to Efficiency Programmers

Although SEJITS clearly benefits productivity pro-
grammers, less obvious is the benefit to efficiency pro-
grammers, who are often asked to adapt existing code

to run efficiently on new hardware. Because the spe-
cializer machinery (function call interception, code in-
trospection, orchestration of the compile/link/run cycle,
argument marshalling and unmarshalling) is embedded
in the PLL, an efficiency programmer wishing to create
a new specializer for some class method M merely has to
determine what to do at each node of the abstract syntax
tree of a call to M (a straightforward instance of the Vis-
itor design pattern [6]). Furthermore, this code is written
in the PLL, which typically has excellent debugging and
prototyping support. This encourages rapid experimenta-
tion and prototyping of new specializers as new hardware
or ELL platforms become available, all without contam-
inating the domain expert’s application source code writ-
ten in the PLL. Indeed, if an efficiency programmer has
to code a particular abstraction in an ELL anyway, it
should require minimal additional work to “plug it into”
the SEJITS framework.

In addition, since we emit source code, efficiency pro-
grammers can immediately leverage the vast previous
work on optimization, autotuning [2], parallelizing op-
timizing compilers, source transformation, etc. in an in-
cremental fashion and without entangling these concerns
with the application logic or contaminating the applica-
tion source code.

4.3 Drawbacks
Dynamically-generated code is much harder to debug

than static code. Our current prototype actually gener-
ates C source code, so debugging of JIT-specialized code
could be eased by saving that code for inspection. But
we recognize that the emission of source code, while a
secondary benefit, is not fundamental to our approach.

An additional complication is that floating-point-
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intensive numerical codes may behave nondeterministi-
cally due to the non-associativity of floating-point oper-
ations. The nature of JIT specialization is such that it
is highly likely that floating-point computations will be
refactored or reordered as they are mapped down to the
ELL, and that this transformation is decided at runtime
and highly platform-dependent but deliberately kept in-
visible to the productivity programmer. While develop-
ers of numerical codes are accustomed to dealing with
such problems, we recognize that our introduction of an
extra level of indirection may exacerbate it.

5 Related and Future Work
JIT approaches. Early work by Engler and Proebst-

ing [5] illustrated the benefits of selective JIT compila-
tion. Products such as Sun’s HotSpot JVM [16] perform
runtime profiling to decide which functions are worth the
overhead of JIT-ing, but must still be able to run arbi-
trary Java bytecode, whereas SEJITS does not need to be
able to specialize arbitrary PLL code. In this way SE-
JITS is more similar to PyPy [18], which provides an
interpreter for a subset of Python written in Python it-
self to allow experimenting with the implementation of
interpreter features. Our approach is also in the spirit of
Accelerator [23], which focuses on optimizing specific
parallel kernels for GPU’s while paying careful attention
to the efficient composition of those kernels to maximize
use of scarce resources such as GPU fast memory. We
anticipate that as our efforts expand we will encounter
the opportunity to bring to bear the substantial literature
on code-generation and code-optimization research.

Data marshalling/unmarshalling and copying across
the PLL/ELL boundary is a significant part of the per-
call overhead in our Python prototype. We are looking at
approaches such as DiSTiL [21] for ideas on how to op-
timize data structure composition, placement, and move-
ment.

Approaches to building PLLs. Domain-specific
languages (DSLs) have long been used to improve
domain-expert programmer productivity, but a complete
toolchain from DSL down to the hardware makes DSLs
expensive to build and modify. As an alternative, Hu-
dak and others [7] proposed Domain-Specific Embed-
ded Languages (DSELs), an approach in which the DSL
is implemented within the constructs provided by some
host language. This embedding allows the productiv-
ity programmer fall back to host-language code when
a construct is unavailable in the DSEL and also makes
the DSEL more easily evolvable as the domain evolves.
Our motivations for embedding the specializer machin-
ery in the PLL are analogous to that for DSELs: non-
specializable functions can be executed in the PLL, and

extending the system with new specializers is easy since
it doesn’t require going “outside” the PLL interpreter.

Using productivity languages for high-
performance computing. Python in particular is
garnering a rapidly-growing scientific computing
community. Of the many efforts to improve Python’s
performance for scientific computing, the most closely
related to our work are Cython and Weave. Cython
(cython.org) allows annotating Python source with
additional keywords giving static type information to
a C compiler. In effect, the programmer promises not
to use certain dynamic Python language features on
certain objects; Cython compiles the program exploiting
this information to speed up inner loops. However, a
“Cythonized” Python program can no longer be executed
by a standard Python interpreter. Another approach is
the Weave subpackage of SciPy/NumPy, which focuses
on easy inlining of C/C++ code into Python functions
rather than integration of entire C/C++ libraries with
Python. In both approaches, the specific optimizations
are visible directly in the application logic. In contrast,
our goal is to keep the application logic free of such
considerations. Furthermore, in general the existing
efforts do not attempt a framework for transparent and
retargetable specialization, though they do provide
some machinery that may facilitate our future efforts
extending the SEJITS approach.

6 Conclusions
Emerging architectures such as manycore processors

and GPU’s have much to offer applications that can ben-
efit from economical high-performance computing. Un-
fortunately the gap between the productivity-level lan-
guages (PLLs) at which domain experts would like to
program and the efficiency-level languages (ELLs) one
must use to get performance is large and growing. Selec-
tive embedded JIT specialization bridges this gap by al-
lowing selective, function-specific and platform-specific
specialization of PLL code at runtime via JIT source
code generation, compilation and linking. SEJITS can
be implemented incrementally and invisibly to the pro-
ductivity programmer and allows research on efficiency-
layer techniques to proceed independently of the lan-
guages used by domain experts.

In two case studies, we provided similar abstractions
in two different PLLs (Ruby and Python) and targeting
different emerging architectures (multicore x86 and mul-
ticore GPU). Applying SEJITS to real stencil-code al-
gorithms from a state-of-the-art vision algorithm yields
competitive performance to approaches requiring much
higher programmer effort. These early results encourage
us to further investigate SEJITS as a low-friction frame-
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work for rapid uptake of efficiency-programmer tech-
niques by productivity programmers.
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