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ABSTRACT
Vector-thread (VT) architectures exploit multiple forms of
parallelism simultaneously. This paper describes a compiler
for the Scale VT architecture, which takes advantage of the
VT features. We focus on compiling loops, and show how
the compiler can transform code that poses difficulties for
traditional vector or VLIW processors, such as loops with
internal control flow or cross-iteration dependences, while
still taking advantage of features not supported by multi-
threaded designs, such as vector memory instructions. We
evaluate the compiler using several embedded benchmarks
and show that we can obtain substantial speedups over a
single-issue, in-order scalar machine.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); C.1.4 [Processor Archi-
tectures]: Parallel Architectures; D.3.4 [Programming
Languages]: Processors

General Terms
Design, Performance

Keywords
Vector processors, Compilers, Code generation

1. INTRODUCTION
In recent years, computer architects have focused on im-

proving performance using explicitly parallel computing in-
stead of relying on more complex superscalar designs and
higher clock rates. As a result, compiler technology has
become increasingly important for new processor designs.
Established explicitly parallel architectures, such as vector
or VLIW, have a rich history of compilation techniques, but
they also suffer some limitations on the types of codes that
can be parallelized—e.g. vectorization is usually restricted
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to innermost loops. More recently, with the advent of the
multicore era, architects have been exploring multithreaded
approaches. However, multithreaded designs usually incur
high synchronization costs, and are considerably less efficient
than vector architectures for data-parallel tasks.

The vector-thread (VT) architectural paradigm [19, 20]
unifies the vector and multithreaded execution models. A
control processor interacts with a vector of virtual proces-

sors, and can broadcast instructions to them in a similar
manner to a vector machine. Virtual processors also have
the ability to direct their own control flow, as in a multi-
threaded design. The Scale architecture is an instantiation
of the VT paradigm, which simultaneously exploits data-
level, thread-level, and instruction-level parallelism. De-
signed as an“all-purpose”architecture, Krashinsky et al. [19,
20] have shown that Scale provides competitive performance
across several embedded application domains, and that it
particularly excels at exploiting loop-level parallelism. How-
ever, their work used handwritten assembly code, which is
impractical for large-scale application development.

In this paper, we describe our compiler for the Scale ar-
chitecture. The primary contribution of this paper is the de-
velopment of a working back-end code generator that is able
to take advantage of the architectural features in Scale. Our
compiler infrastructure is still early in its development—for
example, the compiler does not currently handle while loops,
and it does not incorporate any novel analyses. However,
even at this early stage, the compiler is able to parallelize
simple DOALL loops as well as loops that typically present
problems for vector or VLIW compilers, such as loops with
internal control flow, loops with cross-iteration dependences,
and outer loops. We evaluate the compiler across several
embedded benchmarks and show significant speedups over a
single-issue scalar processor.

2. VECTOR-THREAD ARCHITECTURE
BACKGROUND

This section provides an overview of vector-thread archi-
tectures and the Scale VT processor prototype. For further
details, refer to Krashinsky et al. [19, 20].

2.1 Vector-Thread Architectural Paradigm
In the VT architectural model, a control processor in-

teracts with a vector of virtual processors. Each virtual
processor (VP) is a thread that contains a set of registers
and execution resources. VPs execute RISC-like instructions
that are grouped into atomic instruction blocks (AIBs). The
control processor can vector-fetch an AIB that will be exe-



cuted by all of the VPs in parallel, thus exploiting data-level
parallelism (DLP). The control processor can also execute
vector-load and vector-store commands to transfer blocks of
data between VPs and memory. Each VP can also direct its
own control flow with a thread-fetch of the next AIB, thus
enabling thread-level parallelism (TLP). A VP thread halts
and waits for the next vector-fetch from the control proces-
sor after executing an AIB that does not issue a thread-fetch
instruction. The execution of vector-fetched AIBs and vec-
tor memory commands can be freely intermingled with the
execution of thread-fetched AIBs, allowing DLP and TLP
to be exploited simultaneously within the architecture. The
VPs are also connected by a unidirectional ring, the cross-

VP network, which allows each VP to send values to its
neighbor.

2.2 The Scale Vector-Thread Processor
The Scale processor prototype [21] is a low-power, high-

performance design for embedded systems, and it demon-
strates that the VT paradigm is well-suited for this applica-
tion domain. Figure 1(a) is a simplified high-level diagram
of the Scale microarchitecture. Scale contains four paral-
lel lanes within the vector-thread unit (VTU). Virtual pro-
cessors are striped across the physical lanes and are time-
multiplexed within each lane to share the physical execu-
tion resources. The example configuration presented in Fig-
ure 1(a) has a vector length of 16, but Scale can support up
to 128 VPs. A special vector memory unit (VMU) handles
vector-load and vector-store commands.

Figure 1(b) is a more detailed view of one lane, show-
ing how it is actually partitioned into four heterogeneous
clusters to support instruction-level parallelism (ILP). All
clusters can handle standard integer ALU instructions. Ad-
ditionally, cluster 0 supports VP memory operations, clus-
ter 1 supports VP fetch instructions, and cluster 3 supports
integer multiply and divide. Clustering is exposed to the
compiler, which is responsible for partitioning VP instruc-
tions between the clusters. Scale makes extensive use of
decoupling to tolerate latencies, so different clusters within
a lane can be executing code for different VPs simultane-
ously. There are four separate cross-VP networks in Scale,
connecting sibling clusters in different lanes, and these net-
works contain queues to provide decoupling between neigh-
boring VPs.

A VP’s general registers in each cluster are either pri-

vate—if they are only used by that VP—or shared—if they
are used by other VPs. The shared registers can be used
to hold constants set by the control processor, or to hold
temporary values within the execution of a single AIB (the
execution of each AIB is atomic with respect to other AIBs,
but VPs can interleave execution at AIB boundaries), or
to implement efficient reduction operations across VPs. Al-
though not shown in Figure 1(b), cluster 0 also contains
a separate set of store-data registers which are similar to
private registers but are only used for holding values to be
stored to memory. Additionally, each ALU’s input operands
are exposed as programmer-visible chain registers, which are
used to avoid accessing the register files for short-lived values
to reduce energy [6]. The use of chain registers and shared
registers also reduces the per-VP register requirements. For
example, as shown in Figure 1(b), cluster 2 does not use
the physical register file; this could be due to the fact that
instructions on that cluster only use chain registers for their

computations. By contrast, cluster 3 uses all available phys-
ical registers. The maximum length of the virtual processor
vector is dependent on the cluster with the highest per-VP
physical register requirements, as discussed in the next sec-
tion. In Figure 1(b), cluster 3 determines the maximum
vector length. An important Scale code optimization is to
try to use the chain registers and shared registers in each
cluster to reduce private register usage, hence allowing in-
creased vector length and potentially greater performance.

2.3 Scale Code Example
The typical programming model for a VT architecture is

to map loops to the virtual processor vector, with each VP
executing an iteration. Figure 2 shows a simple vectorizable
loop, and we here assume that the input and output arrays
are guaranteed to be disjoint. The Scale code for this func-
tion is shown in Figure 3. The code contains both control
processor instructions as well as VP instructions, which are
delimited by .aib begin/.aib end directives. The control
processor is responsible for issuing a vcfgvl configuration
command to specify the number of private and shared reg-
isters used in each cluster, which determines the maximum
vector length, vlmax. Note that for the purposes of the con-
figuration, the number of private registers listed for cluster
0—which also supports memory operations—is the larger of
the number of private registers used and the number of store-
data registers used. In Figure 3, the register requirements
of cluster 3 determine vlmax: (b(32 − 1)/1c) × 4 = 124. If a
configuration command does not use any private registers,
the maximum vector length is set to 128.

The vcfgvl command in the example causes the active
vector length, vl, to be written to the t0 register. The ac-
tive vector length is the minimum of vlmax and the value
of a0, which holds the number of loop iterations to be exe-
cuted. Since the multiply coefficient is a constant value, the
control processor writes it into a shared register on cluster
3. It then uses strip mining [24] to launch multiple loop
iterations simultaneously. In each strip-mined loop itera-
tion, the control processor sets the vector length, and then
performs two vector loads (with an auto increment address-
ing mode) to obtain the inputs. The actual computation is
performed by vector-fetching the AIB, causing the VPs to
execute the multiply-add sequence on the input elements.
Each VP places its result in a store-data register, which is
used by the auto-incrementing vector store. The strip-mined
loop continues until all elements have been processed.

void mult_add(int len, int *in1, int *in2, int *out) {

int i;

for (i = 0; i < len; i++)

out[i] = COEFF*in1[i] + in2[i];

}

Figure 2: C code for mult add function.

Note that the given code example is very similar to what
might be generated for a traditional vector architecture. A
key difference is that VP instructions are grouped within an
AIB that the control processor issues in one vector-fetch in-
struction, whereas a traditional vector machine would issue
separate vector-multiply and vector-add instructions. While
existing vectorization techniques can be leveraged for Scale,
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Figure 1: (a) High-level overview of Scale architecture. For simplicity, certain details are omitted, such as
the use of clustering. (b) Expanded diagram of the clusters within a single lane.

there are also some unique compilation challenges, which are
covered in the next section.

3. COMPILER OVERVIEW
This section presents an overview of the Scale compiler

infrastructure1. Figure 4 shows the compiler flow for our
work. The infrastructure ties together three existing com-
pilers: SUIF [34] is used as the front end; Trimaran [10]
is used for back end code generation; and a GCC-based
cross-compiler tool chain [2] is used to produce the final exe-
cutable. The SUIF front end parses a C source code file and
converts it into the SUIF intermediate representation (IR).
The compiler then performs memory dependence analysis,
annotating the IR with dependence information that will
be later used by Trimaran. The SUIF IR is then fed into
a SUIF-to-Trimaran converter [23], which outputs the pro-
gram in Trimaran’s intermediate representation. Trimaran
performs classical optimizations including common subex-
pression elimination, copy propagation, loop-invariant code
motion, and dead code elimination. The output of the opti-
mization phase is then sent to the scalar-to-VP code trans-
formation phase, which attempts to map code to the vector-
thread unit. After the transformation phase, cluster assign-
ment is performed, and then the first (prepass) instruction
scheduling phase occurs. Prepass instruction scheduling is
followed by register allocation and a second (postpass) in-
struction scheduling phase, after which AIBs are formed for
the VP code. Once AIB formation occurs, the compiler then
searches for opportunities to replace occurrences of general
registers with chain registers. Finally, Trimaran generates

1All references to the “Scale compiler” in this paper refer to
the compiler for the Scale architecture, not the Scale com-
piler [3] for the TRIPS architecture.

assembly code, and this is processed by the GCC cross-
compiler to create the final binary executable. The following
sections discuss certain key compiler phases in more detail,
primarily focusing on how code is actually mapped to the
vector-thread unit.

3.1 Memory Dependence Analysis
A key motivating factor for using SUIF as our front end

is its dependence library, as an accurate dependence graph
is important in order to determine what parallelism can be
exploited in the program. We use the library to annotate
memory operations with direction vectors indicating the ex-
istence of dependences. A special direction type is used for
cross-iteration dependences with a distance of 1, as these
can be mapped to transfers on the cross-VP network.

The dependence analysis is potentially complicated by the
fact that Scale was designed for embedded systems, which
typically run programs written in C. The use of pointers in
C programs creates an aliasing problem, in which the com-
piler cannot determine whether two different pointers will
access the same memory location, and hence must make an
extremely conservative assumption of dependences, result-
ing in little or no exploitable parallelism. To help with this
problem, we extended the SUIF front end to support the
restrict keyword, which indicates that the object pointed
to by a particular pointer will not be accessed by any other
pointer.

3.2 Scalar-to-VP Code Transformation
In this phase, the compiler attempts to map parallel sec-

tions of code to the vector-thread unit. Since VT archi-
tectures excel at exploiting loop-level parallelism, the com-
piler currently only focuses on transforming loops, which
frequently dominate execution time in the types of applica-



mult_add: #a0=len, a1=in1, a2=in2, a3=out

# vcfgvl command below configures the number of private and

# shared registers for each cluster to determine vlmax; the

# command also sets both the active vector length (vl) and

# the t0 register to the minimum of a0 and vlmax

# configuration format: c0:p,s c1:p,s c2:p,s c3:p,s

vcfgvl t0, a0,     1,0,   0,0,   1,0,   1,1

sll t0, t0, 2         # input/output stride

vwrsh COEFF, c3/sr0     # write constant to shared reg

stripmineloop:

setvl t1, a0            # (vl,t1) = min(a0,vlmax)

vlwai a1, t0, c3/pr0    # vector-load in1, inc ptr

vlwai a2, t0, c2/pr0    # vector-load in2, inc ptr

vf scale_add_aib # vector-fetch AIB

vswai a3, t0, c0/sd0    # vector-store out, inc ptr

subu a0, t1            # decrement counter

bnez a0, stripmineloop # loop until done

vsync # allow VPs to finish

jr ra # return

scale_add_aib:

.aib begin

c3      mult.lo pr0, sr0      -> c2/cr0   # mult in1 by COEFF

c2      addu cr0, pr0      -> c0/sd0   # add to in2

.aib end

Figure 3: Scale code for mult add function.
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Figure 4: Scale compiler flow.

tions we consider in this work. The compiler uses Trimaran’s
existing infrastructure to detect all of the loop nests in the
function under consideration. It then processes each loop
nest in an attempt to find a loop that can be transformed.
If a loop is successfully transformed, then its loop nest will
not be modified any further.

To illustrate the details of this compiler phase, we will
show how the function in Figure 5 is transformed. This
example contains a loop nest that also has internal control
flow. The inner loop has a loop-carried dependence due to
the accumulation. Figure 6 shows the scalar code that is
the input to the transformation phase on the left. The par-
allelized output code of the transformation phase is shown
on the right. In the following sections, we describe how the
transformation actually occurs.

Overview
As stated in Section 2, the typical approach to parallelize
loops for VT architectures is to strip mine the loop so that

void example(unsigned int len, unsigned short * restrict in,

unsigned char * restrict mask,

unsigned int * restrict out) {

unsigned int i, j, accum;

for (i = 0; i < len; i++) {

accum = out[i];

for (j = 0; j < len-i; j++)

accum += (in[j]*in[j+i]) >> SCALE;

if (mask[i] == 0)

accum >>= 1;

out[i] = accum;

}

}

Figure 5: C code example used to illustrate how the
compiler works.

the control processor launches a group of VPs simultane-
ously, with each VP executing a single loop iteration. The
basic blocks in the loop will be mapped to a combination
of VTU commands (including any vector memory instruc-
tions), vector-fetched VP code, thread-fetched VP code, and
scalar instructions—e.g. to process induction variables. The
mapping used for a particular basic block depends on its
type. Any given loop can be decomposed into basic blocks
that can be grouped into four different categories, with the
groups potentially overlapping so that a single block may be
placed in multiple categories. First, there is a header block
at the beginning of the loop. For the outer loop in Figure 6,
the header block is block 1. There may also be a group of
blocks that have a back edge to the header block. In Fig-
ure 6, block 6 is the single back edge block for the outer
loop. Additionally, there may be a group of blocks that
have a control-flow edge exiting the loop—block 6 is also an
exit block for the outer loop. The final group consists of any
remaining blocks in the loop that do not fall into the first
three categories. This group consists of blocks 2, 3, 4, and
5 for the outer loop in Figure 6. An innermost loop with
no conditionals has a single basic block, which is the header
block, a back edge block, and an exit block—this is block 3
for the inner loop in Figure 6. Although Trimaran can han-
dle more complex loop structures, we impose the restriction
that a loop can only have a single back edge block and a
single exit block, and that those blocks must be the same.
The reason for this requirement is so that when VPs direct
their own control flow by executing fetch instructions, they
will always transfer control back to the control processor at
the same point in the program. Otherwise, it would not be
possible for the control processor to manage the VPs as a
group, as it would need to handle return points individually.
In practice, this restriction did not cause a problem, as the
codes that we targeted were automatically mapped by the
compiler to have a single back edge/exit block.

Another restriction on the compiler is that loops with
data-dependent exit conditions—i.e. ”while” loops—are not
currently handled. One approach to deal with these loops is
to speculatively execute iterations and to later nullify the ef-
fects of any VPs that should not have been launched. Future
work will explore compilation of this type of code.

Figure 6 contains annotations between the scalar code
and parallelized code describing the type of mapping that
occurs. In the Scale compilation model, the header block



2: move r2, in # in[0]

sll r3, i, 1

add r4, r3, in # in[0+i]

li j, 0

3: lhu r5, r2 # in[j]

lhu r6, r4 # in[j+i]

mult r7, r5, r6

sra r8, r7, 1

add accum, accum, r8

add r2, r2, 2 # inc ptr

add r4, r4, 2 # inc ptr

add j, j, 1

slt r9, j, r0

bnez r9, 3

4: lbu r10, mask # mask[i]

bnez r10, 6

5: sra accum, accum, 1

6: sw accum, out

add mask, mask, 1

add out, out, 4

add i, i, 1

slt r11, i, len

bnez r11, 1

1: lw accum, out # out[i]

sub r0, len, i

slt r1, r0, 1

bnez r1, 4

Loop Entry

Loop Exit

2:    vmove v5, s1 # in[0]

vsll v6, v1, 1

vadd v7, v6, s1 #in[0+i]

vli v8, 0 # initialize j

fetch 3

3:    vplhu v9, v5 # in[j]

vplhu v10, v7 # in[j+i]

vmult v11, v9, v10

vsra v12, v11, 1

vadd v3, v3, v12

vadd v5, v5, 2 # inc ptr

vadd v7, v7, 2 # inc ptr

vadd v8, v8, 1

vslt p, v8, v4

psel.fetch 4, 3

4:    vplbu v13, v2 # mask[i]

vseq p, v13, 0

(p)fetch 5

5:    vsra v3, v3, 1

6: vmove sd0, v3

vsw sd0, out

add mask, mask, r15

sll, r16, r15, 2

add out, out, r16

add i, i, r15

sub r12, r12, r15

slt r11, i, len

bnez r11, 1

1: setvl r15, r12

# Get each VP’s iteration

# number and mask address

vwrsh s2, i

vadd v1, s2, v0

vwrsh s3, mask

vadd v2, s3, v0

vlw v3, out # out[i]

vsub v4, s0, v1 # len-i

vslt p, v4, 1

psel.fetch 2, 4

Loop Entry

Loop Exit

0: move r12, len

vcfgvl r13, 128, 0,0,0,0,0,0,0,0

vwrsh s0, len

vwrsh s1, in

la r14, vp_numbers

vlb v0, r14 # get VP numbers
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instructions
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Figure 6: The control-flow graph on the left contains the scalar code that is the input to the transformation
compiler phase. On the right is the parallelized output of the phase. All register numbers are virtual. The
type of register depends on the prefix in front of the number: “r”=scalar; “v”=private VP; “s”=shared VP;
“sd”=store-data VP. Certain scalar registers are referred to by their variable names for clarity. Highlighted
instructions in the parallelized code are inserted by the transformation phase, as opposed to simply being con-
verted from a scalar instruction. VP instructions that will be grouped into AIBs are indented to differentiate
them from scalar instructions and VTU commands executed on the control processor.

and back edge block are transformed to a combination of
vector-fetched VP code for non-memory operations, VTU
commands including vector memory instructions, and scalar
instructions to handle any induction operations as well as
the spawning of new VPs. Since the control flow for the
remaining loop blocks may differ from iteration to iteration,
it is dependent on data that will be unique to a particular
VP. Thus, those blocks are transformed to thread-fetched
VP code, and each memory instruction is transformed to a
VP memory operation within the appropriate block. A VP
will continue to direct its own control flow until it reaches
the back edge block, at which point it will halt.

As seen in Figure 4, the actual formation of AIBs takes
place in a later phase of the compiler, when the directives to
delimit the beginning and end of each AIB are inserted. This
means that the compiler actually interacts with VP code at
the level of a basic block. Only later, when the AIBs are

actually formed, will a basic block’s VP code in the inter-
mediate representation be divided into one or more AIBs,
as described in Section 3.5. The motivation for this phase
ordering is twofold. First, since there is a size limit for AIBs
(32 instructions per cluster for Scale), if the AIB bound-
aries were created before register allocation, there would be
a potential for spill code insertion to cause the limit to be vi-
olated. Second, delimiting AIBs before instruction schedul-
ing would impose restrictions on the scheduler, as all VP
instructions in an AIB would have to be moved as a group
relative to any instructions outside the AIB. This could hin-
der performance—for example, as discussed in Section 3.4,
when processing several vector loads, it can be desirable
to have each load immediately followed by any dependent
VP computation. To avoid complicating the scheduling of
VP instructions relative to non-VP instructions such as vec-
tor loads, the intermediate representation supports arbitrary



intermingling of both types of instructions within a basic
block. The assembly code generator handles the actual sep-
aration of VP instructions into a distinct section of the file.
For each AIB that is relocated into its own section from the
header block or back edge/exit block, the assembly code gen-
erator also inserts a vector-fetch instruction in its original
location.

Loop Selection
In traditional vectorizing compilers, selecting which loop in
a nest should be vectorized typically depends on factors such
as the structure of memory accesses or the loop trip count—
which requires profiling to estimate dynamically determined
trip counts. This can be a complicated process [5], and one
that we have deferred for future work. Rather than attempt-
ing to account for various loop-specific factors, the compiler
currently uses a simple heuristic of first working from the
innermost to the outermost loop in the nest, searching for a
DOALL loop that can be transformed. We attempt to trans-
form innermost loops first, because the control processor is
more efficient at handling branches than virtual processors.
If no DOALL loops in a nest can be mapped to the vector-
thread unit, then the compiler processes the loop nest again,
attempting to map loop-carried dependences to the cross-VP
network. Cross-VP communication is primarily designed to
be used within a vector-fetched AIB, so the compiler first de-
termines if the innermost loop has no internal control flow
and if it can be transformed using cross-VP transfers. If
that is not possible, the compiler restricts the vector length
to equal the number of independent VPs, and again works
from the innermost loop in the nest to the outermost loop.
The number of independent VPs is the maximum number
of VPs that can execute in parallel without having to be
time-multiplexed. In the Scale implementation, this value is
the number of lanes. Since using independent VPs removes
the possibility a VP will be time multiplexed on a lane, it
also removes the possibility of deadlock when using arbitrary
cross-VP communication.

It should be noted that although Scale does not support
explicit reduction operations, reductions can be handled by
using the standard parallelization technique of computing
partial results on each lane (in a shared register) and then
merging the results during a final execution phase. However,
we have not yet added compiler support for this approach, so
currently the compiler treats all loop-carried dependences in
the same manner when selecting which loop to transform. In
Figure 6, the inner loop contains a loop-carried dependence
on accum, so the compiler will first consider the outer loop
to see if it can be parallelized.

Loop Transformation
To determine if a loop can be transformed, the compiler
employs a modified version of the approach used for vector
architectures by Allen and Kennedy [5]. The compiler first
conducts a dependence analysis. Since a loop may contain
internal control flow, the compiler processes each possible
control flow path through the loop and updates the depen-
dence graph accordingly. The SUIF-generated direction vec-
tors for memory dependences are used to provide additional
information such as potential cross-VP transfers. Once the
dependence graph is constructed, the compiler uses Tarjan’s
algorithm to identify strongly connected components [32].
If there are any dependence cycles that occur in the loop

currently being considered, it will not be transformed un-
less the cycle involves register dependences contained within
an inner loop (as those will be local to each VP), or un-
less cross-VP communication is possible. Another require-
ment is that all memory operations that will potentially be
transformed to vector memory instructions—i.e. those in
the loop’s header block or back edge block—must have a
statically determinable stride value.

If the compiler determines that a loop meets the require-
ments for transformation, it sets up the code necessary for
the scalar processor to control the execution of the loop.
It creates a special preloop basic block that contains the
configuration command for the VTU. This is block 0 in Fig-
ure 6’s parallelized code. The command is updated after the
chain register insertion phase with the actual configuration
identifying the number of registers required in each cluster.
The preloop block also sets up loop-invariant values, includ-
ing constants, registers that are never written, and AIB ad-
dresses needed by VP fetch instructions. All of these values
are written into shared registers using the vwrsh command.
(For clarity, Figure 6 shows fetch instructions using the block
labels rather than actual registers.) Besides the performance
benefit of avoiding the computation of these values in each
iteration, mapping the values to shared registers that can
be used by multiple VPs also reduces the per-VP physical
register requirements.

Another function of the preloop block is to load each VP’s
number—found within a special data block containing the
numbers 0 through 127—into a private register if necessary.
This is done if an induction variable will be used in an in-
ternal loop block, and each VP has to compute the value of
that variable. For example, the value of mask[i] is loaded
in block 4 of Figure 6. Since this is an internal loop block, a
VP load instruction will be used, and the address register v2
has to be set up by the control processor. This is performed
in block 1 by having each VP take the baseline value of the
mask address for that strip-mined loop iteration—i.e. the
value needed by VP 0—and adding its own VP number.

Block 1 also contains the setvl command to set the vector
length in each strip-mined iteration. The induction opera-
tions for the loop (found in block 6) are updated so that
the induction value is multiplied by the vector length. Note
that the loop counter increments from 0 to the trip count
len. However, decrementing from len to 0 would be more
appropriate when using the setvl instruction, which takes
the number of iterations remaining as its source operand. In
the example, the compiler adds another variable r12 which
decrements to 0, while keeping the separate counter i which
increments to len. While this is simple, optimized code
would merge the two variables.

There is generally a one-to-one mapping between scalar
instructions and VP instructions, so transforming the code
is mostly straightforward. Note that most of the opcode
names in the parallelized code are the same as their scalar
counterparts with a“v”added as a prefix to indicate a vector
instruction. VP memory instructions have a “vp” prefix to
distinguish them from vector memory commands. Branches
are somewhat different for VPs than for a typical scalar pro-
cessor. When a VP finishes executing a block of code, it will
terminate unless it fetches another block. There is no notion
of “falling through” to the next block of code. Thus, in block
2, an explicit fetch instruction is added to fetch block 3. In
block 5, since there is no fetch instruction, the thread will



terminate and control returns to the control processor. To
conditionally fetch a block, the predicate register has to be
used. Each VP has a single private predicate register that
can be used for control flow and for if-conversion [4]. Block
1 shows how a scalar conditional branch instruction is con-
verted to a psel.fetch instruction which selects between
two different blocks to fetch. In block 4, if the predicate is
false, no fetch will occur and the VP will terminate.

Register values that are live within a single iteration are
unique to each VP, so they are mapped to private regis-
ters. Although not shown in Figure 6, cross-VP values are
mapped to a “dummy” register file, and are later converted
to prevVP/nextVP names in the assembly code that corre-
spond to the queues between each lane. The reason for using
registers for these values is to ensure that the compiler can
easily track the dependences between receive/send opera-
tion pairs. When generating code with cross-VP transfers,
the compiler also sets up a VTU command in the preloop
block for the control processor to push initial cross-VP val-
ues into the queue, and creates a postloop block containing
commands that pop final cross-VP values from the queue
after the loop ends.

3.3 Cluster Assignment
The compiler is responsible for assigning each VP instruc-

tion to a particular cluster. It uses a modified version of
the clustering approach described in [11], which targets a
typical VLIW architecture and tries to balance work among
the clusters while still avoiding inter-cluster moves along the
critical path. For a VLIW compiler, the focus is on improv-
ing ILP for a single thread. By contrast, Scale also exploits
DLP and TLP, and although reducing per-thread latency
is important in the compiler, it is typically more important
to focus on the other forms of parallelism to improve pro-
cessor throughput—thus reducing the overall latency of the
program. Since the vector length depends on the cluster
with the most severe register requirements, the Scale com-
piler prioritizes achieving a more balanced partitioning of in-
structions between clusters over minimizing the per-thread
latency.

Additionally, to enhance decoupling—which also serves
to hide latency—the compiler attempts to generate acyclic
dataflow between the clusters, as a specific cluster’s opera-
tions within an AIB have to be executed as an atomic group
for each VP. The compiler also tries to place long-latency
operations on clusters separate from the instructions which
depend on the results. This is intended to take advantage of
the decoupling between clusters. For example, if a multiply
feeds an add within a single AIB, placing the multiply and
add on separate clusters will allow the multiply latency to
be hidden by the interleaved execution of independent VPs.

3.4 Instruction Scheduling
Typical instruction scheduling approaches try to reduce

the critical path length of the section of code being ana-
lyzed. This frequently leads to long-latency instructions be-
ing scheduled early, while short-latency dependent instruc-
tions are scheduled later. As a result, register lifetimes are
often lengthened by the scheduler, leading to increased reg-
ister usage. By contrast, the primary goal of Scale’s in-
struction scheduler is to minimize register usage by schedul-
ing dependence chains together. This is done for two rea-
sons. First, by reducing the number of registers used by

each VP, the maximum vector length may increase, enabling
greater processor throughput. Second, scheduling depen-
dence chains together makes it more likely that the com-
piler will be able to explicitly target chain registers—the in-
puts to the ALU—potentially further reducing the register
usage for each VP and also enabling more energy-efficient
execution. As mentioned earlier, long-latency operations
are usually placed on a different cluster than any depen-
dent instructions, so Scale’s use of decoupling helps to hide
the latency from targeting dependence chains in this phase.
We modified the traditional list scheduler used in Trimaran
to attempt to group dependence chains together, and if no
chaining opportunities exist, to revert to its standard ap-
proach.

3.5 AIB Formation
In this phase, the compiler processes each basic block and

inserts directives around VP instructions that delimit the
boundaries of AIBs. As mentioned previously, the actual
separation of AIBs into a separate section of the file takes
place during assembly code generation. There are several
situations which will cause an AIB to be terminated. First,
for each VP instruction the compiler determines whether
the AIB size limit will be exceeded. Another reason to end
an AIB is on a control processor instruction that has a de-
pendence on one of the VP instructions in the current AIB.
Finally, the end of a basic block will also terminate an AIB.

3.6 Chain Register Insertion
Once AIBs are formed, the compiler can map temporary

values to chain registers, which are only valid within an AIB.
The use of chain registers can reduce the physical register file
resources required by each VP and thus potentially increase
the vector length. To determine which values can be mapped
to chain registers, the compiler constructs the live ranges for
each register value, keeping a list of potential candidates. A
value with a live range that crosses an AIB boundary cannot
be mapped to a chain register. Also, every operation that
executes on a particular cluster overwrites the values in that
cluster’s chain registers. If a potential chain register value
would not be overwritten by another operation during its
lifetime, it will be mapped to a chain register.

Note that it is possible for VP register spill code to be
generated when first running register allocation. Perform-
ing chain register insertion during the initial allocation phase
could reduce register pressure and lessen the possibility of
registers being spilled. However, chain register insertion has
to take place after AIB formation, and forming AIBs before
running the register allocator for the first time could create
a problem if spill code causes the AIB to overflow its size
limit. An alternative strategy employed by the TRIPS com-
piler is to form blocks before register allocation, but to use
iterative block splitting if spill code insertion causes a block
size violation [31]. We intend to explore this possibility in
future work.

4. EVALUATION
We evaluate our compiler implementation by using bench-

marks from the EEMBC benchmark suite [1]. Table 1 con-
tains a description of the benchmarks as well as the types
of loops that were parallelized during compilation. The au-
tocorrelation benchmark contains a loop nest in which the
inner loop has a cross-iteration dependence. By default, our



compiler parallelizes it using outer-loop vectorization (listed
as autocor_olv in the table). However, for the sake of com-
parison, we also configured the compiler to parallelize the in-
ner loop by using Scale’s cross-VP network (autocor_xvp).
Aside from inserting the restrict keyword to indicate that
pointers do not alias, the only other modifications we made
to the source code involved changing the loops for rgbcmy

and rgbyiq to use array accesses instead of pointer accesses.
This is due to a limitation we imposed for our initial com-
piler development, that an induction variable could only be
updated once within a loop iteration to simplify the compu-
tation of strides for vector memory accesses. Benchmarks
rgbcmy and rgbyiq contain pointer variables that are in-
cremented multiple times within the loop, inhibiting paral-
lelization within our current setup. However, we intend to
lift this restriction in future work to enable us to compile
code without having to make any pointer-to-array conver-
sions.

Since our compiler infrastructure is still early in its devel-
opment, we are restricted in the variety of benchmarks that
we are able to compile. It should be noted that we have not
yet incorporated any established parallel transformations in
the compiler front end. Also, we currently have certain arti-
ficial restrictions in place within the compiler that were in-
serted to ease the development and debugging process. As
we lift those restrictions, the compiler will be able to handle
more programs. Despite the limited number of benchmarks,
a key point is that they represent a wide variety of loop
types, including loops that would be non-vectorizable with-
out significant transformations. Our initial focus was not
on obtaining a vectorizable intermediate form from original
source code, but rather on how to map the intermediate
form to the vector-thread architectural features. Adding es-
tablished front-end loop transformations would be straight-
forward and would support a larger set of benchmarks, but
would not change the back-end code generation strategy. It
should also be noted that we only include benchmarks that
we can parallelize without programmer intervention, with
the exceptions of the modifications discussed above. Previ-
ous work [17, 15] has shown the difficulties of automatically
parallelizing EEMBC benchmarks, using Intel’s compiler in
an evaluation. The Intel compiler is unable to vectorize
many of the innermost loops in EEMBC benchmarks for
various reasons (although the use of the restrict keyword
would likely help in certain cases). It can alternatively tar-
get outer loops, but this requires user assistance, such as
OpenMP directives. Although this is only a single example,
it serves to illustrate the point that the problems encoun-
tered in automatically parallelizing certain benchmarks are
not unique to the Scale compiler.

Our compiler-generated code is evaluated on the Scale
microarchitectural simulator. The simulator includes de-
tailed models of the VTU and the cache, but uses a single-
instruction-per-cycle latency for the control processor. The
fact that control processor pipeline hazards are not modeled
improves the performance of the baseline scalar code, thus
providing us with a pessimistic evaluation of our speedups.
All simulations in this work use the default Scale configura-
tion of a VTU with 4 lanes, 4 clusters per lane, and 32 phys-
ical registers per cluster. Table 1 contains the speedup of
the compiler-generated vector-thread code over scalar code
running on the control processor. The scalar code is gen-
erated using the same compilation infrastructure described

in Section 3, but without performing any scalar-to-VP code
transformations.

The smallest speedup is about 3× for fir. This bench-
mark contains a loop nest with an inner loop that consists of
only two accumulations. Since the compiler parallelizes the
inner loop using cross-VP transfers, there is little computa-
tion to perform in parallel. Additionally, two of the four VP
instructions in the parallelized benchmark are long-latency
multiplies, further limiting the speedup. At the other ex-
treme, hpg has a large speedup of 33×. However, there is one
caveat with this result. In general, we observed that when
generating scalar code, the compiler infrastructure used in
this work (SUIF-to-Trimaran-to-GCC) is competitive with
the GCC-only approach used by Krashinsky et al. [19], and
in some instances is superior. However, for hpg, our compiler
generates code that contains a significant number of register
spills, and this code is slower by about a factor of 3 than
using GCC alone. For the sake of consistency, we used the
same baseline compiler infrastructure for all benchmarks,
but even when compared against the faster GCC-generated
scalar code, we still obtain about an 11× speedup for hpg.
rgbyiq has a speedup of about 26× regardless of the base-
line scalar code used. This is a simple DOALL loop that
the compiler can handle in a straightforward manner. For
autocor, the use of the cross-VP network produces a supe-
rior speedup to outer-loop vectorization. This is not inher-
ent to the program—with hand-coded assembly, the outer-
loop vectorized version is superior—but due to inefficiencies
in our compiler infrastructure when generating code with
thread fetches. By contrast, the inner-loop vectorized ver-
sion of autocor that uses the cross-VP network only has
a single basic block to parallelize, which is simpler for the
compiler to handle. As we further develop the compiler and
integrate other optimizations such as if-conversion, the effi-
ciency of outer-loop vectorization should increase.

An interesting comparison can be made between the re-
sults for Scale and the limit study on thread-level specula-
tion conducted by Islam et al. [15]. TLS designs are some-
what more flexible than Scale in the types of codes they can
handle, as they typically have hardware support to squash
speculative threads that have violated dependences. By con-
trast, we are still exploring the possibility of generating code
that can support speculative VPs, so we have to be con-
servative in our approach to handling dependences between
threads. In [15], the speedup over a single-issue scalar pro-
cessor is computed for a variety of multicore TLS configu-
rations. The benchmarks consist of the EEMBC consumer
and telecom suites, which includes autocor, hpg, rgbcmy,
and rgbyiq. For an ideal TLS machine with an infinite
number of cores and zero thread-management overhead, the
speedups are approximately 5× for autocor, 19× for hpg,
14× for rgbcmy, and 17× for rgbyiq. Note that for auto-

cor and rgbyiq, the actual speedups achieved by the Scale
compiler using a realistic model for the vector-thread unit
exceed the upper bound on the TLS speedups. (We do not
include hpg for the reason mentioned earlier.) For a 16-
core machine with no thread-management overhead (which
matches the issue capability of Scale’s VTU but is idealized
with respect to latency), the speedups are approximately 5×
for autocor, 9× for hpg, 8× for rgbcmy, and 9× for rgbyiq.
Obviously our setups for the evaluation are somewhat dif-
ferent; still, this comparison attests to the performance im-
provements made possible by various Scale features, such as



Benchmark Description Loop Type Avg. Vector Length Speedup

autocor olv Fixed-point autocorrelation DI 16.6 7.3
autocor xvp Fixed-point autocorrelation XI 60.6 10.1
fir Finite impulse response filter XI 35.0 3.3
hpg High pass grey-scale filter DP 63.6 33.0
rgbcmy RGB to CMYK color conversion DC 20.0 7.2
rgbyiq RGB to YIQ color conversion DP 28.0 26.0

Table 1: Benchmark descriptions, types of loops that were parallelized, average vector length, and speedups
over scalar code. The different loop types are taken from [19]: [DP] data-parallel loop with no control
flow, [DC] data-parallel loop with conditional thread-fetches, [XI] loop with cross-iteration dependences, [DI]
data-parallel loop with inner loop. For autocor, the data3 dataset was used.

vector memory instructions and decoupled execution. The
Scale chip prototype provides evidence that a 16-issue VT
architecture has much lower area and power consumption
than a 16-core multiprocessor [21].

Figure 7 shows how the optimizations performed in var-
ious compiler phases affect the speedups. “No Opt” refers
to simply performing the scalar-to-VP code transformation:
the clustering used is the approach described in [11] with
none of the Scale-specific modifications described in Sec-
tion 3.3. The standard Trimaran list scheduler is used with
no attempt to schedule dependence chains together, and no
chain registers are used. We then enable the various op-
timizations to determine their impact. In certain cases,
turning on optimizations does not affect the average vec-
tor length, as shown in Figure 8, and thus performance is
relatively unchanged. For some benchmarks, even when the
vector length is increased, it does not help performance. For
example, although scheduling dependence chains together
doubles the vector length for fir, it does not increase re-
source utilization, as the baseline code already spawns a
sufficient number of VPs to maximize performance for a par-
ticular cluster assignment.

Performing Scale-specific clustering provides significant ben-
efits for some benchmarks, and is inconsequential in others.
We noted that even when turning on our cluster optimiza-
tion, the compiler sometimes packed the majority of oper-
ations within a single cluster, thus inhibiting decoupling.
This indicates that we need to spend more time improving
our algorithm. Dependence chain scheduling provides small
benefits for rgbcmy and rgbyiq, but has a negative impact
on hpg in spite of the fact that it increases the average vec-
tor length. (We have not yet pinpointed the reason for this
decrease, although hpg has a more complex memory access
pattern than the other benchmarks, so that could be a fac-
tor.) However, for the remaining benchmarks, dependence
chain scheduling had little impact, either due to no effect on
the vector length, or due to resource utilization already be-
ing maximized as mentioned above. Chain register insertion
also did not typically affect the vector length for the partic-
ular benchmarks we evaluated. This resulted in little or no
impact on performance, in spite of the fact that in some cases
a large percentage of the register accesses used chain regis-
ters (which is still useful to save energy). We are continuing
to refine the compiler’s cluster assignment and instruction
scheduling phases, which impact each other’s effectiveness
as well as the effectiveness of chain register insertion. Incor-
porating more advanced techniques in the scalar-to-VP code
transformation phase—for example, when selecting loops to
parallelize—should also improve our results.
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Figure 7: Comparison of the various speedups of the
compiler-generated code when different optimiza-
tions are turned on. No Opt = No optimizations;
Cluster Opt = Scale-specific clustering; Sched Opt =
Schedule dependence chains together; Chain Opt =
Target chain registers; Sched Chain Opt = Schedule
dependence chains together and target chain regis-
ters; Full Opt = Turn on all optimizations.
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Figure 8: Comparison of the average vector lengths
when different optimizations are turned on.



Figure 9 provides a comparison between the speedups of
the compiler-generated code and the speedups of the hand-
written assembly code. This comparison shows that there is
still significant room for improvement in our compiler infras-
tructure. The hand-coded benchmarks have been highly op-
timized and take advantage of algorithmic transformations
as well as Scale features that we do not yet support such
as segment-strided memory accesses. As we further develop
our compiler, we expect to narrow the performance gap.
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Figure 9: Comparison of the speedups of the
compiler-generated code with all optimizations
turned on and the hand-coded assembly.

5. RELATED WORK
The TRIPS architecture [27] can also exploit multiple

forms of parallelism. However, unlike Scale, which exploits
DLP, TLP, and ILP simultaneously, TRIPS only targets one
form of parallelism at any given time and explicitly“morphs”
between modes of execution. Speculation is used to find
parallelism. The TRIPS compiler focuses on forming blocks
full of useful instructions [31] and mapping instructions to
ALUs [25, 12]. The Scale compiler has somewhat different
priorities, as it deals with issues more typically encountered
in vectorization, and it also focuses on non-speculative exe-
cution.

Stream processing [18] targets DLP by mapping compu-
tation kernels—typically the body of a loop—to a Kernel
Exection Unit (KEU), which is a co-processor that contains
clusters of ALUs. ILP can also be exploited within each ker-
nel. While this approach shares some similarities with Scale,
there are some significant differences between the Scale com-
piler and the stream processing compiler [13]. The KEU can
only communicate with memory through a Stream Register
File (SRF). A major job of the compiler is to manage the
utilization of the SRF. By contrast, this is much less of a
concern for the Scale compiler due to Scale’s cached shared
memory model and decoupled cache refills [7]. Additionally,
the stream processing compiler performs a binary search to
determine the best strip-size when strip mining, while this
is not an issue for Scale. Finally, the stream processing
compiler uses a standard list scheduling approach to reduce
latency of a kernel, while the Scale compiler focuses more

on improving throughput as the Scale hardware provides
decoupling to tolerate latency.

Eichenberger et al. [14] describe the compiler for the Cell
processor, which exploits multiple forms of parallelism. They
provide multiple programming models for Cell depending on
how involved the programmer wants to be with the low-level
details of the architecture. The paper focuses on many is-
sues which are not present in Scale: Cell uses SIMD func-
tional units for data-level parallelism, so alignment is a sig-
nificant concern; the Synergistic Processor Elements (SPEs)
have local non-coherent memories, so the compiler has to
handle transfers between the system memory and the local
memories using DMA commands; the SPEs have no branch
prediction and assume all branches to be not-taken, so the
compiler has to insert branch hints and schedule them ap-
propriately. The Scale compiler has different priorities due
to the significantly different architecture.

The XIMD architecture [35] extends a VLIW architecture
by providing an instruction sequencer for each functional
unit. This allows the XIMD to behave like a multithreaded
machine, while still retaining the ability to function like a
VLIW. The compiler schedules loops for the XIMD by using
a technique called iteration mapping [26], which attempts to
balance the exploitation of fine- and medium-grained paral-
lelism in order to fully utilize processor resources. Since
Scale hardware time-multiplexes VP threads onto the phys-
ical resources and makes extensive use of decoupling, there
is less of a burden on the compiler to fully utilize resources,
although the cluster assignment phase can have a significant
impact.

Microthreading [16] shares some similarities with VT. A
microthread executes a single loop iteration and its exe-
cution can be interleaved with that of other microthreads
sharing the same physical resources. The compilation in-
frastructure required for microthreading is discussed in [8],
although no actual compiler implementation is presented. It
is the compiler’s responsibility to insert swch commands to
force a context switch after issuing loads which could miss
in the cache. This is done to prevent potential stalls. The
Scale compiler aims for a similar goal by attempting to place
VP operations which depend on loads on a different cluster
than cluster 0, so that decoupling will be possible.

Multi-threaded vectorization [9] tries to span the gap be-
tween vector and VLIW machines in order to target code
that would not be traditionally vectorizable. The compiler
starts with a schedule that has been software-pipelined and
builds on that to determine the issue time and issue period
for each vectorized instruction. However, the compiler has
to know the functional unit latencies, and the work is re-
stricted to a single vector lane.

Tian et al. [33] exploit parallelism at both the thread-
level and instruction-level on an Intel platform that supports
Hyper-Threading Technology. The Intel compiler can per-
form parallelization that is guided by OpenMP directives or
pragmas. It also supports automatic loop multithreading to
exploit medium-grained parallelism. For automatic paral-
lelization, the compiler builds a loop hierarchy structure,
performs data dependence analysis to find loops without
loop-carried dependences, and determines whether it will be
profitable to generate multithreaded code for the loop. The
compiler can also perform “intra-register vectorization” by
generating SIMD instructions. This technique can be com-
bined with the above multithreading approaches. Scale’s



advantages include the ability to handle loop-carried depen-
dences, and more efficient parallelization of loops, especially
with respect to vector memory operations and the spawning
of threads.

Superword-level parallelism (SLP) [22] can be used to im-
prove performance in machines that support SIMD oper-
ations. Shin et al. [30] discuss how SLP can be applied
even in the presence of control flow by using if-conversion.
The disadvantage of this approach is that all possible con-
trol paths have to be executed. This is addressed with
the concept of generating branches-on-superword-condition-

codes (BOSCCs) [29, 28]. BOSCCs allow a vector instruc-
tion or group of vector instructions to be bypassed if the
guarding vector predicate contains all false values. Scale is
more flexible in its handling of control flow because each
VP thread—which corresponds to a single superword ele-
ment in the BOSCC approach—can direct its own control
flow without being tied to the other threads.

6. CONCLUSION
Vector-thread architectures can exploit multiple forms of

parallelism simultaneously, making it possible to target a
wide variety of applications. However, this is dependent on
the programmer or compiler being able to exploit the fea-
tures of the architecture. In this paper, we have presented a
compiler for the Scale vector-thread architecture. The com-
piler can parallelize several types of loops, and it is able to
achieve significant speedups over a single-issue scalar proces-
sor. We are continuing to improve the compiler and incorpo-
rate techniques that will enable us to increase performance
further and also support a greater number of applications.
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