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Abstract—Beamforming is one of the most challenging prob-
lems for millimeter wave communication. With limited codebook
size, how to design the steering angles to compensate angles of
arrival and departure (AoAs/AoDs) is essential to beamforming
performance. Typically, two categories of steering vector sets are
commonly used. One is orthogonal steering vector set where the
spatial frequency indices of the steering angles are uniformly
distributed in spatial frequency domain. The other one is non-
orthogonal steering vector set where the steering angles are
uniformly distributed in angle domain. In this paper, analyses of
these two designs are presented. Due to the fact that beamwidth
are constant with respect to different spatial frequency indices
in spatial frequency domain, if the spatial frequency indices
are uniformly distributed, one has the smallest deviation of
the beamforming gain. Since the orthogonal steering vectors
satisfy this condition that spatial frequency indices are uniformly
distributed, they can achieve higher data rates than the non-
orthogonal ones when the AoAs are uniformly distributed over
(−π

2
, π
2
).

Index Terms—millimeter wave, spatial frequency, analog
beamforming, orthogonal steering vectors

I. INTRODUCTION

With the rapid increase of data rate in wireless communi-

cation, bandwidth shortage is getting more critical. Therefore,

there is a growing interest in using millimeter wave (mmW)

for future wireless communications taking advantage of the

enormous amount of available spectrum [1]. Measurements of

most large and small scale parameters for mmW channels in

urban areas at 73 GHz had been presented in [2]. It seems

that path loss in such environment is very severe, and in order

to improve capacity and service quality, mmW together with

massive multiple input multiple output is a promising approach

[3].

Most of today’s beamforming systems operating in lower

carrier frequency bands (≤ 6 GHz) are based on digital beam-

forming (DBF) architecture. In this architecture, each antenna

has its own RF chain, including digital-to-analog converter

(DAC) at the transmitter and analog-to-digital converter (ADC)

at the receiver. However, in order to exploit huge available

bandwidth in mmW bands, ADCs and DACs have to run at

served Giga samples per second. It is nearly infeasible to equip

each antenna with one RF chain due to high implementation
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cost and power consumption. Therefore, analog beamforming

(ABF) [4], [5] is adopted at mmW, which consists of multiple

phase shifters connecting to one RF chain. Compared to DBF,

it provides low cost solutions to implementation requirements.

Due to hardware implementation cost and feedback over-

head, the limited number of steering angles are predefined

in the codebook. Larger size of the codebook means that

more bits are needed to feedback the selected codeword

[6] and more complicated requirements on phase shifters.

Therefore, with limited codebook size, how to design the

steering angles is important. If angles of arrival (AoAs) are

uniformly distributed in angle domain, intuitively, the design

of steering angles are supposed to be discrete uniformly

distributed in angle domain as well. However, the work in [7]

shows different results that nonuniformly distributed steering

angles achieve better data rate. The argument is that in spatial

frequency domain the steering spatial frequencies and the

spatial frequencies of AoAs have nearly the same distribution.

Nevertheless, this assumption is only valid within some range

of angles. In this paper, more convincing explanations for the

design of the steering vectors from different perspectives are

presented.

The work in [8] presented that beamwidth does not vary

with spatial frequency. According to this property, we find that

when the designed steering spatial frequencies are uniformly

distributed in spatial frequency domain, the maximum devi-

ation of the beamforming gain is limited to −3 dB. On the

other hand, for the nonuniformly distributed steering spatial

frequencies, the maximum deviation of the beamforming gain

could be greater or less than −3 dB. In the simulated data rates,

it shows that when the AoAs are uniformly distributed over

(−π
2 ,

π
2 ), the averaged beamforming gain by non-orthogonal

steering vectors is worse than the orthogonal ones because

within some range of AoAs the beamforming gain is -10 dB

worse than -3 dB gain.

This paper is organized as follows: In Section II, we de-

scribe the system models. Section III elaborates the signals in

angle and spatial frequency domain. Also, orthogonal and non-

orthogonal steering vectors are discussed in spatial frequency

domain. Simulation results are presented in Section IV, and

we conclude our work in Section V.



Figure 1: A diagram of one ABF system with four antenna

elements at the receiver in a sparse mmW channel with two

AoAs.

II. SYSTEM MODELS

Fig. 1 shows a diagram of the ABF system with NR anten-

nas at the receiver. An NR × 1 steering vector wk is selected

from the codebook, which consists of NK steering vectors

{w1, · · · ,wNK
}. Each steering vector can be expressed as

wk =
1√
NR

[
1, ej2πλ

−1
0 sinφkΔd , · · · , ej2πλ−1

0 sinφk(NR−1)Δd

]T
,

(1)

where k = 1, · · · , NK , φk is the kth steering angle, Δd � λ0

2
is the distance between two antenna elements, and λ0 is the

wavelength at the carrier frequency. In (1), the term λ−1
0 sinφk

is referred to as a steering spatial frequency with respect to

the steering angles φk. (·)T denotes transpose of a matrix.

Different to Rayleigh/Rician fading channel models, which

are often assumed for centimeter wave (cmW) communication,

mmW channel models show sparsity of AoAs and AoDs

between transmitter and receiver due to severe path loss [2].

Therefore, beam steering plays an important role at mmW

systems. To deal with both AoDs and AoAs at the same

time is a huge challenge because all the combinations of the

beamformers at the transmitter and the receiver have to be

considered. Accordingly, one can adopt an omni-directional

antenna at the transmitter, as introduced in IEEE 802.11ad

[9], to simplify the beamforming procedure. Then the receiver,

equipped with a uniform linear array (ULA) antenna, only

experiences multiple AoAs as shown in Fig. 1, where two

AoAs are assumed in the mmW environment.

The received signal before RF chain can be formulated as

rk = s ·
NP−1∑
p=0

αpw
H
k ap +wH

k z, (2)

where wH
k denotes Hermitian transpose of wk, rk is the

received signal with respect to the kth steering vector, s is

the transmitted signal satisfying E[|s|2] = 1, αp ∈ C
1×1

is the complex attenuation coefficient for path p, and z is

an NR × 1 additive white Gaussian noise (AWGN) vector

with the element znr
∼ CN (0, σ2

z), nr = 0 · · · , NR − 1.

NP is the number of channel paths. ap is an NR × 1 array

propagation vector [5] with respect to the pth AoA φp, which

can be represented as

ap =
1√
NR

[
1, ej2πλ

−1
0 sinφpΔd , · · · , ej2πλ−1

0 sinφp(NR−1)Δd

]T
,

(3)

where λ−1
0 sinφp is the channel spatial frequency with respect

to the AoA φp.

III. THE ANALYSES OF ORTHOGONAL AND

NON-ORTHOGONAL STEERING VECTORS

A. Spatial Frequency Index

By introducing a spatial frequency scaling factor defined

as Δν � 1/(NRΔd) [10], the spatial frequency index (or

normalized spatial frequency) with respect to the steering

angle φk is defined as

νk︸︷︷︸
spatial frequency index

� sinφk

λ0︸ ︷︷ ︸ ·
1

Δν

spatial frequency

=
NR · sinφk

2
. (4)

Given a spatial frequency index νk, the steering vector in (1)

can be rewritten as

wk =
1√
NR

[
1, ej2πνk/NR , · · · , ej2πνk(NR−1)/NR

]T
. (5)

B. Orthogonal and Non-Orthogonal Steering Vectors

The steering vectors with uniformly distributed spatial fre-

quency indices are called orthogonal steering vectors, such as

Butler matrix [11]. To be formal, one defines the orthogonality

of any two steering vectors as

〈wi,wj〉
||wi||2 · ||wi||2 =

{
0, i �= j

1, i = j
, (6)

where 〈wi,wj〉 denotes inner product of two vectors. Given

the number NR of antennas, the NK (assume that NK = NR)

spatial frequency indices are shown as [11]

νk =

{
±0.5,±1.5, · · · ,±NR−1

2 , if NK is an even number

0,±1,±2, · · · ,±NR−1
2 , if NK is an odd number

.

(7)

The other way to design the steering vectors is having the

uniformly distributed steering angles over the range of the

scanning angles. From the relationship between the steering

angles and the corresponding spatial frequency indices in (4),

we know that the steering spatial frequency indices {νk|k =
1, · · · , NK} are not uniformly distributed, which are different

to (7). This kind of steering vectors belong to non-orthogonal

steering vector set.



C. Beam Patterns Shown in Angle and Spatial Frequency
Domain

Given the steering angle φk and the AoA φp, the beam

pattern is defined as [5]

βp,k = wH
k ap

=
1

NR
·
NR−1∑
nr=0

ej2πλ
−1
0 (sinφp−sinφk)nrΔd

=
ejπλ

−1
0 Δd(NR−1)(sinφp−sinφk)

NR
×

sin(πλ−1
0 ΔdNR(sinφp − sinφk))

sin(πλ−1
0 Δd(sinφp − sinφk))

. (8)

Based on the received signals {rk|k = 1, · · · , NK}, the goal

of beamforming is to achieve the maximal SNR [7][12]. Due

to the assumption that the noise is signal-independent, the

codeword (or steering vector index) can be selected according

to the following equations

k̂ = arg max
k=1,...,NK

|rk|2

= arg max
k=1,...,NK

∣∣∣∣∣s ·
NP−1∑
p=0

αpw
H
k ap

∣∣∣∣∣
2

= arg max
k=1,...,NK

∣∣∣∣∣s ·
NP−1∑
p=0

αpβp,k

∣∣∣∣∣
2

. (9)

To clearly explain the difference between the orthogonal and

the non-orthogonal steering vectors, NP = 1 is assumed in (9)

in order to analyzing the beam patterns by the orthogonal and

the non-orthogonal steering vectors. Therefore, (9) becomes

k̂ = arg max
k=1,...,NK

|s · αpβp,k|2

= arg max
k=1,...,NK

|βp,k|2, p = 0, (10)

where

|βp,k|2 =
1

N2
R

· sin
2(πλ−1

0 ΔdNR(sinφp − sinφk))

sin2(πλ−1
0 Δd(sinφp − sinφk))

. (11)

(11) can also be represented as a function of the spatial

frequency index,

|βp,k|2 =
1

N2
R

· sin
2(2πλ−1

0 Δd(νp − νk))

sin2(
2πλ−1

0 Δd

NR
(νp − νk))

. (12)

Fig. 2(a) and 2(b) illustrate beam patterns in angle and

spatial frequency domain respectively with NR = 16, range

of AoAs is −90o < φp < 90o (−8 < νp < 8), and

the steering angles equal to φk = 0o, 60o (νk = 0, 6.93).

It is obvious that in Fig. 2(a) the beamwidth varies with

steering angle. The beamwidth at φk = 60o is wider than

the beamwidth at φk = 0o. Considering a angle shift Δφ in

(11), −90o < Δφ < 90o, the beam pattern (11) becomes
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(a) Two beam patterns shown as the function of angle have different beamwidth.
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(b) Two beam patterns shown as the function of spatial frequency index have the
same beamwidth.

Figure 2: Typical examples of two beam patterns represented

in angle and spatial frequency domain respectively.

|β′
p,k|2 =

1

N2
R

· sin
2(πλ−1

0 ΔdNR(sin(φp +Δφ)− sin(φk +Δφ)))

sin2(πλ−1
0 Δd(sin(φp +Δφ)− sin(φk +Δφ)))

,

(13)

which is not equal to |βp,k|2 in (11) when Δφ �= 0.

On the other hand, in Fig. 2(b), the beamwidth does not

vary with spatial frequency index [8]. Similarly, consider a

spatial frequency index shift Δν in (12), −8 < Δν < 8, the

beam pattern (12) becomes

|β′
p,k|2 =

1

N2
R

· sin
2(2πλ−1

0 Δd((νp +Δν)− (νk +Δν)))

sin2(
2πλ−1

0 Δd

NR
((νp +Δν)− (νk +Δν)))

=
1

N2
R

· sin
2(2πλ−1

0 Δd(νp − νk))

sin2(
2πλ−1

0 Δd

NR
(νp − νk))

, ∀Δν. (14)

Thus |β′
p,k|2 in (14) is always equal to |βp,k|2 in (12) with

different value of Δν. It can be concluded that no matter what



Non-orthogonal steering vectors Orthogonal steering vectors
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(a) Steering angles (in degree): -90:12:90. (c) Steering angles (in degree): −70,−54,−43,−34,−26,
−18,−11,−4, 4, 11, 18, 26, 34, 43, 54, 70.
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(b) Spatial frequency indices: −8,−7.8,−7.3,−6.5,−5.4, (d) Spatial frequency indices: -7.5:1:7.5.

−4,−2.5,−0.8, 0.8, 2.5, 4, 5.4, 6.5, 7.3, 7.8, 8.

Figure 3: Beam patterns of the non-orthogonal and the orthogonal steering vectors shown in angle and spatial frequency domain

with NR = 16 and NK = 16.

value of Δν is, the beam pattern shifted to νk + Δν always

keeps the same beamwidth.
When φp ∼ U(−π

2 ,
π
2 ), the probability density function

(pdf) of νp (νp =
NR·sinφp

2 ) is given by (see the Appendix)

fνp(νp) =

⎧⎪⎪⎨
⎪⎪⎩
0, νp < −NR

2
2

πNR

√
1−(

2νp
NR

)2
, −NR

2 ≤ νp < NR

2

0, νp ≥ NR

2

, (15)

which is not uniformly distributed. In [7], the argument that the

orthogonal steering vectors show higher data rates is because

the spatial frequencies of the given AoAs and the orthogonal

steering angles have nearly the same distribution, i.e., uniform

distribution. However, this argument only holds under some

assumptions.
Different opinion that the orthogonal steering vectors show

higher data rate is explained as follows. In Fig. 3(b) and 3(d)

the beam patterns of the non-orthogonal and the orthogonal

steering vectors are shown in spatial frequency domain. The

total 32 beam patterns (16 in Fig. 3(b) and 16 in Fig. 3(d))

mapping to different spatial frequency indices have the same

beamwidth values, as proven in (14). Due to the property of

constant beamwidth in spatial frequency domain, we analyze

the difference between the orthogonal and the non-orthogonal

steering vectors in spatial frequency domain.
In Fig. 3(d), the uniformly distributed spatial frequency

indices lead to the results that the beamforming gain of the

orthogonal steering vectors in general is larger than or almost

equal to -3 dB gain. On the contrary, regarding the non-

orthogonal cases in Fig. 3(b), the nonuniformly distributed

spatial frequency indices result in extremely low beamforming

gain at some spatial frequency indices, such as νp = 0,±1.65.

Although νp shows lower probability within −2 < νp < 2, the

overall data rates may degrade a lot due to low beamforming

gain within this interval. More simulation results are shown

in Section IV. The orthogonal and the non-orthogonal beam
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Figure 4: Comparison of achievable data rates by the perfect

and the non-orthogonal steering vectors with different range

of AoAs.

patterns shown in angle domain are illustrated in Fig. 3(a) and

3(c) for reference.

IV. SIMULATION RESULTS

In the simulations, NR = 16, NK = 16, and NP = 1 are

considered. The distribution of AoA are uniformly distributed

over (−π
2 ,

π
2 ) and the channel gain is normalized to 1, α2

0 = 1.

The simulated codebooks (consisting of NK spatial frequency

indices) for the orthogonal and the non-orthogonal steering

vectors are introduced in Fig. 3(b) and 3(d), and the optimal

orthogonal and non-orthogonal steering vectors are selected

according to (10).

Fig. 4 illustrates the data rates by perfect and non-

orthogonal steering vectors, where the perfect steering vector

is assumed to exactly compensate the AoA, i.e., φp = φk.

Thus we have the maximal data rate shown as

Rmax = log2

(
1 +

α2
0

σ2
z

)
. (16)

In Fig. 4, the data rates vary a lot with different range of

AoAs because in Fig. 3(b) the 16 beam patterns are not

equally distributed in spatial frequency domain. The case of

φp ∼ U(0o, 15o) (0 ≤ νp ≤ 2.07), is even 1 bit/s/Hz worse

than the case of φp ∼ U(75o, 90o) (7.73 ≤ νp ≤ 8). Consider

the channel bandwidth of 2.16 GHz at mmW systems [13], the

data rates would dramatically decrease if the AoA changes

from 80o to 10o when considering moving user terminal.

Owing to the beam patterns are symmetric at 0o, only the

cases with φp ≥ 0 are simulated.

Then comparing Fig. 3(d) with Fig. 5, it can be seen that the

data rates with different range of AoAs keep constant as we

conclude in the previous section. The results in Fig. 5 are very

close to the data rate by orthogonal steering vectors with φp ∼
U(−π

2 ,
π
2 ) in Fig. 6 because the deviation of the beamforming

gain is almost up to 3 dB. In contrast, the averaged data rate by

the non-orthogonal steering vectors with φp ∼ U(−π
2 ,

π
2 ) in

Fig. 6 shows worse result since the data rates within −150 <
φp < 15o (−2.07 ≤ νp ≤ 2.07) are quite low.
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Figure 5: Comparison of achievable data rates by the perfect

and the orthogonal steering vectors with different range of

AoAs.
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Figure 6: Comparison of achievable data rates by the perfect,

the orthogonal, and the non-orthogonal steering vectors with

uniformly distributed AoA over (−π
2 ,

π
2 ).

The strategy of the design of the steering vectors can be

extended to other practical applications, such as NK < NR.

For example, NR = 16 and NK = 4, we can design the spatial

frequency indices as νp = −6,−2, 2, 6 (the corresponding

steering angles are φp = −48.6,−14.5, 14.5, 48.6). Designing

the steering vectors in this way ensures the smallest deviation

of the beamforming gain.

V. CONCLUSIONS

This paper elaborates why orthogonal steering vectors show

better data rates than non-orthogonal ones by analyzing the

steering angles, the steering spatial frequency indices, and

beam patterns in spatial frequency domain. Due to the fact that

the constant beamwidth values in spatial frequency domain, if

the beam patterns are designed with uniformly distributed spa-

tial frequency indices, which can ensure the smallest deviation

of the beamforming gain. Orthogonal steering vectors satisfy

this condition so that they can achieve higher data rates than

non-orthogonal ones.



VI. APPENDIX

Given φp ∼ U(−π
2 ,

π
2 ), the cumulative distribution function

(CDF) of νp (νp =
NR·sinφp

2 ) can be written as

Fνp
(νp) = P (νp ≤ νp)

= P
(

NR·sinφp

2 ≤ νp

)
= P

(
φp ≤ sin−1

(
2νp
NR

))
= Fφp

(
sin−1

(
2νp
NR

))

=

ˆ sin−1(2νp/NR)

−∞

1

π
dφp

=

ˆ sin−1(2νp/NR)

−π/2

1

π
dφp

=

⎧⎪⎪⎨
⎪⎪⎩
0, νp < −NR

2
1
π

(
sin−1

(
2νp

NR

)
+ π

2

)
, −NR

2 ≤ νp < NR

2

0, νp ≥ NR

2

By the rule for derivative of sin−1(x) = 1/
√
1− x2, one

has the pdf of νp,

fνp(νp) =

⎧⎪⎪⎨
⎪⎪⎩
0, νp < −NR

2
2

πNR

√
1−(

2νp
NR

)2
, −NR

2 ≤ νp < NR

2

0, νp ≥ NR

2

.
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