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Abstract—Efficiently estimating spatial channel properties,
such as angles of arrival and departure, for a hybrid beamform-
ing (HBF) architecture is one of the crucial challenges to over-
come at millimeter wave (mmW) systems. To this end, we propose
an algorithm variant to a recently proposed approach [8] based
on ideas borrowed from the compressed sensing literature and
l0-norm minimization, which exploit the fact that the number of
significant channel echoes is rather small for limited beamwidth.
Our modified algorithm eliminates high dimensional singular
value decomposition (SVD) of the estimated channel matrix in
the original method by employing the orthogonality between the
selected array propagation vectors. It is demonstrated that HBF
design without SVD of the estimated channel matrix can achieve
essentially the same capacity as the one with SVD. Moreover, the
feedback overhead required for the beamforming systems can be
significantly reduced by the proposed method.

I. INTRODUCTION

With the rapid increase of data rate in wireless communi-

cation, bandwidth shortage is getting more critical. Therefore,

there is a growing interest in using millimeter wave (mmW)

for future wireless communications taking advantage of the

enormous amount of available spectrum [1]. Measurements of

most large and small scale parameters for mmW channels in

urban areas at 73 GHz had been presented in [2]. It seems

that path loss in such environment is very severe, and in order

to improve capacity and service quality, mmW together with

massive multiple input multiple output is a promising approach

[3].

Most of today’s systems operating in lower carrier frequency

bands (≤ 6 GHz) are based on digital beamforming (DBF)

architectures. In this architecture, each antenna has its own

RF chain, including digital-to-analog converter (DAC) at the

transmitter and analog-to-digital converter (ADC) at the re-

ceiver. However, to exploit the huge available bandwidth in

mmW bands, ADCs and DACs have to run at several Giga

samples per second. This makes it infeasible to equip each

antenna with its own RF chain due to high implementation

cost and power consumption. Therefore, a combination of

analog beamforming (ABF) [4][5] (operating in passband) and

DBF (operating in baseband) will be implemented to achieve

higher data rate with acceptable complexity. We denote this

combination as hybrid beamforming (HBF) [6][7]. ABF is

typically implemented at each antenna using a finite set of

possible phase shifts, where one entry can be selected from

a codebook to produce a beam pattern with a specific main

lobe direction. Selecting several beam patterns simultaneously

provides, after down conversion, the input to DBF that is

to be optimally combined according to some criteria, e.g. to

maximize mutual information.

The problem of joint spatial channel estimation (CE, it

is assumed to be flat in frequency domain) and HBF is

complicated due to the fact that ABF is not as flexible as

DBF because equal magnitude of the analog beam pattern

gain is used for all antenna signals. To obtain full chan-

nel information, the coupling of ABFs across the channel

is needed and therefore exhaustive analog beam training is

required in the beginning [8]. Typically, the problem of both

CE and HBF can be formulated as an l0-norm optimization

problem [9] since mmW channels consist of a quite small

number of significant paths, meaning that they are sparse

in angular (angles of arrival and departure (AoAs, AoDs))

or the equivalent spatial frequency domain. The solution to

the problem proposed in [6][8] works as follows. First, the

channel is estimated by orthogonal matching pursuit (OMP)

[10] by observations based on all combinations between the

analog beamformers at the transmitter and the receiver. Then,

to complete the HBF design at the transmitter (precoder

reconstruction) and the receiver (combiner reconstruction),

again OMP is employed based on the estimated channel matrix

[6]. This solution achieves promising data rate. However, its

computational complexity places a huge burden at the receiver.

Another problem is the feedback overhead. If the precoder

reconstruction is implemented at the transmitter, the right

singular vectors of the estimated channel have to be sent to

the transmitter. Or if it is implemented at the receiver, then the

codebook indices of the analog beamformers and the matrix

of DBF have to be sent to the transmitter. Both need quite a

lot feedback overhead.

This paper presents a novel method to reduce the computa-

tional complexity and the feedback overhead. By orthogonality

of the selected array propagation vectors in the proposed CE,

the precoder and the combiner can be reconstructed without
singular value decomposition (SVD) of the estimated channel

matrix and there is no data rate loss. Also, regarding the

feedback overhead, only the codebook indices of the selected

array propagation vectors have to be sent to the transmitter.

Compared to the reference methods, it shows that the proposed

one can achieve the desirable data rate with the least feedback

overhead.

This paper is organized as follows: Section II describes the

system and the mmW channel models. Section III elaborates

the problem and the proposed solution to low-complexity joint

CE and HBF designs. Simulation results are presented in
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Figure 1: The beamforming system diagram.

Section IV, and we conclude our work in Section V.

We use the following notation throughout this paper. a is a

scalar, a is a vector, and A is a matrix. ai is the ith entry

of a; ai,j or (A)i,j is the (i, j)th entry of A; a(i) is the

ith column vector of A; and A(1 : N) denotes the first N
column vectors [a(1), · · · ,a(N)] of A. A∗, AH , and AT

denote complex conjugate, Hermitian transpose and transpose

of A, respectively. ‖a‖0 is the l0-norm of a [11]; ‖a‖2 is

the 2-norm of a; |A| and ‖A‖F are the determinant and

Frobenius norm of A, respectively. diag(A) is the vector

formed by the diagonal elements of A; vec(A) is vectorization

of A; rank(A) is the (column) rank of A; and [A |B] denotes

horizontal concatenation. IN is the N×N identity matrix, and

0N×1 is the N × 1 zero vector.

II. SYSTEM MODELS

In the assumed heterogeneous system [12], uplink and

downlink transmission timing between a transmitter and a

receiver is synchronized. Fig. 1 shows a single link where

the transmitter with NT antennas communicates NS data

streams to the receiver with NR antennas. The transmitter is

equipped with a precoder, which consists of an NT × NRF

ABF matrix FRF and an NRF × NS DBF matrix FBB [6]-

[8]. The precoder steers the NS data beams supported by HBF,

where each hybrid beam is formed by a weighted combination

(defined in the DBF) of the NRF analog beams. The NRF

analog beams at the transmitter are selected from a codebook

defined as a matrix F̃RF of size NT ×NF , shown as

F̃RF =
1√
NT

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 e
j2π

1
NF · · · e

j2π
NF−1
NF

...
...

. . .
...

1 e
j2π

NT−1
NF · · · e

j2π
(NF−1)(NT−1)

NF

⎤
⎥⎥⎥⎥⎥⎦ .

(1)

We assume that NF ≥ NRF (or even � NRF ). Considering

the codebook size, when NF = NT , the matrix F̃RF can be

chosen as a IDFT matrix. The power constraint on each hybrid

beam is enforced by ‖FRF fBB(ns)‖22 = 1, ns = 1, · · · , NS ,

where fBB(ns) is the nth
s column of FBB . The codebook

W̃RF ∈ C
NR×NW used for the ABF at the receiver has the

similar structure as (1). The same number NRF of RF devices

and the same number NS of data streams are assumed at the

receiver.

The received signal after the combiner WRFWBB can be

written as

r = WH
BBW

H
RFHFRFFBBs+WH

BBW
H
RF z, (2)

where r is the NS × 1 combined received data vector, s is

the transmitted data vector satisfying E[ssH ] = 1
NS

INS
, and z

is the NR × 1 additive white Gaussian noise (AWGN) vector

with the complex Gaussian random variable znr ∼ CN (0, σ2
z),

nr = 1, · · · , NR.

mmW channel are different to Rayleigh/Rician fading chan-

nel models, which are often assumed for centimeter wave

communications. One key difference is its sparsity in spatial

frequency domain [2]. The channel matrix H in (2) can be

modelled as the sum of outer products of array propagation

vectors associated with NP paths,

H =

NP∑
p=1

αpaA(p)a
H
D(p)

= [aA(1), · · · , aA(NP )]︸ ︷︷ ︸
AA

⎡
⎢⎣ α1 · · · 0

...
. . .

...

0 · · · αNP

⎤
⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎣ aD(1)H

...

aD(NP )
H

⎤
⎥⎦

︸ ︷︷ ︸
AH

D

= AADAH
D , (3)

which consists of three factors: the matrix AA ∈ C
NR×NP

with the array propagation vectors taken from the array man-

ifold at the receiver, the path loss matrix D ∈ C
NP×NP with

the complex attenuation coefficient αp for each path p, and

the matrix AD ∈ C
NT×NP describing the array propagation

vectors from the array manifold at the transmitter. Each array

propagation vector in AD can be expressed as [5]

aD(p) =
1√
NT

[
1, ej2πλ

−1
0 sinφpΔd , · · · , ej2πλ−1

0 sinφp(NT−1)Δd

]T
,

(4)

where φp stands for the pth AoD, Δd � λ0

2 is the distance

between two antennas, and λ0 is the wavelength at the carrier

frequency. Each array propagation vector in AA has the similar

structure as (4). Assume Gaussian signaling [13], given FBB ,

FRF , WRF , WBB , the system throughput is shown as

C = log2

∣∣∣∣INS
+

1

NS
·R−1

z · (WH
BBW

H
RFHFRFFBB

) ·(
WH

BBW
H
RFHFRFFBB

)H ∣∣∣ , (5)

where Rz = σ2
zW

H
BBW

H
RFWRFWBB is the noise covari-

ance matrix after combining.

III. JOINT CE AND HBF WITH LIMITED FEEDBACK

To simplify the CE problem, let us assume that the DBFs at

the transmitter and the receiver initially operates with FBB =
I and WBB = I. To obtain the observations for CE, all the

combinations of the vectors defined in the codebooks W̃RF

and F̃RF are trained [8] by using a known training sequence

{s1, . . . , sT } of length T (the coherence time of the channel is
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assumed to be sufficiently long). After removing the training

signals, the average of the noisy observations for the coupling

coefficient with a single beamformer combination of f̃RF (l)
and w̃RF (k) can be written as

yk,l =
1

T

T∑
t=1

1

st

(
w̃H

RF (k)Hf̃RF (l) st + w̃H
RF (k)z(t)

)

= w̃H
RF (k)Hf̃RF (l) +

1

T

T∑
t=1

1

st
w̃H

RF (k)z(t) (6)

= w̃H
RF (k)Hf̃RF (l) + z′k,

k = 1, · · · , NW , l = 1, · · · , NF ,

where w̃RF (k) is the kth steering vector of W̃RF , f̃RF (l) is

the lth steering vector of F̃RF , and z′k is the averaged noise

coupling with w̃RF (k). Collecting the coupling coefficients

associated with all the combinations of w̃RF (k) and f̃RF (l)
in a matrix, we obtain

Y =

⎡
⎢⎣ y1,1 · · · y1,NF

...
. . .

...

yNW ,1 · · · yNW ,NF

⎤
⎥⎦ (7)

= W̃H
RFHF̃RF + Z′,

where Z′ is the NW × NF AWGN matrix coupling with

W̃RF . Vectorizing (7) and using rules for Kronecker product,

it becomes

yV = vec(Y)

= (F̃T
RF ⊗ W̃H

RF ) vec(H) + vec(Z′)

= (F̃T
RF ⊗ W̃H

RF ) vec(AADAH
D) + vec(Z′) (8)

= (F̃T
RF ⊗ W̃H

RF )︸ ︷︷ ︸
Φ

(A∗
D ⊗AA) vec(D) + vec(Z′)

= Φ (A∗
D ⊗AA) vec(D) + vec(Z′),

where yV ∈ C
NFNW×1 is the observation vector.

A. Problem Statement
The CE problem in (8) can be formulated as a least squares

problem subject to a sparsity constraint as [8]

(ÂD, ÂA, D̂) = arg min
AD,AA,D

‖yV −Φ (A∗
D ⊗AA) vec(D)‖2 ,

s.t.

⎧⎪⎨
⎪⎩
aD(p) ∈ {ãD(iD), iD = 1, · · · , ND},
aA(p) ∈ {ãA(iA), iA = 1, · · · , NA},
‖vec(D)‖0 = NP ,

(9)

where ãD(iD) is the ith
D column of ÃD ∈ C

NT×ND , which is

the matrix consisting of ND candidates of the actual departure

array propagation vectors presented in a given realization

ÃD =
1√
NT

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 e
j2π

1
ND · · · e

j2π
ND−1
ND

...
...

. . .
...

1 e
j2π

NT−1
ND · · · e

j2π
(ND−1)(NT−1)

ND

⎤
⎥⎥⎥⎥⎥⎦ .

(10)

ãA(iA) is the ith
A column of ÃA ∈ C

NR×NA , which is the

matrix consisting of NA candidates of the actual arrival array

propagation vectors and has similar structure as the matrix

shown in (10). D ∈ C
NP×NP has NP non-zero entries. When

NA = NR and/or ND = NT , ÃA and/or ÃD are IDFT

matrices. (9) can be solved by OMP [8][10].

Once we have the reconstructed channel Ĥ = ÂAD̂ÂH
D ,

the SVD of the channel can be calculated as

Ĥ
SVD
= UΛVH , (11)

where the columns of V ∈ C
NT×NP and the columns of

U ∈ C
NR×NP are the right and the left singular vectors of

Ĥ, and the diagonal entries of Λ = diag(λ1, · · · , λNP
) ∈

R
NP×NP , λ1 > · · · > λNP

> 0, are the singular values of

Ĥ. The design criterion that can be used for the precoder

reconstruction is to minimize the Frobenius norm of the error

between the precoder and the right singular vectors of Ĥ [6],

(F̂RF , F̂BB) = arg min
FRF ,FBB

‖V(1 : NS)− FRFFBB‖F ,

s.t. fRF (nrf ) ∈ {f̃RF (l), l = 1, · · · , NF }, nrf = 1, · · · , NRF ,

‖FRF fBB(ns)‖2 = ‖v(ns)‖2 , ns = 1, · · · , NS . (12)

The same design criterion leads to the desired combiner.

If the precoder is designed at the receiver, then after the

reconstruction, the receiver has to send the information of F̂RF

and F̂BB to the transmitter, including NRF codebook indices

of {f̂RF (nrf )} and the matrix F̂BB of size NRF ×NS . The

other solution is to design the precoder at the transmitter, but

the feedback overhead is the matrix V(1 : NS) of size NT ×
NS , which requires more bits, especially for massive MIMO

systems.

The complete procedure of the previously proposed CE

and precoder/combiner reconstruction can be divided into four

steps:

1) CE by OMP at the receiver [8][10].

2) Calculating SVD of the estimated channel matrix at the

receiver.

3) Implementing the precoder and the combiner reconstruc-

tion by OMP at the receiver [6][10].

4) The receiver sends the information of the reconstructed

precoder to the transmitter.

Considering practical applications, each of these four steps is a

huge burden for the receiver. Therefore, the motivation of the

proposed method is to reduce the computational complexity by

avoiding SVD (in the second step) and to reduce the feedback

overhead (in the fourth step).

B. The Proposed Algorithm

To avoid SVD, we use a idea that if we approximate the

channel matrix with a set of orthogonal vectors, then the

decomposition of the channel matrix into orthogonal vectors

should just return the same set of vectors up to phase rotations

(see Lemma 2 in the Appendix). Therefore, if the matrix

estimates ÂD and ÂA satisfy ÂH
DÂD = I and ÂH

A ÂA = I,
the precoder and the combiner can be designed directly based
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on ÂD and ÂA, and the SVD can be omitted, while the same

data rate is achievable. More formally, it is stated as follows:

Theorem 1. Given Ĥ = ÂAD̂ÂH
D , where ÂA ∈ C

NR×NP ,
ÂD ∈ C

NT×NP , and D̂ = diag(α̂1, · · · , α̂NP
) ∈ C

NP×NP ,
|α̂1| > · · · > |α̂NP

| > 0. Let the SVD of Ĥ be Ĥ =
UΛVH , where the columns of U ∈ C

NR×NP and V ∈
C

NT×NP are, respectively, the left and the right singular
vectors of Ĥ, and Λ = diag(λ1, · · · , λNP

) ∈ R
NP×NP ,

λ1 > · · · > λNP
> 0. If ÂH

DÂD = I and ÂH
A ÂA =

I, then the data rate C(F̂RF , F̂BB ,ŴRF ,ŴBB) =
C(F̄RF , F̄BB ,W̄RF ,W̄BB), where

1. (F̂RF , F̂BB) and (ŴRF ,ŴBB) are reconstructed based
on ÂD and ÂA, respectively.

2. (F̄RF , F̄BB) and (W̄RF ,W̄BB) are reconstructed based
on V and U, respectively.

Proof: See the Appendix.

To ensure that ÂH
DÂD = I and ÂH

A ÂA = I hold, first,

the matrices ÃD and ÃA should be made up of orthogonal

vectors. To be formal, one defines the orthogonality of any

two vectors as

〈ãA(i), ãA(j)〉
||ãA(i)||2 · ||ãA(j)||2 =

{
0, i �= j

1, i = j
, (13)

where 〈ãA(i), ãA(j)〉 denotes an inner product of the two

vectors. Second, two constraints rank(AD) = NP and

rank(AA) = NP are required in order to avoid the repeated

vectors in ÂD and/or ÂA. In (9), the estimated matrices

ÂD and/or ÂA could consist of repeated vectors so that

rank(ÂD) < NP and/or rank(ÂA) < NP , which also means

that ÂH
DÂD �= I and/or ÂH

A ÂA �= I. In other words, we

do not allow that a vector is selected twice from the same

codebook.

In addition, as the precoder and the combiner can be recon-

structed directly based on ÂD and ÂA, and the column rank

of the precoder (FRFFBB) and the combiner (WRFWBB)

is NS , only the first NS (rather than NP ) vectors of ÂD

and ÂA are needed. Consequently, the two constraints can be

modified as rank(AD) = NS and rank(AA) = NS , and the

l0-norm optimization problem of the CE can be reformulated

as

(ÂD, ÂA) = arg min
AD,AA

‖yV −Φ (A∗
D ⊗AA) vec(D)‖2 ,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aD(ns) ∈ {ãD(iD), iD = 1, · · · , ND},
aA(ns) ∈ {ãA(iA), iA = 1, · · · , NA},
‖vec(D)‖0 = NS ,

rank(AD) = NS ,

rank(AA) = NS .

(14)

(14) can be solved by OMP [10], which is given in Algorithm
1, Part I. In Algorithm 1 Step 7, the selected array propaga-

tion vectors will not be selected again in order to ensure that

there are no repeated vectors in ÂD and ÂA.

Algorithm 1: CE plus precoder/combiner reconstruction
Input: yV , Φ, ÃD , ÃA, F̃RF , W̃RF

Output: F̂RF , F̂BB , ŴRF , ŴBB

1. % Part I — CE by OMP

2. ÂD = empty matrix, ÂA = empty matrix, Ψ̂ = empty matrix,

ID = ∅, IA = ∅

3. ytmp = yV

4. Ψ = Φ(Ã∗
D ⊗ ÃA)

5. for ns = 1 : NS

6. g = ΨHytmp

7. (̂iD, îA) = arg max
iD ∈ {1, · · · , ND}\ID
iA ∈ {1, · · · , NA}\IA

(ggH)i,i,

where i = (iD − 1) ·NA + iA
8. ÂD = [ÂD | ãD (̂iD)] and ÂA = [ÂA | ãA(̂iA)]

9. Ψ̂ = [Ψ̂ |Φ · (ãD (̂iD)∗ ⊗ ãA(̂iA))]

10. ytmp = (INFNW − Ψ̂(Ψ̂
H
Ψ̂)−1Ψ̂

H
)yV

11. ID = ID ∪ {̂iD} and IA = IA ∪ {̂iA}
12. end

13. diag(D̂) = (Ψ̂
H
Ψ̂)−1Ψ̂

H
yV

14. % Output: ÂD , ÂA

15.

16. % Part II — The receiver sends the codebook indices of

17. % {âD(ns), ns = 1, · · · , NS} to the transmitter

18.

19. % Part III — Precoder/combiner reconstruction by OMP

20. F̂RF = empty matrix, F̂BB = empty matrix

21. Atmp = ÂD

22. for nrf = 1 : NRF

23. G = F̃H
RFAtmp

24. l̂ = arg max
l=1,··· ,NF

(GGH)l,l

25. F̂RF = [F̂RF | f̃RF (l̂)]

26. Atmp = (INT − F̂RF (F̂
H
RF F̂RF )

−1F̂H
RF )ÂD

27. end

28. F̂BB = (F̂H
RF F̂RF )

−1F̂H
RF ÂD

29. f̂BB(ns) =
f̂BB(ns)

‖F̂RF f̂BB(ns)‖
2

, ns = 1, · · · , NS

30. % Use the same procedure to reconstruct ŴRF and ŴBB

Once ÂD is available, NS codebook indices of {âD(ns)}
have to be sent to the transmitter for the precoder reconstruc-

tion. Based on ÂD, the optimization problem of the precoder

reconstruction is similar to (12), which can be written as

(F̂RF , F̂BB) = arg min
FRF ,FBB

∥∥∥ÂD − FRFFBB

∥∥∥
F
,

s.t. fRF (nrf ) ∈ {f̃RF (l), l = 1, · · · , NF },
‖FRF fBB(ns)‖2 = ‖âD(ns)‖2 . (15)

Similarly, given ÂA, the optimization problem of the combiner

reconstruction can be formulated as (15). Note that the code-

books F̃RF and W̃RF used in the proposed algorithm can be

made up of either orthogonal or non-orthogonal vectors. From

Theorem 1, there are no restrictions on W̃RF and F̃RF ; only

ÃD and ÃA are required to be orthogonal matrices.
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Table I: Four simulated methods of CE plus HBF.

Note CE SVD HBF Feedback

Method 1 Reference No (perfect channel state information (CSI)) Yes See (12) and [6] -
Method 2 Reference Formulated as (9) and solved by OMP [8] Yes See (12) and [6] Yes, see Table III

Method 3 Reference Algorithm 1, Part I with slight modifications, Yes (for reference to
See (12) and [6] -

see (16) demonstrate Theorem 1)

Method 4 Proposed Algorithm1, Part I No Algorithm 1, Part III Yes, see Algorithm 1,
Part II and Table III

Table II: Simulation parameters.

Parameter Value

Carrier frequency [GHz] 60
Training time (T in (6)) 512
Number of paths (NP ) 8

Number of Tx antennas (NT ) 32
Number of Rx antennas (NR) 32
Number of RF chains (NRF ) 4
Number of data streams (NS) 2,4

Number of vectors in ÃD (ND) 32

Number of vectors in ÃA (NA) 32

Number of vectors in F̃RF (NF ) 32

Number of vectors in W̃RF (NW ) 32

Path loss (αp)
∑NP

p=1 |αp|2 = 1, αp ∈ C

AoD and AoA (φp) φp ∼ U(−π
2
, π
2
)

To sum up, the proposed algorithm can be divided into three

steps as detailed in Algorithm 1:

1) CE by OMP at the receiver.

2) The receiver sends the codebook indices of {âD(ns)}
to the transmitter.

3) Implementing the precoder reconstruction at the trans-

mitter and the combiner reconstruction at the receiver.

IV. NUMERICAL RESULTS

Four methods of CE plus HBF design are listed in Table

I, and Table II lists all the simulation parameters. Since

ND = NT and NA = NR, ÃD and ÃA are IDFT matrices

which satisfy ÃH
DÃD = I and ÃH

A ÃA = I. W̃RF and F̃RF

can be either orthogonal or non-orthogonal matrices in the

proposed methods, and in our simulations the orthogonal ones

are considered. All the methods use the same codebooks, ÃD,

ÃA, F̃RF , W̃RF .

A. Achievable Data Rate

Method 3 is simulated for reference to proof that the

proposed algorithm without SVD (Method 4) shows the same

data rate as the one with SVD (Method 3) when the conditions

ÂH
DÂD = I and ÂH

A ÂA = I hold. As introduced in

Section III-B, Method 4 only estimates NS array propagation

vectors in CE, whereas Method 3 estimates NP vectors. The
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Figure 3: The achievable data rate by various algorithms of

CE plus HBF with NS = 2, NRF = 4 and NP = 8.

optimization problem of CE in Method 3 is given as follows,

(ÂD, ÂA, D̂) = arg min
AD,AA,D

‖yV −Φ (A∗
D ⊗AA) vec(D)‖2 ,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aD(p) ∈ {ãD(iD), iD = 1, · · · , ND},
aA(p) ∈ {ãA(iA), iA = 1, · · · , NA},
‖vec(D)‖0 = NP ,

rank(AD) = NP ,

rank(AA) = NP .

(16)
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Table III: Comparison of the feedback overhead by Method 2 and Method 4.

Feedback overhead
NRF = 4, NS = 4 NRF = 4, NS = 2
NF = 32, ND = 32 NF = 32, ND = 32

Method 2 NRF · log2 NF + 16 ·NRF ·NS 276 bits 148 bits
Method 4 NS · log2 ND 20 bits 10 bits

Reduced feedback overhead 1− NS ·log2 ND
NRF ·log2 NF+16·NRF ·NS

92.75% 93.24%

The following steps in Method 3 are computing SVD accord-

ing to the results from (16) and then using the right and the left

singular vectors of the estimated channel matrix to reconstruct

the precoder and the combiner, respectively.

Fig. 2 and 3 show the achievable data rate by the four

simulated methods with different number NS of data streams.

In Fig. 2, since the simulated AoDs and AoAs are uniformly

distributed over (−π
2 ,

π
2 ), in Method 2 very few vectors in

{âD(p)} and {âA(p)} are repeated; therefore, the resulting

data rates of Method 2, 3, and 4 are almost the same. Then,

let us see the difference between Fig. 2 and 3. Because the

codebooks used in CE and ABF reconstruction are the same,

when NS = NRF (see Fig. 2), the NRF reconstructed ABF

vectors are the same as the NS selected array propagation

vectors. Accordingly, the resulting data rates of Method 3 and

4 are desirable. However, when NS < NRF (see Fig. 3), only

NS (instead of NRF ) reconstructed ABF vectors are the same

as the NS selected array propagation vectors, while the others

are repeated or invalid (the corresponding weightings in DBF

approximate to zero). That is the reason why in Fig. 3 the data

rates of Method 3 and 4 degrade significantly; in Method 2,

there is no such problem as the HBF reconstruction is based on

the right/left singular vectors of the estimated channel matrix.

B. Analyses of the Feedback Overhead

The advantages of the proposed algorithm are not only

reducing the computations of SVD but also reducing the

feedback overhead. The feedback overhead by Method 2 and

4 are listed in Table III and detailed as follows.

• In Method 2, the transmitter needs the information of

1) F̂RF : NRF codebook indices of the steering vec-

tors {f̂RF (nrf )}, which are selected from the set

of the NF vectors defined in F̃RF . Therefore,

NRF · log2 NF bits are required.

2) F̂BB : DBF matrix of size NRF ×NS . By using 16

bits to represent each entry in F̂BB including the

real and the imaginary parts, 16 ·NRF ·NS bits are

required.

• In Method 4, the transmitter needs the information of

1) ÂD: NS codebook indices of the array propagation

vectors {âD(ns)}, which are selected from the set

of the ND vectors defined in ÃD. Therefore, NS ·
log2 ND bits are required.

The reason why the receiver sends the information of F̂RF

and F̂BB rather than V(1 : NS) in Method 2 is explained

in Section III-A. Comparing these two methods, the proposed

one can reduce more than 90% feedback overhead.

V. CONCLUSIONS

This paper presents a novel method to reduce the compu-

tational complexity and the feedback overhead of the joint

CE and HBF problems. By orthogonality of the selected array

propagation vectors in the proposed CE method, the precoder

and the combiner can be reconstructed without SVD of the

estimated channel matrix and there is no data rate loss. Also,

regarding the feedback overhead, only the codebook indices

of the selected array propagation vectors have to be sent

to the transmitter. Compared to other joint CE plus HBF

reconstruction methods in the literature, the proposed solution

can reduce the feedback overhead by more than 90%.

VI. APPENDIX

Based on the definitions of eigenvalue and eigenvector [14],

the following Lemmas show intermediate results of Theorem
1.

Lemma 1. Given Ĥ = ÂAD̂ÂH
D , where ÂA ∈ C

NR×NP ,
ÂD ∈ C

NT×NP and D̂ = diag(α̂1, · · · , α̂NP
) ∈ C

NP×NP ,
where |α̂1| > · · · > |α̂NP

| > 0. If ÂH
DÂD = I and ÂH

A ÂA =
I , then the columns of ÂD and ÂA are, respectively, the right
and the left singular vectors of Ĥ.

Proof: Given a complex diagonal matrix D̂, it can be

represented as multiplication of one complex diagonal ma-

trix and one real diagonal matrix, such as D̂ = D̂CD̂R,

where D̂C = diag(ej∠α̂1 , · · · , ej∠α̂NP ) ∈ C
NP×NP (∠α̂p

returns the phase angle of α̂p), D̂H
C D̂C = I, and D̂R =

diag(|α̂1|, · · · , |α̂NP
|) ∈ R

NP×NP . Let H̃ � ĤĤH =
ÂAD̂

2
RÂ

H
A , which can be further shown as H̃ÂA = ÂAD̂

2
R.

From the definition of eigenvector, we know that âA(p), p =
1, · · · , NP , are the eigenvectors of H̃ or the left singular

vectors of Ĥ. Similarly, âD(p), p = 1, · · · , NP , are the right

singular vectors of Ĥ.

Lemma 2. Given Ĥ = ÂAD̂ÂH
D as defined in Lemma 1.

Let the SVD of Ĥ be Ĥ = UΛVH , where the columns
of U ∈ C

NR×NP and V ∈ C
NT×NP are, respectively,

the left and the right singular vectors of Ĥ, and Λ =
diag(λ1, · · · , λNP

) ∈ R
NP×NP , λ1 > · · · > λNP

> 0 . If
ÂH

DÂD = I and ÂH
A ÂA = I, then

1. V = ÂDD̂D, where D̂D = diag(ejθD,1 , · · · , ejθD,NP ) ∈
C

NP×NP , 0 ≤ θD,p < 2π.
2. U = ÂAD̂A, where D̂A = diag(ejθA,1 , · · · , ejθA,NP ) ∈

C
NP×NP , 0 ≤ θA,p < 2π.

Proof: Because all the eigenvalues are assumed distinct

and sorted in descending order. From Lemma 1, we know that

both âA(p) and u(p) are the eigenvectors of H̃ (H̃ � ĤĤH )
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corresponding to the same eigenvalue. In addition, eigenvec-

tors corresponding to the same eigenvalue are equivalent up

to a phase rotation. Therefore, the relationship between âA(p)
and u(p) can be written as u(p) = ejθA,p âA(p), 0 ≤ θA,p <
2π. Similarly, v(p) = ejθD,p âD(p), 0 ≤ θD,p < 2π.

Lemma 3. Given Ĥ = ÂAD̂ÂH
D as defined in Lemma 1.

(F̂RF , F̂BB) and (ŴRF ,ŴBB) are reconstructed by ÂD

and ÂA respectively. Let the SVD of Ĥ be Ĥ = UΛVH

as defined in Lemma 2. (F̄RF , F̄BB) and (W̄RF ,W̄BB) are
reconstructed by V and U respectively. If ÂH

DÂD = I and
ÂH

A ÂA = I, then
1. F̄RF = F̂RF and F̄BB = F̂BBD̂D, where D̂D is defined

in Lemma 2.
2. W̄RF = ŴRF and W̄BB = ŴBBD̂A, where D̂A is

defined in Lemma 2.

Proof: To proof F̄RF = F̂RF is equivalent to proofing

that the results of GGH (in Algorithm 1 Step 24) for the two

different observations, V and ÂD, in every iteration are the

same. Also, since GGH = F̃H
RFAtmpA

H
tmpF̃RF and F̃RF is

the given codebook, the problem can be further simplified as

proofing that the results of AtmpA
H
tmp for the two different

observations are the same in every iteration.
When nrf = 1,

ĀtmpĀ
H
tmp = VVH

Lemma 2
= ÂDD̂DD̂H

DÂH
D

= ÂDÂH
D

= ÂtmpÂ
H
tmp. (17)

(17) ensures that the first selected ABF vectors by V and ÂD

are the same. Then, the updated Âtmp and Ātmp become

Âtmp = (INT
− F̂RF (F̂

H
RF F̂RF )

−1F̂H
RF )ÂD (18)

and

Ātmp = (INT
− F̄RF (F̄

H
RF F̄RF )

−1F̄H
RF )V

= (INT
− F̂RF (F̂

H
RF F̂RF )

−1F̂H
RF )ÂDD̂D (19)

= ÂtmpD̂D.

When nrf > 1, according to the updated Ātmp and Âtmp,

one has

ĀtmpĀ
H
tmp = ÂtmpD̂DD̂H

DÂH
tmp

= ÂtmpÂ
H
tmp. (20)

Repeat (18)–(20) until nrf = NRF . It shows that the results

of AtmpA
H
tmp for the two different observations are the same

in every iteration and, consequently, it can be concluded that

the selected ABF vectors are equal, i.e., F̄RF = F̂RF .
Based on the results that F̄RF = F̂RF and V = ÂDD̂D

(from Lemma 2), the DBF matrix by the observation V is

shown as (see Algorithm 1 Step 28)

F̄BB = (F̄H
RF F̄RF )

−1F̄H
RFV

= (F̂H
RF F̂RF )

−1F̂H
RF ÂDD̂D

= F̂BBD̂D.

Similarly, we have W̄RF = ŴRF and W̄BB = ŴBBD̂A.

Theorem 1. Given Ĥ = ÂAD̂ÂH
D as defined in

Lemma 1. Let the SVD of Ĥ be Ĥ = UΛVH as
defined in Lemma 2. If ÂH

DÂD = I and ÂH
A ÂA = I,

then the data rate C(F̂RF , F̂BB ,ŴRF ,ŴBB) =
C(F̄RF , F̄BB ,W̄RF ,W̄BB), where (F̂RF , F̂BB) and
(ŴRF ,ŴBB) are respectively reconstructed by ÂD and
ÂA, and (F̄RF , F̄BB) and (W̄RF ,W̄BB) are respectively
reconstructed by V and U.

Proof: By using the relationship between

(F̂RF , F̂BB ,ŴRF ,ŴBB) and (F̄RF , F̄BB ,W̄RF ,W̄BB)
in Lemma 3, the data rates (5) by these two HBF designs

show the same results.
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