
Protocol-Independent Adaptive Replay of Application Dialog

Weidong Cui†, Vern Paxson‡, Nicholas C. Weaver‡, Randy H. Katz†
†University of California, Berkeley, CA

‡International Computer Science Institute, Berkeley, CA

Abstract

For many applications—including recognizing malware
variants, determining the range of system versions vulner-
able to a given attack, testing defense mechanisms, and fil-
tering multi-step attacks—it can be highly useful to mimic
an existing system while interacting with a live host on the
network. We present RolePlayer, a system which, given ex-
amples of an application session, can mimic both the client
side and the server side of the session for a wide variety of
application protocols. A key property of RolePlayer is that
it operates in an application-independent fashion: the sys-
tem does not require any specifics about the particular ap-
plication it mimics. It instead uses byte-stream alignment
algorithms to compare different instances of a session to
determine which fields it must change to successfully replay
one side of the session. Drawing only on knowledge of a
few low-level syntactic conventions (such as representing
IP addresses using “dotted quads”), and contextual infor-
mation such as the domain names of the participating hosts,
RolePlayer can heuristically detect and adjust network ad-
dresses, ports, cookies, and length fields embedded within
the session, including sessions that span multiple, concur-
rent connections on dynamically assigned ports.

We have successfully used RolePlayer to replay both the
client and server sides for a variety of network applications,
including NFS, FTP, and CIFS/SMB file transfers, as well
as the multi-stage infection processes of the Blaster and
W32.Randex.D worms.

1 Introduction

In a number of different situations it would be highly
useful if we could cheaply “replay” one side of an appli-
cation session in a slightly different context. For exam-
ple, consider the problem of receiving probes from a remote
host and attempting to determine whether the probes reflect
a new type of malware or an already known attack. Dif-
ferent attacks that exploit the same vulnerability often con-
duct the same application dialog (e.g., the many steps of a

Windows file-access session) prior to finally exposing their
unique malicious intent. Thus, to coax from these sources
their final intent requires engaging them in an initial dialog,
either by implementing protocol-specific application-level
responders [15, 16] or by deploying high-interaction honey-
pot systems [6, 19] that run the actual vulnerable services.
Both approaches are expensive in terms of development or
management overhead.

On the other hand, much of the dialog required to en-
gage with the remote source follows the same “script” as
seen in the past, with only very minor variants (different
hostnames, IP addresses, port numbers, command strings,
or session cookies). If we could cheaply reproduce one side
of the dialog, we could directly tease out the remote source’s
intent by efficiently driving it through the routine part of the
dialog until it reaches the point where, if it is indeed some-
thing new, it will reveal its distinguishing nature by parting
from the script.

Another example comes from trying to determine the
equivalent for malware of a “toxicology spread” for a bi-
ological pathogen. That is, given only an observed instance
of a successful attack against a given type of server (i.e., par-
ticular OS version and server patch level), how can we de-
termine what other server/OS versions are also susceptible?
If we have instances of other possible versions available,
then we could test their vulnerability by replaying the orig-
inal attack against them, providing the replay again takes
into account the natural session variants such as differing
hostnames, IP addresses, session cookies, etc. Similarly,
we could use replay to feed possible attacks into more so-
phisticated analysis engines (e.g., [14]).

We can also use lightweight replay to facilitate testing
of network systems. For example, when developing or con-
figuring a new security mechanism it can be very helpful
if we can easily repeat attacks against the system to eval-
uate its response. Historically, this can require a complex
testbed to repeatedly run a piece of malware in a safe, re-
stricted fashion. Armed with a replay system, however, we
could capture a single instance of an attack and then re-
play it against refinements of the security mechanism with-
out having to reestablish an environment for the malware to

execute within.
We can generalize such repeated replay to tasks of stress-

testing, evaluating servers, or conducting large-scale mea-
surements. A replay system could work as a low-cost client
by replaying application dialogs with altered parameters in
part of the dialog. For example, by dynamically replacing
the receiver’s email address in a SMTP dialog, we could use
replay to create numerous SMTP clients that send the same
email to different addresses. We could use such a capability
for both debugging and performance testing, without need-
ing to either create specialized clients or invoke repeated in-
stances of a computationally expensive piece of client soft-
ware.

A final, powerful example concerns the use of replay
to construct proxies. Suppose in the first example above
that not only do we wish to determine whether an incom-
ing probe reflects a new type of attack or a known type, but
we also want to filter the attack if it is a known type but
allow it through if it is a new type. We could use replay to
efficiently do so in two steps. First, we would replay the
targeted server’s behavior in response to the probe’s initial
activity (e.g., setting up a Windows SMB RPC call) until
we reach a point where a new attack variant will manifest
itself (e.g., by making a new type of SMB call or by send-
ing over a previously unseen payload for an existing type of
call). If the remote host at this point proves to lack novelty
(we see the same final step in its activity as we have seen
before), then we drop the connection. However, if it reveals
a novel next step, then at this point we would like it to en-
gage a high-interaction honeypot server so we can examine
the new attack. To do so, though, we must bring the server
“up to speed” with respect to the application dialog in which
the remote host is already engaged. We can do so by using
replay again, this time replaying the remote host’s previous
actions to the new server so that the two systems become
synchronized, after which we can allow the remote host to
proceed with its probing. If we perform such proxying cor-
rectly, the remote will never know that it was switched from
one type of responder (our initial replayer) to another (the
high-interaction honeypot).

In this paper we develop a system, RolePlayer, to provide
such replay functionality. We aim for the system to achieve
several important goals:

• Protocol independence. The system should not need
any application-specific customization, so that it works
transparently for a large class of applications, includ-
ing both as a client and as a server.

• Minimal training. The system should be able to
mimic a previously seen type of application dialog
given only a small number of examples.

• Automation. Given such examples, the system should

operate correctly without requiring any manual inter-
vention.

In some cases, replaying is trivial to implement. For ex-
ample, each attack by the Code Red worm sends exactly the
same byte stream over the network to a target. However,
successfully replaying an application dialog can be much
more complicated than simply parroting the stream. Con-
sider for example the Blaster worm of August, 2003, which
exploited a DCOM RPC vulnerability in Windows by at-
tacking port 135/tcp. For Blaster, if a compromised host
(A) finds a new vulnerable host (V) via its random scan-
ning, then the following infection process occurs.

1. A opens a connection to 135/tcp on V and sends three
packets with payload sizes of 72, 1460, and 244 bytes.
These packets compromise V and open a shell listen-
ing on 4444/tcp.

2. A opens a connection to 4444/tcp and issues “tftp -i
xx.xx.xx.xx GET msblast.exe” where “xx.xx.xx.xx”
is A’s IP address.

3. V sends a request back to 69/udp on A to download
msblast.exe via TFTP.

4. A issues commands via 4444/tcp to start msblast.exe
on host V .

This example illustrates a number of challenges for im-
plementing replay.

1. An application session can involve multiple connec-
tions, with the initiator and responder switching roles
as both client and server, which means RolePlayer
must be able to run as client and server simultaneously.

2. While replaying an application dialog we sometimes
cannot coalesce data. For example, if the replayer
attempts to send the first Blaster data unit as a sin-
gle packet, we observe two packets with sizes of
1460 and 316 bytes due to Ethernet framing. For rea-
sons we have been unable to determine, these pack-
ets do not compromise vulnerable hosts. Thus, Role-
Player must consider both application data units and
network framing. (It appears that there is a race con-
dition in Blaster’s exploitation process—A connects to
4444/tcp before the port is opened on V . If we do not
consider the network framing, it increases the likeli-
hood of the race condition. Accommodating such tim-
ing issues in replay remains for future work.)

3. Endpoint addresses such as IP addresses, port numbers
and hostnames may appear in application data. For ex-
ample, the IP address of A appears in the TFTP down-
load command. This requires RolePlayer to find and
update endpoint addresses dynamically.

4. Endpoint addresses (especially names but also IP ad-
dresses, depending on formatting) can have variable
lengths, and thus the data size of a packet or appli-
cation data unit can differ between dialogs. This cre-
ates two requirements for RolePlayer: deciding if a re-
ceived application data unit is complete, particularly
when its size is smaller than expected; and changing
the value of such length fields when replaying them
with different endpoint addresses.

5. Some applications use “cookie” fields to record ses-
sion state. For example, the process ID of the client
program is a cookie field for the Windows CIFS proto-
col, while the file handle is one in the NFS protocol.
Therefore, RolePlayer must locate and update these
fields during replay.

6. We observe that non-zero padding up to 3 bytes may be
inserted into an application data unit, which we must
accommodate without confusion during replay.

We organize the remainder of the paper as follows. We
compare RolePlayer with previous work and highlight its
contributions in Section 2. After presenting terminology
and our design assumptions in Section 3, we describe the
design of RolePlayer in detail in Section 4. We discuss our
evaluation methodology and results in Section 5, and sum-
marize in Section 6.

2 Related work

The programming and operating systems communities
have studied the notion of replaying program execution for
a number of years [1, 5, 7, 9, 17, 18]. However, we know
of little literature discussing general replay of network ac-
tivity at the application level. The existing work has in-
stead focused on incorporating application-specific seman-
tics [15, 16].

Libes’ expect tool includes the same notion as our work
of automatically following a “script” of expected interactive
dialogs [10]. A significant difference of our work, however,
is that we focus on generating the script automatically from
previous communications, and we have not yet incorporated
the possibility of the script including branch-points that lead
to alternatives in the dialog.

A number of commercial security products address re-
playing network traffic [4, 12]. These products however
appear limited to replay at the network or transport layer,
similar to the Monkey and Tcpreplay tools [3, 20]. The
Flowreplay tool uses application-specific plug-ins to sup-
port application-level replay [21].

Our work leverages the Needleman-Wunsch algorithm
[13], widely used in bioinformatics research, to locate fields
that have changed between one example of an application

session and another. In this regard, our approach is simi-
lar to the recent Protocol Informatics project [2], which at-
tempts to identify protocol fields in unknown or poorly doc-
umented network protocols by comparing a series of sam-
ples using sequence alignment algorithms.

Compared to the previous work, RolePlayer makes four
contributions:

1. It does not require knowledge of application-level pro-
tocol semantics.

2. It automatically generates its dialog “script” from pre-
viously recorded traffic.

3. It can replay against live peers as both initiator and re-
sponder because it can adapt to dynamic changes such
as session identifiers and differing hostnames.

4. It requires at most two samples to replay a single par-
ticular application session.

3 Terminology and design assumptions

We will use the term application session to mean a fixed
series of interactions between two hosts that accomplishes
a specific task (e.g., uploading a particular file into a par-
ticular location). The term application dialog refers to a
recorded instance of a particular application session. The
host that starts a session is the initiator. The initiator con-
tacts the responder. (We avoid “client” and “server” here
because for some applications the two endpoints assume
both roles at different times.) We want RolePlayer to be
able to correctly mimic both initiators and responders. In
doing so, it acts as the replayer, using previous dialog(s) as
a guide in communicating with the remote live peer.

An application session consists of a set of TCP and/or
UDP connections, where a UDP “connection” is a pair of
unidirectional UDP flows. In a connection, an application
data unit (ADU) is a consecutive chunk of application-level
data sent in one direction, which spans one or more packets.
RolePlayer only cares about application-level data, ignoring
both network and transport-layer headers when replaying a
session.

Within an ADU, a field is a byte sequence with semantic
meaning. A dynamic field is a field that potentially changes
between different dialogs. We classify dynamic fields into
five types: host-specific endpoint-address (e.g., hostnames,
IP addresses, transport port numbers), length (1 or 2 bytes
reflecting the length of either the ADU or a subsequent dy-
namic field), cookie (session-specific opaque data that ap-
pears in ADUs from both sides of the dialog, such as trans-
action IDs), argument (fields that customize the meaning of
a session, such as the destination directory for a file trans-
fer, or the domain name in a DNS lookup), and don’t-care

(opaque fields that appear in only one side of the dialog).
Argument fields are only relevant for replay if we want to
specifically alter them; for don’t-care fields, we ignore the
difference if the value for them we receive from a live peer
differs from the original, and we send them verbatim if com-
municating them to a live peer.

To replay a session, we need at least one sample dialog
to use as a reference, the primary application dialog. We
may also need an additional secondary dialog for discov-
ering dynamic fields, particularly length fields. Finally, we
refer to the dialog generated during replay as the replay di-
alog.

Given this terminology, we can frame our design as-
sumptions as follows.

1. We have available primary and (when needed) sec-
ondary dialogs that differ enough to disclose the dy-
namic fields, but are otherwise the same in terms of
the application semantics.

2. We assume that the live peer is configured suitably
similar to its counterpart in the dialogs.

3. We assume some standard network protocol represen-
tations, such as embedded IP addresses being repre-
sented either as a four-byte integer or in dotted or
comma-separated format and embedded transport port
numbers as two-byte integers. (We currently consider
network byte order only, but it is an easy extension to
accommodate either-endian.) Note that we do not as-
sume the use of a single format, but instead encode into
RolePlayer each of the possible formats.

4. We assume the domain names of the participating
hosts in sample dialogs can be provided by the user
if required for successful replay.

5. We assume that the application session does not in-
clude time-related behavior (e.g., wait 30 seconds be-
fore sending the next message) and does not require
encryption or cryptographic authentication.

4 RolePlayer design

The basic idea of RolePlayer is straightforward: given
an example or two of an application session, locate the dy-
namic fields in the ADUs and adjust them as necessary be-
fore sending the ADUs out from the replayer. Since some
dynamic fields, such as length fields, can only be found
by comparing two existing sample application dialogs, we
split the work of RolePlayer into two stages: preparation
and replay. During preparation, RolePlayer first searches
for endpoint-address and argument fields in each sample
dialog, then searches for length fields and possible cookie
fields by comparing the primary and secondary dialogs.

During replay, it first searches for new values of dynamic
fields by comparing received ADUs with the corresponding
ones in the primary dialog, then updates them with the new
values. In this section, we describe both stages in detail.

Before proceeding, we note that a particularly important
issue concerns dynamic ports. RolePlayer needs to deter-
mine when to initiate or accept new connections, and in
particular must recognize additional ports that an applica-
tion protocol dynamically specifies. To do so, RolePlayer
detects stand-alone ports and hostname/port pairs during its
search process, and matches these with subsequent connec-
tion requests. This enables the system to accommodate fea-
tures such as FTP’s use of dynamic ports for data transfers,
and portmapping as used by SunRPC.

4.1 The preparation stage

In the preparation stage, RolePlayer needs to parse net-
work traces of the application dialogs and search for the
dynamic fields within. For its processing we may also need
to inform RolePlayer of the hostnames of both sides of the
dialog, and any application arguments of interest, as these
cannot be inferred from the dialog.

4.1.1 Parsing application dialogs

RolePlayer organizes dialogs in terms of both ADUs and
data packets. It uses data packets as the unit for sending
and receiving data and ADUs as the unit for manipulat-
ing dynamic fields. Note that data packets may interleave
with ADUs. For example, FTP sessions use two concur-
rent connections, one for data transfer and one for control.
RolePlayer needs to honor the ordering between these as re-
vealed by the packet sequencing on the wire, such as ensur-
ing that a file transfer on the data channel completes before
sending the “226 Transfer complete” on the control chan-
nel. Accordingly, we use the SYN, FIN and RST bits in the
TCP header to delimit the beginning and end of each con-
nection, so we know the correct temporal ordering of the
connections within a session.

4.1.2 Searching for dynamic fields

RolePlayer next searches for dynamic fields in the primary
dialog, and also by comparing it with the secondary dialog
(if available). The searching process contains a number of
subtle steps and considerations. We illustrate these using
replay of a fictitious toy protocol, SPD (Service Port Dis-
covery; see Appendix A) as a running example. SPD con-
sists of a single client request carrying the client’s hostname
and a service name, to which the server replies with an IP
address and port number expressed in the comma-separated
syntax used by FTP. We note that this protocol is sufficiently

19 1 1314 6 h o s t 0 1 7 p r i n t e r

16 1 0300 7 h o s t t w o 3 m a p

18 2 1314 13 1 0 , 2 , 3 , 4 , 2 , 5 5

19 2 0300 14 1 0 , 4 , 5 , 6 , 2 , 1 4 2

Figure 1. The captured primary and secondary dialogs for requests (left) and responses (right)
using the toy SPD protocol. RolePlayer first discovers endpoint-address (bold italic) and argument
(italic) fields, then breaks the ADUs into segments (indicated by gaps), and discovers length (gray
background) and possible cookie (bold) fields.

simple that some of the operations we illustrate appear triv-
ial. However, the key point is that the same operations also
work for much more complex protocols (such as Windows
SMB/CIFS).

Figure 1 shows two SPD dialogs, each consisting of
a request (left) and response (right). For RolePlayer to
process these, we must inform it of the embedded host-
names (“host01”, “hosttwo”) and arguments (“printer”,
“map”), though we do not need to specify their locations
in the protocol. If we did not specify the arguments, they
would instead be identified and treated as don’t-care fields.
We do not need to inform RolePlayer of the hostname of a
live peer because RolePlayer can automatically find it if it
appears in an ADU from the live peer.

In addition, we do not inform RolePlayer of the em-
bedded transaction identifiers (1314, 0300), length fields,
IP addresses (10.2.3.4, 10.4.5.6), or port numbers (567 =
2 · 256 + 55, 654 = 2 · 256 + 142).

The naive way to search for dynamic fields would be to
align the byte sequences of the corresponding ADUs and
look for subsequences that differ. However, we need to treat
endpoint-address and argument fields as a whole; for exam-
ple, we do not want to decide that one difference between
the primary and secondary dialogs is changing “01” in the
first to “two” in the second (the tail end of the hostnames).
Similarly, we want to detect that 13 and 14 in the replies are
length fields and not elements of the embedded IP addresses
that changed. To do so, we proceed as follows:

1. Search for endpoint-address and argument fields in
both dialogs by finding matches of presentations of
their known values. For example, we will find
“host01” as an endpoint-address field and “printer” as
an argument field in the primary’s request.
We consider seven possible presentations and their
Unicode [22] equivalents for endpoint addresses, and
one presentation and its Unicode equivalent for argu-
ments. For example, for the primary’s reply we may
know from the packet headers in the primary trace
that the server’s IP address is 10.2.3.4, in which case
we search for: the binary equivalent (0x0A020304);
ASCII dotted-quad notation (“10.2.3.4”); and comma-
separated octets (“10,2,3,4”). The latter locates the oc-

currence of the address in the reply. (If the server’s
address was something different, then we would not
replace “10,2,3,4” in the replayed dialog.)

2. If we have a secondary dialog, then RolePlayer splits
each ADU into segments based on the endpoint-
address and argument fields found in the previous step.
It is possible that endpoint-address and argument fields
do not match due to some bogus matches of the pre-
sentations found in don’t-care fields. We remove these
bogus fields before splitting each ADU.

3. Finally, RolePlayer searches for length, cookie, and
don’t-care fields by aligning and comparing each pair
of data segments. By “alignment” here we mean ap-
plication of the Needleman-Wunsch algorithm [13],
which efficiently finds the minimal set of difference
between two byte sequences subject to constraints;
see Section 4.3.1 below for discussion. An important
point is that at this stage we do not distinguish be-
tween cookie fields and don’t-care fields. Only during
the actual subsequent live session will we see whether
these fields are used in a manner consistent with cook-
ies (which need to be altered during replay) or don’t-
care’s (which shouldn’t). See Section 4.2 for the pro-
cess by which we make this decision.

In the SPD example, aligning and comparing the five-
byte initial segments in the primary and secondary requests
results in the discovery of two pairs of length fields (19 vs.
16, and 6 vs. 7) and one cookie field (1314 vs. 0300).
To find these, RolePlayer first checks if a pair of differing
bytes (or differing pairs of bytes) are consistent with be-
ing length fields, i.e., their numeric values differ by one
of: (1) the length difference of the whole ADU, (2) the
length difference of an endpoint-address or argument fields
that comes right after the length fields, or (3) the double-
byte length difference of these, if the subsequent field is in
Unicode format. For example, RolePlayer finds 19 and 16
as length fields because their difference matches the length
difference of the request messages, while the difference be-
tween 6 and 7 matches the length difference of the client
hostnames. (Note that, to accommodate Unicode, we merge

19 1 1314 6 h o s t 0 1 7 p r i n t e r

18 1 1314 4 n e w h 8 s c h e d u l e

(a) The scripted (primary) dialog (top) and RolePlayer’s generated dialog (bottom) for an SPD request for which we have
instructed it to use a different hostname and service. The fields in black background reflect those updated to account for
the modified request and the automatically updated length fields.

19 1 1314 6 h o s t 0 1 7 p r i n t e r

18 1 1616 5 h o s t 4

18 2 1314 13 1 0 , 2 , 3 , 4 , 2 , 5 5

19 2 1616 14 1 0 , 2 1 , 8 , 57 p r i n t e r , 2 , 5 5

(b) The same for constructing an SPD reply to a live peer that sends a different transaction ID in their request, and for
which the replayer is running on a different IP address. Note that the port in the reply stays constant.

Figure 2. Initiator-based and responder-based SPD replay dialogs.

Next Packet?

Yes

Send or Recv?

Last Packet?

Yes
Find Dynamic

First Packet?

Yes

Send

No

Recv

Fields in ADU

Update Dynamic
Fields in ADU

Finish Replay

Recv Packet
Send Packet

Start Replay

No

No

Figure 3. Steps in the replay process.

any two consecutive differing byte sequences if there is only
one single zero byte between them.)

4.2 The replay stage

With the preparation complete, RolePlayer can commu-
nicate with a live peer. To do so, it uses the primary ap-
plication dialog plus the discovered dynamic fields as its
“script,” allowing it to replay either the initiator or the re-
sponder. Figures 2(a) and 2(b) give examples of creating an
initial request and responding to a request from a live peer in
SPD, respectively. To construct these requires several steps,
as shown in Figure 3.

4.2.1 Deciding packet direction

We read the next data packet from the script to see whether
we now expect to receive a packet from the live peer or send
one out.

4.2.2 Receiving data

If we expect to receive a packet, we read data from the spe-
cific connection. Doing so requires deciding whether the
received data is complete (i.e., equivalent to the correspond-
ing data in the script). To do so, we use the alignment al-
gorithm (Section 4.3.1) with the constraint that the match
should be weighted to begin at the same point (i.e., at the
beginning of the received data). If it yields a match with no
trailing “gap” (i.e., it did not need to pad the received data
to construct a good match), then we consider that we have

received the expected data. Otherwise, we wait for more
data to arrive.

After receiving a complete ADU, we compare it with the
corresponding one in the script to locate dynamic fields.
This additional search is necessary for two reasons. First,
RolePlayer may need to find new values of endpoint ad-
dresses or arguments. Second, cookie fields found in the
replay stage may differ from those found in the preparation
stage due to accidental agreement between the primary and
secondary dialogs.

We can apply the techniques used in the preparation
stage to find dynamic fields, but with the major additional
challenge that now for the live dialog we do not have ac-
cess to the endpoint addresses and application arguments.
While the script provides us with guidance as to the ex-
istence of these fields, they are often not in easily located
positions but instead surrounded by don’t-care fields. The
difficult task is to pinpoint the fields that need to change in
the midst of those that do not matter. If by mistake this pro-
cess overlaps an endpoint-address or argument field with a
don’t-care field, then this will likely substitute incorrect text
for the replay. However, we can overcome these difficulties
by applying the alignment algorithm (Section 4.3.1) with
pairwise constraints. Doing so, we find that RolePlayer cor-
rectly identifies the fields with high reliability.

After finding the endpoint-address and argument fields,
we then use the same approach as for the preparation stage
to find length, cookie and don’t-care fields. We save the
data corresponding to newly found endpoint-address, argu-
ment, and cookie fields for future use in updating dynamic
fields.

4.2.3 Sending data

When the script calls for us to send a data packet, we check
whether it is the first one in an ADU. If so, we update any
dynamic fields in it and packetize it. The updated values
come from three sources: (1) analysis of previous ADUs;
(2) the IP address and transport port numbers on the re-
player; (3) user-specified (for argument fields). After up-
dating all other fields, we then adjust length fields.

This still leaves the cookie fields for updating. Role-
Player only updates cookie fields passively, i.e., to reflect
changes first introduced by the live peer. So, for example,
in Figure 2(a) we do not change the transaction ID when
sending out the request, but we do change it in the reply
shown in Figure 2(b).

To update cookie values altered by the live peer, we
search the ADU we are currently constructing for matches
to cookie fields we previously found by comparing received
ADUs with the script. However, some of these identified
cookie fields may in fact not be true cookies (and thus
should not be reflected in our new ADU), for three reasons:

some Windows applications use non-zero-byte padding;
sometimes a single, long field becomes split into multiple,
short cookie fields due to partial matches within it; and mes-
sages such as FTP server greetings can contain inconsistent
(varying) data.

Thus, another major challenge is to robustly determine
which cookie matches we should actually update. We stud-
ied several popular protocols and found that cookie fields
usually appear in the same context. Also, the probability of
a false match to a N -byte cookie field is very small when
N is large (e.g., when N ≥ 4). Hence, to determine if we
should update a cookie match, we check four conditions,
requiring at least two to hold.

1. Is the byte sequence ≥ 4 bytes? This condition cap-
tures the fact that padding fields are usually < 4 bytes
in length because they are used to align an ADU at a
32-bit boundary.

2. Does the byte sequence overlap a potential cookie field
found in the preparation stage? (If there is no sec-
ondary dialog, this condition will always be false, be-
cause we only find cookie fields during preparation by
comparing the primary dialog with the secondary di-
alog.) The intuition here is that the matched byte se-
quence is more likely to be a correct one since it is part
of a potential cookie field.

3. Is the prefix of the byte sequence consistent with that
of the matched cookie field? The prefix is the byte se-
quence between the matched cookie field and the pre-
ceding non-cookie dynamic field (or the beginning of
the ADU). For prefixes exceeding 4 bytes, we con-
sider only the last four bytes (next to the targeted byte
sequence). For empty prefixes, if the non-cookie dy-
namic fields are the same type (or it is the beginning
of the ADU) then the condition holds. This condition
matches cookie fields with the same leading context.

4. Is the suffix consistent? The same as the prefix condi-
tion but for the trailing context.

4.3 Design issues

4.3.1 Sequence alignment

The cornerstone of our approach is to compare two byte
streams (either a primary dialog and a secondary dialog,
or a script and the ADUs we receive from a live peer) to
find the best description of their differences. The whole
trick here is what constitutes “best.” Because we strive for
an application-independent approach, we cannot use the se-
mantics of the underlying protocol to guide the matching
process. Instead we turn to generic algorithms that compare
two byte streams using customizable, byte-level weightings

for determining the significance of differences between the
two.

The term used for the application of these algorithms is
“alignment,” since the goal is to find which subsequences
within two byte streams should be considered as counter-
parts. The Needleman-Wunsch algorithm [13] we use is
parameterized in terms of weights reflecting the value as-
sociated with identical characters, differing characters, and
missing characters (“gaps”). The algorithm then uses dy-
namic programming to find an alignment between two byte
streams (i.e., where to introduce, remove, or transform char-
acters) with maximal weight.

We use two different forms of sequence alignment,
global and semi-global. Global refers to matching two byte
streams against one another in their entirety, and is done
using the standard Needleman-Wunsch algorithm. Semi-
global reflects matching one byte stream as a prefix or suf-
fix of the other, for which we use a modified Needleman-
Wunsch algorithm. (Due to space limitations we do not
present algorithmic details here.)

When considering possible alignments, the algorithm as-
signs different weightings for each aligned pair of charac-
ters depending on whether the characters agree, disagree,
or one is a gap. Let the weight be m if they agree, n if
they disagree, and g if one is a gap. The total score for
a possible alignment is then the sum of the corresponding
weights. For example, given abcdf and acef, with weights
m = 2, n = −1, g = −2, the optimal alignment (which the
algorithm is guaranteed to find) is abcdf with a-cef, with
score m + g + m + n + m = 3, where - indicates a gap.

To compute semi-global alignments of matching one
byte stream as prefix of the other, we modify the algorithm
to ignore trailing gap penalties. For example, given two
strings ab and abcb, we obtain the same global alignment
score of 2m+2g for the alignments ab--with abcb, versus
a--b with abcb. But for semi-global alignment, the simi-
larity score is 2m for the first and 2m + 2g for the second,
so we prefer the first since g takes a negative value.

The quality of sequence alignment depends critically on
the particular parameters (weightings) we use. For our use,
the major concern is deciding how many gaps to allow in
order to gain a match. For example, when globally align-
ing ab with bc, two possible alignment results are ab with
bc (score n + n) or ab- with -bc (score g + m + g). The
three parameters will have a combined linear relationship
(since we add combinations of them linearly to obtain a to-
tal score), so we proceed by fixing n and g (to 0 and -1,
respectively), and adjusting m for different situations.

For global alignment—which we use to align two
sequences before comparing them and locating length,
cookie, and don’t-care fields—we set m = 1 to avoid align-
ments like ab- with -bc. For semi-global alignment—used
during replay to decide whether received data is complete—

we set m to the length difference of the two sequences. The
notion here is that if the last character of the received data
matches the last one in the ADU from the script, then m is
large enough to offset the gap penalty caused by aligning
the characters together. However, if the received data is in-
deed incomplete, its better match to only the first part of the
ADU will still win out. Using the semi-global alignment
example above, we will set m = 2 (due to the length of ab
vs. abcb), and hence still find the best alignment with abcb
to be ab-- rather than a--b.

Finally, we make a powerful refinement to Needleman-
Wunsch for pinpointing endpoint-address and/or argument
fields in a received ADU: we modify the algorithm to work
with a pairwise constraint matrix. The matrix specifies
whether the ith element of the first sequence can or can-
not be aligned with the jth element of the second sequence.
We dynamically generate this matrix based on the structure
of the data from the primary dialog. For example, if the data
includes an endpoint-address field represented as a dotted-
quad IP address, then we add entries in the matrix prohibit-
ing those digits from being matched with non-digits in the
second data stream, and prohibiting the embedded “.”s from
being matched to anything other than “.”s. This modifica-
tion significantly improves the efficacy of the alignment al-
gorithm in the presence of don’t-care fields.

4.3.2 Removing overlap

When searching for dynamic fields in an ADU, sometimes
we find fields that overlap with one another. We remove
these using a greedy algorithm. For each overlapping dy-
namic field, we set the penalty for removing it as the num-
ber of bytes we would lose from the union set of all dy-
namic fields. (So, for example, a dynamic field that is fully
embedded within another dynamic field has a penalty of 0.)
We then select the overlapping field with the least penalty,
remove it, and repeat the process until there is no overlap.

4.3.3 Handling large ADUs

ADUs can be very large, such as when transferring a large
data item using a single Windows CIFS, NFS or FTP mes-
sage. RolePlayer cannot ignore these ADUs when search-
ing for dynamic fields because there may exist dynamic
fields embedded within them—generally at the beginning.
For example, an NFS “READ Reply” response comes with
both the read status and the corresponding file data, and
includes a cookie field containing a transaction identifier.
However, the complexity of sequence alignment is O(MN)
for sequences of lengths M and N , making its applica-
tion intractable for large sequences. RolePlayer avoids this
problem by considering only fixed-size byte sequences at
the beginning of large ADUs.

Protocol Initiator Program Responder Program # Connections # ADUs # Initiator Fields # Responder Fields
received sent received sent

SMTP manual Sendmail 1 13 22 3 3 3
DNS nslookup BIND 1 2 8 0 0 1
HTTP wget Apache 1 2 10 0 0 0
TFTP W32.Blaster Windows XP 3 34 5 1 1 1
FTP wget ProFTPD 2 18 12 0 0 2
NFS mount Linux Fedora NFS 9 36 34 12 46 23
CIFS W32.Randex.D Windows XP 6 86 101 65 80 63

Table 1. Summary of evaluated applications and the number of dynamic fields in data received or
sent by RolePlayer during either initiator or responder replay.

5 RolePlayer evaluation

We implemented RolePlayer in 4,300 lines of C code un-
der Linux, using libpcap [11] to capture traffic and the stan-
dard socket API to generate traffic. Thus, RolePlayer only
needs root access if it needs to send traffic from a privileged
port. We tested the system on a variety of protocols widely
used in malicious attacks and network applications. Table 1
summarizes our test suite. RolePlayer can successfully re-
play both the initiator and responder sides of all of these
dialogs.

5.1 Test environment

We conducted our evaluation in an isolated testbed con-
sisting of a set of nodes running on VMWare Worksta-
tion [23] interconnected using software based on Click [8].
We used VMWare Workstation’s support for multiple guest
operating systems and private networks between VM in-
stances to construct different, contained test configurations,
with the Click system redirecting malware scans to our cho-
sen target systems. We gave each running VM instance a
distinct IP address and hostname, and used non-persistent
virtual disks to allow recovery from infection. For the tests
we used both Windows XP Professional and Fedora Core 3
images, to verify that replay works for both Windows and
Linux services. RolePlayer itself ran on the Linux host sys-
tem rather than within a virtual machine, enabling it to com-
municate with any virtual machine on the system.

5.2 Simple protocols

Our simplest tests were for SMTP, DNS, and HTTP re-
play. For testing SMTP, we replayed an email dialog with
RolePlayer changing the recipient’s email address (an “ar-
gument” dynamic field). In one instance, RolePlayer itself
made this change as the session initiator; in the other, it
played the role of the responder (SMTP server).

For DNS, RolePlayer correctly located the transaction
ID embedded within requests, updating it when replaying
the responder (DNS server). The HTTP dialog was simi-
larly simple, being limited to a single request and response.
Since the request did not contain a cookie field, replaying
trivially consisted of purely resending the same data as seen
originally (though RolePlayer found some don’t-care fields
in the HTTP header of the response message).

5.3 Blaster (TFTP)

As discussed in the introduction, Blaster [24] attacks its
victim using a DCOM RPC vulnerability. After attacking,
it causes the victim to initiate a TFTP transfer back to the
attacker to download an executable, which it then instructs
the victim to run. A Blaster attack session does not contain
any length fields or hostnames, so we can replay it without
needing a secondary application dialog or hostname infor-
mation.

RolePlayer can replay both sides of the dialog. As an ini-
tiator, we successfully infected a remote host with Blaster.
As a fake victim, we tricked a live copy of Blaster into go-
ing through the full set of infection steps when it probed a
new system.

When replaying the initiator, RolePlayer found five dy-
namic fields in received ADUs. Of these, it correctly
deemed four as don’t-care fields. These were each part
of a confirmation message, specifying information such as
data transfer size, time, and speed. The single dynamic field
found and updated was the IP address of the initiator, nec-
essary for correct operation of the injected TFTP command.

When replaying the responder, RolePlayer found only a
single dynamic field, the worm’s IP address, again neces-
sary to correctly create the TFTP channel.

5.4 FTP

To test FTP replay, we used the wget utility as the client
program to connect to two live FTP servers, fedora.bu.edu

and mirrors.xmission.com. We collected two sample appli-
cation dialogs using the command wget ftp://ftp-server-
name/fedora/core/3/i386/os/Fedora/RPMS/crontabs-
1.10-7.noarch.rpm. In both cases, wget used passive FTP,
which uses dynamically created ports on the server side.
When acting as the initiator, we replayed the fedora.bu.edu
dialog over a live session to mirrors.xmission.com, and
vice versa. There were no length fields, so we did not
need a secondary dialog (nor hostnames). In both cases,
RolePlayer successfully downloaded the file.

The system found 12 dynamic fields in the ADUs it re-
ceived. Among them, the only two meaningful ones were
endpoint-address fields: the server’s IP address and the port
of the FTP data-transfer channel. The rest arose due to
differences in the greeting messages and authentication re-
sponses. RolePlayer recognized these as don’t-care’s and
did not update them.

When replaying the responder, wget successfully down-
loaded the file from a fake RolePlayer server pretending to
be either fedora.bu.edu or mirrors.xmission.com, with the
same two endpoint-address fields updated in ADUs sent by
the replayer.

We tested support for argument fields by specifying the
filename crontabs-1.10-7.noarch.rpm as an argument.
When replaying the initiator, we replaced this with pyorbit-
devel-2.0.1-1.i386.rpm, another file in the same direc-
tory. RolePlayer successfully downloaded the new file from
fedora.bu.edu using the script from mirrors.xmission.com.
Since the two files are completely different, the system
found many don’t-care fields. None of these affected the
replay because they did not meet the conditions for updat-
ing cookie fields. We also confirmed that RolePlayer can
replay non-passive FTP dialogs successfully.

5.5 NFS

We tested the NFS protocol running over SunRPC using
two different NFS servers. We used the series of commands
mount, ls, cp, umount to mount an NFS directory, copy
a file from it to a local directory, and unmount it. We used
one NFS server for collecting the primary application dialog
and a second as the target for replaying the initiator. The
NFS session consisted of nine TCP connections, including
interactions with three daemons running on the NSF server:
portmap, nfs, and mountd. The first two ran on 111/tcp
and 2049/tcp, while mountd used a dynamic service port.
As is usually the case with NFS access, in the session both
of the latter two ports were found via RPCs to portmap.

When replaying the initiator, RolePlayer found 34 dy-
namic fields in received ADUs, and changed 12 fields in the
ADUs it sent. When replaying the responder, RolePlayer
found 46 dynamic fields in received ADUs, and changed 23
fields in the ADUs it sent. The cookie fields concerned RPC

call IDs.
RolePlayer successfully replayed both the initiator side

(receiving the directory listing and then the requested file)
and the responder side (sending these to a live client, which
correctly displayed the listing and copied the file).

5.6 Randex (CIFS/SMB)

To test RolePlayer’s ability to handle a complex pro-
tocol while interacting with live malware, we used the
W32.Randex.D worm [25]. This worm scans the network
for SMB/CIFS shares with weak administrator passwords.
To do so, it makes numerous SMB RPC calls (see Fig-
ure 5 in Appendix B). When it finds an open share, it up-
loads a malicious executable msmgri32.exe. In our exper-
iments, we configured the targeted Windows VM to accept
blank passwords, and turned off its firewall so it would ac-
cept traffic on ports 135/tcp, 139/tcp, 445/tcp, 137/udp, and
138/udp.

To collect sample application dialogs, we manually
launched a malware executable from another Windows VM,
redirecting its scans to the targeted Windows VM, recording
the traffic using tcpdump. We captured two attacks because
replaying CIFS requires a secondary application dialog to
locate the numerous length fields.

There are six connection in W32.Randex.D’s attack, all
started by the initiator. Of these, two are connections to
139/tcp which are reset by the initiator immediately after it
receives a SYN-ACK from the responder. One connects to
80/tcp (HTTP), reset by the responder because the victim
did not run an HTTP server. The remaining three connec-
tions were all to 445/tcp. The worm uses the first of these to
detect a possible victim; it does not transmit any application
data on this connection. The worm uses the second to enu-
merate the user account list on the responder via the SAMR
named pipe. The final connection uploads the malicious ex-
ecutable to \Admin$\system32\msmsgri32.exe via the
Admin named pipe. (More details are in Appendix B.)

When replaying the initiator, RolePlayer found 101 dy-
namic fields in received ADUs, and changed 65 fields in the
ADUs it sent. When replaying the responder, it found 80
dynamic fields in received ADUs, and changed 63 fields in
the ADUs it sent. (The difference in the number of fields
is because some dynamic fields remain the same when they
come from the replayer rather than the worm. For exam-
ple, the responder chooses the context handle of the SAMR
named pipe; when replaying the responder, the replayer just
uses the same context handle as in the primary application
dialog.) Considering ADUs in both directions, there were
21 endpoint-address fields, 76 length fields, and 32 cookie
fields. The cookie fields reflect such information as the con-
text handles in SAMR named pipes and the client process
IDs.

As with our Blaster experiment, RolePlayer successfully
infected a live Windows system with W32.Randex.D when
replaying the initiator side, and, when replaying the re-
sponder, successfully drove a live, attacking instance of the
worm through its full set of infection steps.

5.7 Discussion

From the experiments we can see that it is necessary
to locate and update all dynamic fields—endpoint-address,
cookie, and length fields— for replaying protocols success-
fully, while argument fields are important for extending
RolePlayer’s functionality. TFTP, FTP, and NFS require
correct manipulation of endpoint-address fields. DNS, NFS,
and CIFS also rely on correct identification of cookie files.
CIFS has numerous length fields within a single application
dialog. Leveraging argument fields, RolePlayer can work as
a low-cost client for SMTP, FTP, or DNS.

While RolePlayer can replay a wide class of application
protocols, its coverage is not universal. In particular, it
cannot accommodate protocols with time-dependent state,
nor those that use cryptographic authentication or encrypted
traffic, although we can envision dealing with the latter by
introducing application-specific extensions to provide Role-
Player with access to a session’s clear-text dialog. Another
restriction is that the live peer with which RolePlayer en-
gages must behave in a fashion consistent with the “script”
used to configure RolePlayer. This requirement is more re-
strictive than simply that the live peer follows the applica-
tion protocol: it must also follow the particular path present
in the script.

Since RolePlayer keeps some dynamic fields unchanged
as in the primary dialog, it is possible for an adversary to
detect the existence of a running RolePlayer by checking
if certain dynamic fields are changed among different ses-
sions. For example, RolePlayer will always open the same
port for the data channel when replaying the responder of
an FTP dialog, and it will use the same context handles
in SAMR named pipes when replaying the responder of a
CIFS dialog. Another possible way to detect RolePlayer
is to discover inconsistencies between the operating system
the application should be running on versus the operating
system RolePlayer is running on, by fingerprinting packet
headers [26]. In the future, we plan to address these prob-
lems by randomizing certain dynamic fields and by manip-
ulating packet headers to match the expected operating sys-
tem.

6 Summary

We have presented RolePlayer, a system that, given ex-
amples of an application session, can mimic both the initia-
tor and responder sides of the session for a wide variety of

application protocols. We can potentially use such replay
for recognizing malware variants, determining the range of
system versions vulnerable to a given attack, testing de-
fense mechanisms, and filtering multi-step attacks. How-
ever, while for some application protocols replay can be
essentially trivial—just resend the same bytes as recorded
for previously seen examples of the session—for other
protocols replay can require correctly altering numerous
fields embedded within the examples, such as IP addresses,
hostnames, port numbers, transaction identifiers and other
opaque cookies, as well as length fields that change as these
values change.

We might therefore conclude that replay inevitably re-
quires building into the replayer specific knowledge of the
applications it can mimic. However, one of the key prop-
erties of RolePlayer is that it operates in an application-
independent fashion: the system does not require any
specifics about the particular application it mimics. It in-
stead uses extensions of byte-stream alignment algorithms
from bioinformatics to compare different instances of a ses-
sion to determine which fields it must change to success-
fully replay one side of the session. To do so, it needs only
two examples of the particular session; in some cases, a sin-
gle example suffices.

RolePlayer’s understanding of network protocols is very
limited—just knowledge of a few low-level syntactic con-
ventions, such as common representations of IP addresses
and the use of length fields to specify the size of subsequent
variable-length fields. (The only other information Role-
Player requires—depending on the application protocol—is
context for the example sessions, such as the domain names
of the participating hosts and specific arguments in requests
or responses if we wish to change these when replaying.)
This information suffices for RolePlayer to heuristically de-
tect and adjust network addresses, ports, cookies, and length
fields embedded within the session, including for sessions
that span multiple, concurrent connections.

We have successfully used RolePlayer to replay both the
initiator and responder sides for a variety of network ap-
plications, including: SMTP, DNS, HTTP; NFS, FTP and
CIFS/SMB file transfers; and the multi-stage infection pro-
cesses of the Blaster and W32.Randex.D worms. The lat-
ter require correctly engaging in connections that, within
a single session, encompass multiple protocols and both
client and server roles. An important item of future work
is to identify and test additional, complex application pro-
tocols, to gain a deeper understanding of the generality of
our approach.

Our next step is to deploy RolePlayer in a large honeypot
installation, for purposes of both filtering out known attacks
(by replaying enough server-side responses to the attack-
ers to check whether their behavior matches a known attack
session) and replaying successful attacks against other pos-

sible victim configurations. This latter has the potential to
enable us to automatically determine the full range of sys-
tems vulnerable to previously unseen “zero day” exploits as
soon as they exploit our honeypot system.

Acknowledgments

We would like to thank Martin Casado, Christian
Kreibich, Sridhar Machiraju, and Scott Shenker for their
helpful comments on a draft of this paper. We would also
like to thank Ruoming Pang and Vinod Yegneswaran for
their help in early discussions and providing network traces,
Carey Nachenberg and Vincent Weafer for technical as-
sistance, and the anonymous reviewers for their insight-
ful comments. This work was supported by the National
Science Foundation under grants NSF-0433702 and STI-
0334088, for which we are grateful.

References

[1] D. F. Bacon and S. C. Goldstein. Hardware-assisted re-
play of multiprocessor programs. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, May 1991.

[2] M. Beddoe. The protocol informatics project.
http://www.baselineresearch.net/PI/.

[3] Y.-C. Cheng, U. Holzle, N. Cardwell, S. Savage, and
G. Voelker. Monkey see, monkey do: A tool for tcp tracing
and replaying. In Proceedings of the 2004 USENIX Annual
Technical Conference, June 2004.

[4] Cybertrace. http://www.cybertrace.com/ctids.html.
[5] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.

Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 211–224, December 2002.

[6] Honeynet. The honeynet project. http://www.honeynet.org/.
[7] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging oper-

ating systems with time-traveling virtual machines. In Pro-
ceedings of the 2005 USENIX Annual Technical Conference,
April 2005.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, August 2000.

[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging par-
allel programs with instant replay. pages 471–482, April
1987.

[10] D. Libes. expect: Curing those uncontrollable fits of inter-
action. In Proceedings of the Summer 1990 USENIX Con-
ference, pages 183–192, June 1990.

[11] libpcap. http://www.tcpdump.org/.
[12] McAfee Inc. McAfee Security Forensics.

http://networkassociates.com/us/products/mcafee/forensics
/security forensics.htm.

[13] S. B. Needleman and C. D. Wunsch. A general method ap-
plicable to the search for similarities in the amino acid se-
quence of two proteins. 48:443–453, 1970.

[14] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of the 12th
Annual Network and Distributed System Security Sympo-
sium, February 2005.

[15] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Pe-
terson. Characteristics of Internet background radiation. In
Proceedings of Internet Measurement Conference, October
2004.

[16] N. Provos. A virtual honeypot framework. In Proceedings
of the 13th USENIX Security Symposium, San Diego, CA,
August 2004.

[17] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. In Proceed-
ings of the 1996 Conference on Programming Language De-
sign and Implementation, pages 258–266, May 1996.

[18] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flash-
back: A light-weight rollback and deterministic replay ex-
tension for software debugging. In Proceedings of the 2004
USENIX Annual Technical Conference, June 2004.

[19] Synmantec. Decoy server product sheet.
http://www.symantec.com/.

[20] Tcpreplay: Pcap editing and replay tools for *NIX.
http://tcpreplay.sourceforge.net.

[21] A. Turner. Flowreplay design notes.
http://www.synfin.net/papers/flowreplay.pdf.

[22] Unicode. http://www.unicode.org/.
[23] VMWare Inc. http://www.vmware.com/.
[24] W32.Blaster.Worm. http://securityresponse.symantec.com

/avcenter/venc/data/w32.blaster.worm.html.
[25] W32.Randex.D. http://securityresponse.symantec.com

/avcenter/venc/data/w32.randex.d.html.
[26] M. Zalewski. P0f: A passive OS fingerprinting tool.

http://lcamtuf.coredump.cx/p0f.shtml.

A The Toy Service Port Discovery Protocol

TYPE SID LEN−1 HOSTNAME LEN−2 SERVICE

TYPE SID LEN−1 IP−PORTResponse LEN−0

LEN−0Request

Figure 4. Message format for the toy Service
Port Discovery protocol.

We define the toy Service Port Discovery (SPD) proto-
col for illustrating the algorithms in RolePlayer. In SPD, a
client sends a request message to a server to ask for the port
number of a service. The server’s response contains the IP
address and the port number of the requested service.

These two messages have the formats shown in Figure 4.
Requests have 7 fields: LEN-0 (1 byte) holds the length of
the message. TYPE (1 byte) indicates the message type,
with a value of 1 indicating a request and 2 a response mes-
sage. SID (2 bytes) is session/transaction identifier, which

the server must echo in its response. LEN-1 (1 byte) stores
the length of the client hostname, HOSTNAME, which the
server logs. LEN-2 (1 byte) stores the length of the service
name, SERVICE.

Responses have 5 fields. LEN-0, TYPE and SID
have the same meanings as in requests. LEN-1 (1 byte)
stores the length of the IP-PORT field, which holds the
IP address and port number of the requested service, in
a comma-separated format. For example, 1.2.3.4:567 is
expressed as “0x31 0x2c 0x32 0x2c 0x33 0x2c
0x34 0x2c 0x32 0x2c 0x35 0x35”.

B W32.Randex.D

We show the application-level conversations of the
W32.Randex.D worm on port 445/tcp in Figure 5 (repro-
duced with permission from [15]).

To demonstrate the function of RolePlayer, we se-
lect six consecutive messages from the conversation of
W32.Randex.D (shown in bold-italic in Figure 5), consist-
ing of SAMR Connect4 request/response, SAMR Enum-
Domains request/response, and SAMR LookupDomain re-
quest/response. We show the content of these messages
from the primary, secondary, initiator-based replay, and
responder-based replay dialogs in Figure 6. To fit each mes-
sage more compactly, we present them in the following for-
mat:

1. We split each message based on dynamic fields.

2. XY means we skipped Y bytes from protocol X (N
for NetBIOS, S for SMB, R for DCE-RPC, M for Se-
curity Account Manager), since they do not change
between different dialogs. These represent the fixed
fields as part of the dialog.

3. We present endpoint-address fields such as IP ad-
dresses and hostnames in ASCII format in bold-italic.
Three hostnames appear in the messages: “hone”,
“host02”, and “hostpeer”.

4. We show length fields in decimal, with a gray back-
ground. For example, “180” and “96” in the first mes-
sage of the primary dialog are length fields.

5. We show cookie fields and don’t-care fields, including
the client process IDs and the SAMR context handles,
in octets. For example, “0388” in the first message of
the primary dialog is a client process ID. For conve-
nience, we highlight in bold the cookies in the primary
and secondary dialog which require dynamic updates
during the replay process.

Note that RolePlayer located two cookie fields from the
SAMR context handles because part of the handles does not

change between dialogs (e.g., the middle portion was con-
stant in all the dialogs).

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \\XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \samr
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SAMR
<- DCERPC Bind_ack:
-> SAMR Connect4 request
<- SAMR Connect4 reply
-> SAMR EnumDomains request
<- SAMR EnumDomains reply
-> SAMR LookupDomain request
<- SAMR LookupDomain reply
-> SAMR OpenDomain request
<- SAMR OpenDomain reply
-> SAMR EnumDomainUsers request

Now start another session, connect to the
SRVSVC pipe and issue NetRemoteTOD
(get remote Time of Day) request

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \ \XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \srvsvc
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SRVSVC
<- DCERPC Bind_ack: call_id: 1
-> SRVSVC NetrRemoteTOD request
<- SRVSVC NetrRemoteTOD reply
-> SMB Close request
<- SMB Close Response

Now connect to the ADMIN share and write the file

-> SMB Tree Connect AndX Request, Path: \\XX.128.18.16\ADMIN$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request,

Path:\system32\msmsgri32.exe <<<===

<- SMB NT Create AndX Response, FID: 0x74ca
-> SMB Transaction2 Request SET_FILE_INFORMATION
<- SMB Transaction2 Response SET_FILE_INFORMATION
-> SMB Transaction2 Request QUERY_FS_INFORMATION
<- SMB Transaction2 Response QUERY_FS_INFORMATION
-> SMB Write Request
....

Figure 5. The application-level conversation of W32.Randex.D.

A->V

A<-V

A->V

A<-V

A->V

A<-V

N1|180|S26|0388|S7|96|S20|96|S8|113|S16|R8|96|R6|72|R4|0014CCB8|18|M4|18|M4

 |144.165.114.119|M20

N4|S26|0388|S28|R24|M16|0000000092F3E82470FDD91195F8000C295763F7|M4

N4|S26|0388|S56|R24|0000000092F3E82470FDD91195F8000C295763F7|M8

N1|180|S26|0388|S7|124|S8|124|S6|125|S1|R8|124|DECRPC-6|100|R4|M4|000B0BB0

 |M4|000B27A0|M8|8|10|000B8D18|M8|000BC610|5|M4|4|hone|M36

N1|156|S26|0388|S7|72|S20|72|S8|89|S16|R8|72|R6|48|R4|M4

 |0000000092F3E82470FDD91195F8000C295763F7|8|10|001503F8|5|M4|4|hone

N4|S26|0388|S28|R24|000B27A0|M32

(a) Primary Dialog

N1|172|S26|0474|S7|88|S20|88|S8|105|S16|R8|88|R6|64|R4|0014CCB8|14|M4|14|M4

 |48.196.8.48|M20

N4|S26|0474|S28|R24|M16|000000006093917586FDD91195F8000C294A478F|M4

N4|S26|0474|S56|R24|000000006093917586FDD91195F8000C294A478F|M8

N1|184|S26|0474|S7|128|S8|128|S6|129|S1|R8|128|DECRPC-6|104|R4|M4|000B0BB0

 |M4|000B6380|M8|12|14|000B76C0|M8|000C9FA8|7|M4|6|host02|M36

N1|160|S26|0474|S7|76|S20|76|S8|89|S16|R8|76|R6|52|R4|M4

 |000000006093917586FDD91195F8000C294A478F|12|14|001503F8|7|M4|6|host02

N4|S26|0474|S28|R24|000B27A0|M32

A->V

A<-V

A->V

A<-V

A->V

A<-V

(b) Secondary Dialog

N1|176|S26|0388|S7|92|S20|92|S8|109|S16|R8|92|R6|68|R4|0014CCB8|16|M4|16|M4

 |192.168.170.3|M20

N4|S26|0388|S28|R24|M16|0000000018B30AD10BFDD91195F8000C293573E4|M4

N4|S26|0388|S56|R24|0000000018B30AD10BFDD91195F8000C293573E4|M8

N1|188|S26|0388|S7|132|S8|132|S6|133|S1|R8|132|DECRPC-6|108|R4|M4|000B0BB0

 |M4|000B9358|M8|16|18|000BEF40|M8|000B6BA0|9|M4|8|hostpeer|M36

N1|164|S26|0388|S7|80|S20|80|S8|89|S16|R8|80|R6|56|R4|M4

 |0000000018B30AD10BFDD91195F8000C293573E4|16|18|001503F8|9|M4|8|hostpeer

N4|S26|0388|S28|R24|000BEF40|M32

A->V

A<-V

A->V

A<-V

A->V

A<-V

(c) Initiator-based Replay Dialog

A->V

A<-V

A->V

A<-V

A->V

A<-V

N1|176|S26|0608|S7|92|S20|92|S8|109|S16|R8|92|R6|68|R4|0014CCB8|16|M4|16|M4

 |169.91.250.93|M20

N4|S26|0608|S28|R24|M16|0000000092F3E82470FDD91195F8000C295763F7|M4

N4|S26|0608|S56|R24|0000000092F3E82470FDD91195F8000C295763F7|M8

N1|180|S26|0608|S7|124|S8|124|S6|125|S1|R8|124|DECRPC-6|100|R4|M4|000B0BB0

 |M4|000B27A0|M8|8|10|000B8D18|M8|000BC610|5|M4|4|hone|M36

N1|156|S26|0608|S7|72|S20|72|S8|89|S16|R8|72|R6|48|R4|M4

 |0000000092F3E82470FDD91195F8000C295763F7|8|10|00150A88|5|M4|4|hone

N4|S26|0608|S28|R24|000B27A0|M32

(d) Responder-based Replay Dialog

Figure 6. A portion of the application-level conversation of W32.Randex.D. Endpoint-address fields
are in bold-italic, cookie fields are in bold, and length fields are in gray background. In the initiator-
based and responder-based replay dialogs, updated fields are in black background.

