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Abstract— The Border Gateway Protocol (BGP) allows each
autonomous system (AS) to select routes to destinations based
on semantically-rich and locally-determined policies. This
autonomously exercised policy-freedom can cause instability,
where unresolvable policy-based disputes in the network
result in interdomain route oscillations. Moreover, several
recent works have established that such instabilities can only
be eliminated by enforcing a globally accepted preference
ordering on routes (such as shortest path). To resolve this
conflict between policy autonomy and system stability, we
propose a distributed mechanism that enforces a preference
ordering only when oscillations due to these disputes occur.
This preserves policy freedom when possible, and imposes
stability when required.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [11] establishes
connectivity between the independent networks, called au-
tonomous systems (ASes), that comprise the Internet. BGP
computes routes by a series of local decisions based on
each ASes’ individual routing policies. These policies are
semantically rich in order to accommodate the complex
rules that govern route choices in today’s commercial Inter-
net, such as business relationships and traffic engineering.
However, this expressiveness in routing-policy configura-
tion, coupled with ASes’ freedom in implementing their
policies autonomously, can cause instability in interdomain
routing, as observed in [13].

The problem of understanding and preventing policy-
induced routing anomalies has been the subject of much
recent study. While some work characterized these anoma-
lies using global models [6], [7], [12], other research proved
that global and local constraints on policies could guarantee
routing stability. The good and bad news from this literature
are:

Good news: if the AS graph has an underlying business
hierarchy and local policies obey sensible constraints
arising from this hierarchy, then routing converges [5],
[9]

Bad news: if ASes have complete freedom to filter routes
(that is, exclude routes from consideration) then the
only policies that are a priori guaranteed to converge
are generalizations of shortest-path routing [3].

Thus, there are two choices: we can hope that natural
business arrangements provide a stabilizing hierarchy, or
we can remove all policy autonomy (but not filtering
autonomy) by imposing some generalized form of shortest-
path routing.

This paper advocates a “third way”. Rather than rely
on the vagaries of the marketplace to define a suitable
hierarchy, or eliminate policy autonomy because of its
potential to induce route oscillations, we propose a simple
extension to BGP that constrains policy choices only after
an oscillation is detected. Oscillations can be characterized
by the presence of dispute wheels in the network [7],
and our method provably finds and breaks dispute wheels.
We tag each route advertisement with a precedence value,
where a lower value corresponds to higher precedence. This
goes at the top of the BGP decision process: available routes
are chosen first based on their advertised precedence, with
ties broken using the usual BGP decision process. The
global precedence attribute changes only in the presence
of a persistent oscillation; if there is no oscillation, we
effectively use only the normal BGP decision process. Since
configuration is not constrained unless absolutely necessary,
ASes’ freedom to decide on local policies is preserved.

We first review related work in Section II and then define
and discuss dispute wheels in Section III. We describe the
precedence metric and prove its ability to prevent dispute
wheels in Section IV. Sections V and VI describe how this
theoretical result can be put into practice. We evaluate the
resulting algorithm via simulations in Section VII. Next, we
discuss briefly the effect of misbehaving ASes on the rest
of the network, before concluding in Section IX.

II. RELATED WORK

Varadhan, Govindan, and Estrin [13] observed and doc-
umented persistent oscillations in BGP. The cause was not
the policy configuration of one AS alone; they occurred
because of interaction between the policies of several ASes.
These anomalies occurred without any misconfiguration and
were difficult to diagnose and resolve, because ASes tend
to keep routing policies private.

Griffin, Shepherd, and Wilfong [7] introduced the Stable
Paths Problem (SPP) as a formal model for BGP (and
policy routing with path-vector protocols, in general). Us-
ing their framework, they were able to give a sufficient
condition for protocol convergence, namely, the absence of
dispute wheels. These structures characterize the conflicting
policies of the nodes involved in a route oscillation (see
the formal definition in Section IV). Unfortunately, the
only known method to check for dispute wheels requires
examining all the routing policies in a network, which is
presently an impractical task. In addition, Griffin et al.
showed that the problem of detecting whether a stable



routing exists, given all the policies in the network, is NP-
complete. Worse yet, they showed that the existence of a
stable solution does not automatically imply that a routing
protocol can find it.

Gao and Rexford [5] showed that Internet economics
could naturally guarantee route stability. A hierarchical
business structure underlying the AS graph, along with
policies that matched the various business agreements be-
tween ASes, is sufficient for protocol convergence. In this
structure, assume that relationships between ASes are either
customer-provider, i.e., one AS purchases connectivity from
another, or peer-peer, i.e., two ASes mutually agree to
transit traffic. No customer-provider cycles are allowed (i.e.,
no AS, through a chain of providers, is an indirect customer
of itself), and additional rules exist on how to set route
preferences and when routes can be shared with other ASes.
These assumptions capture the structure and economics
of today’s commercial Internet (but violations of these
assumptions due to complex agreements, business mergers,
or misconfigurations could induce route oscillation). These
positive results were later confirmed by Gao, Griffin, and
Rexford in [4], in which the combination of an underlying
business structure and economically sensible policies was
shown to prevent occurrences of dispute wheels, even when
backup routing is allowed. Jaggard and Ramachandran [9]
generalized this result but still required some assumption
about the AS graph to prevent oscillations.

Dispute-wheel freeness and an AS business hierarchy are
examples of global constraints, because they require that
some condition is enforced involving the policies of many
ASes at once1. In a highly decentralized environment like
the Internet, enforcing such a global condition is unrealistic.
Thus, later research attempted to find local constraints—
conditions that could be checked individually for each AS—
that are sufficient for route stability. However, results here
were mostly negative. Sobrinho [12] and Griffin, Jaggard,
and Ramachandran [6] proved that any dispute-wheel-free
routing configuration is equivalent to a generalization of
lowest-cost routing. This means that many seemingly sen-
sible policies — in fact, all purely local policies not driven
by some shared metric — could lead to oscillations. For
example, it was shown that ASes could not use policies that
always prefer routes through one neighbor over another—
a type of policy commonly used today. Feamster, Johari,
and Balakrishnan [3] further strengthened this result by
showing that only generalizations of lowest-cost routing can
guarantee stability while preserving the ability of ASes to
filter routes (that is, to remove them from consideration).
Thus, the theme of these results is that the only way to a
priori guarantee stability is to essentially eliminate policy-
configuration autonomy.

Most of these results exclude policies with any possibility

1In this paper, as is standard for BGP discussions, the term global really
means “not purely local”. A global value, for instance, is not one that
necessarily all ASes share, but that applies to more than one AS.

of inducing routing anomalies, whether or not they actually
do in a particular network. (This is because checking all
the policies of a network is too difficult.) In this paper,
we present an extension to BGP that detects oscillations
and responds by breaking the corresponding dispute wheel.
Griffin and Wilfong also presented such an algorithm, called
SPVP, in [8]. Our protocol differs in several ways. First,
SPVP’s update-message size grows with the number of
nodes in an oscillation, while our protocol simply adds a
value to route advertisements. Second, SPVP records the
changes in route choices due to the propagation of a route;
this reveals more private policy information than necessary.
Third, our protocol answers an open question left by [8],
in that we present a minimal-impact solution to resolving
disputes: our resolution algorithm requires little overhead
and is engaged only when an oscillation is detected, and
BGP is allowed to function normally otherwise. Our use of
an extra attribute in route advertisements is similar to that
in [4], [9]; however, those solutions still required a global
constraint and preemptively excluded some oscillation-free
policy configurations that our solution does not exclude.

III. DISPUTE WHEELS

We begin by describing the notation used in this paper.
We represent the network as the AS graph G = (V,E),
where each node v ∈ V corresponds to one AS, and each
edge {u, v} ∈ E corresponds to an BGP session between
ASes u and v, meaning that these ASes are physically
connected and share route advertisements. We assume that
links between ASes are reliable FIFO message queues
with possibly arbitrary delays; this accounts for network
asynchrony. At most one link is assumed to exist between
ASes, and all the internal and border routers of an AS
are condensed into one node (or one point of routing-
policy control); this model captures eBGP, or interdomain
connections2.

A path P is a sequence of nodes v1v2 · · · vk such that
{vi, vi+1} ∈ E; we write v ∈ P if path P traverses node
v. Paths can be concatenated with other nodes or paths;
e.g., if P = u · · · v, Q = v · · ·w, and {w, d} ∈ E, we
may write PQd to represent the path starting at node u,
following P to node v, then following Q to node w, and
finally traversing the edge (w, d). We assume that paths are
directed from source to destination.

BGP essentially computes routes using the following
iterative process: (1) Nodes receive route advertisements
from their neighbors, indicating which destinations are
reachable and by what routes; (2) for each destination, a
node chooses the best route from those available, based on
local policy; (3) if the current route to a given destination
has changed, an advertisement is sent to neighboring nodes.
We assume that these three steps occur as an atomic action

2Analogous sufficient conditions for protocol convergence do not exist
in the model that captures iBGP and MEDs. Therefore, in order to prove
correctness, we restrict ourselves to the eBGP model in this paper. See
[11] for the definition of these acronyms.
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Fig. 1. Example of a dispute wheel: elements of the wheel include the
spoke paths, pivot nodes, and rim nodes.

in response to receiving a route advertisement. The content
of advertisements, or update messages, is also governed by
routing policy; nodes are not required to share or consider
all available routes—i.e., routes may be filtered. The process
begins when a destination advertises itself to its neighboring
ASes; routes to that destination then propagate through the
network as transit nodes choose routes and send updates.
Because route choices are computed independently for each
destination, we will assume, without loss of generality, that
there is some fixed destination node d ∈ V .

We say the network has converged when each AS v ∈ V
is assigned a path π(v) to the destination, such that the
assignment is stable and consistent. By consistent, we mean
that the paths form a forwarding tree to the destination;
if π(v) = vuP , then π(u) = uP . By stable, we mean
that π(v) is the “best” available route for each node v,
where “best” is determined by node v’s routing policy; i.e.,
if π(v) = vπ(u), there is no other node w such that the path
vπ(w) is more preferred at v than π(v). If the network is not
safe, then there is some sequence of route updates that does
not converge, in which every node gets a chance to update
infinitely often (i.e., no node is “shut out” in this sequence).
Because there are only a finite set of route choices, such
a sequence must be a route oscillation. The sequence may
or may not be dependent on particular delays in update-
message queues. A configuration is safe if any sequence of
route updates, in which no node is shut out, converges.

Griffin, Shepherd, and Wilfong [7] showed that any such
oscillation can be characterized by a dispute wheel in the
network, shown in Figure 1. The dispute wheel captures the
interaction between the routing policies of a set of nodes
that are involved in a route oscillation. Formally, we have
the following.

Definition 3.1: A dispute wheel is a set of nodes
p0, p1, . . . , pk−1 called pivots, such that

1) at each pivot pi, there exists a spoke path Qi from pi

to the destination;
2) at each pivot pi, there exists a rim path Ri+1 to the

[BD]
[D]

[AD]
[D]

[CD]
[D] B C

D

A

Fig. 2. A simple dispute wheel: node D is the destination. Shaded boxes
show route choices in order of preference.
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[CAD]

Fig. 3. Simple example of dispute wheel oscillation: The simple local
policy enforced at each node is the import filtering of routes with more
than 2 hops. Routing oscillates between (iii) and (iv).

next pivot pi+1 (assume all subscripts are modulo k);
3) each pivot prefers the path piRi+1pi+1Qi+1d over the

path piQid.
Note that the rim and spoke paths are not necessarily
disjoint. We refer to non-pivot nodes along the rim paths
Ri as rim nodes.

Because dispute wheels lie at the heart of BGP policy
instabilities, we now walk through an example of BGP
dynamics in the presence of a dispute wheel. Consider the
four-node network shown in Figure 2.

In the figure, the paths considered by a node are listed in
the shaded box next to that node; the more preferred path
is on top. The oscillation is shown in Figure 3. (i) Assume
that the destination node D sends an initial advertisement
to nodes A, B, and C. (ii) Nodes A, B, and C then
choose the direct paths to D and advertise their choices
to nodes C, A, and B, respectively3. (iii) Upon receiving
this advertisement, each node prefers the route through its
neighbor, rather than the direct path to D, and chooses
it. Doing so requires advertisement of these new paths;

3Assume, in this example, that advertisements are not propagated in the
opposite direction.



with the longer paths selected, the direct paths to D are
no longer advertised. (iv) When node A learns that node B
has selected BCD, its preferred choice of ABD is no longer
available; so, node A reverts to choosing the direct path to
D. By symmetry, this happens at nodes B and C as well.
This state is identical to the start; therefore, the sequence
of route updates repeats, and nodes A, B, and C oscillate
forever between their two route choices.

Any policy-induced oscillation can be characterized by
the relationship of policies between nodes given by a
dispute wheel; thus, the absence of dispute wheels is suf-
ficient to guarantee that BGP is always safe. However, the
presence of a dispute wheel does not necessarily guarantee
an oscillation; even if it were possible to oscillate4, BGP
could non-deterministically converge5. Rather than exclude
all potentially troublesome policy relationships a priori,
the method we describe in the next section triggers a
mechanism to resolve the corresponding dispute wheel
whenever an oscillation is detected.

IV. THE PRECEDENCE METRIC

In this section we describe the precedence metric, which
we subsequently show eliminates route oscillations due to
dispute wheels.

Each route advertisement is tagged with a global6 prece-
dence value that is non-negative: a numerically greater
value means lower precedence. We denote the precedence
value, say v, associated with path P by (P, v). Each AS
maintains a history table of observed route advertisements
from its immediate neighbors. In this table, we associate
every route with a local precedence value starting from 0.
This local precedence value is obtained from the route’s
rank in the history table, and is determined via the usual
BGP decision process. Thus the route in the ith entry of the
table has a local precedence of i − 1 and is preferred over
all routes with precedence greater than that. Entries in this
history table are strictly ordered, or ranked: no two routes
of equal local precedence exist. Also, we augment BGP’s
decision process, prepending it with an additional step that
selects routes of higher global precedence.

Suppose the winning route has an incoming global prece-
dence of t, and a local precedence value of j. Then, the
outgoing route advertisement is tagged with t + j. Thus,
a route that is most preferred for all AS along its path is
tagged with 0 at all hops. Figure 4 gives an example of
this update process. Without loss of generality, we assume
for the rest of this paper that the destination AS advertises
routes with global precedence value of 0.

For distance-vector or link-state routing, usage of such
a metric can result in permanent routing loops. In the case

4That is, starting at some initial conditions would lead to an oscillation.
5For instance, a four node dispute wheel can converge into one of two

stable configurations.
6Again, the term global only means that this precedence value has

meaning across more than one AS, not that all ASes share this precedence
value.

[A]
[P1, A]
[P2, A]

[P1, A]
[P2, A]
[A]

(a) (b)

A B C A B C

Fig. 4. (a) AS B’s preference for a direct route to destination AS A is
the third in its history table. Propagation of this route to AS C will result
in a lowering of its global precedence by 2. (b) AS B now considers the
direct route to AS A to have the highest precedence. Route propagation to
AS C will not alter the precedence value.

p0

pi

(Qi, βi)

(Q0, β0)

(Ri, αi)

pk−1

(R1, α1)

p1

d

(Qk−1, βk−1) (Q1, β1)

(R0, α0)(Rk−1, αk−1)

Fig. 5. Dispute wheel illustration and notation used in our proof.

of path-vector protocols, the inclusion of all hops along the
path removes the occurrence of such loops.

We show in the following section that this precedence
metric prevents the formation of dispute wheels.

A. Dispute Wheel Elimination

Proposition 4.1: If the precedence mechanism is
prepended to the BGP decision process, then no policy-
induced oscillations can occur.

Proof: Griffin, Shepherd, and Wilfong [7] prove that
absence of dispute wheels is sufficient for safety, i.e.,
that no policy-induced oscillations can occur. Therefore, it
suffices to show that the precedence mechanism precludes
dispute wheels. Using proof by contradiction, we begin by
assuming that a dispute wheel exists.

Figure 5 is used to illustrate our proof, in which we
consider a single destination d. Nodes p0, p1, . . . , pk−1 are
the subset of nodes that are in the dispute wheel and have
stable paths to the destination, that is, these are the pivot
nodes. (Qi, βi) is the tuple consisting of Qi, the spoke path
from source pi to destination d, and βi, the precedence
value associated with path Qi. The tuple (Ri, αi) on the
other hand consists of the rim path Ri, which leads from
pi+1 to pi, and αi, the change in precedence along Ri,
including node pi+1. In other words, if γ is the precedence
value for path Ripi+1Qi+1d, then γ = βi+1 + αi.



Suppose p0, p1, . . . , pk−1 each receive route
advertisements from their immediate next hops along
Q0, Q1, . . . , Qk−1 with global precedence values
β0, β1, . . . , βk−1, respectively. Node pi then selects
the winning route Qi, updates the value, and advertises
that.

We next assume that the dispute occurs: node pi prefers
path (Ripi+1Qi+1d, βi+1 + αi), over route (Qid, βi). In
Figure 5, this corresponds to each node picking its imme-
diate neighbor in the clockwise direction as the next hop. In
this proof, we assume, without loss of generality, that the
route advertisements received and stored in the history table
include those encountered during oscillations7. Note that we
do not need all routes encountered during one oscillation
period to be in the table, merely one that has higher local
precedence than the stable spoke route. Then, the dispute
wheel implies

β1 + α0 ≤ β0

β2 + α1 ≤ β1

...
β0 + αk−1 ≤ βk−1

Summing, we obtain

k−1∑
i=0

βi +
k−1∑
i=0

αi ≤
k−1∑
i=0

βi

or

k−1∑
i=0

αi ≤ 0

Since, by definition, α0, α1, . . . , αk−1 are non-negative,
we have

αi = 0 ∀ i

which implies that all nodes p0, p1, . . . , pk−1 locally prefer
routes through Q0, Q1, . . . , Qk−1 respectively. This means
that if the dispute wheel exists and each Ripi+1Qi+1 is
chosen over Qi, it must be because of the precedence
values. Thus, for the dispute wheel to form, we will require

β0 < β1 < · · · < βk−1 < β0

which is not possible. Therefore, by contradiction, no
dispute wheel can exist.

Proposition 4.2: If there are non-zero precedence values
advertised once the protocol converges, this must mean that
dispute wheels exist.

Proof: Assume that the destination node advertises
routes with precedence value 0. Thus, a non-zero value
advertised somewhere means that there exists some node

7Other routes will at most merely increase the precedence value, and
not affect the correctness of the proof.

(Ra0 , αa0)

(Ram , αam)

(Qa, βa) (Qb, βb)

d

ba

Fig. 6. Multiple paths advertised by neighboring nodes can cause the
global precedence value of a route to increase by more than 1.

TABLE I
HISTORY TABLE OF NODE b IN FIGURE 6

Route Global Precedence Local Precedence
Ra0 αa0 0
Ra1 αa1 1
· · · · · · · · ·
Ram αam m
Qb βb m + 1

v with an incoming set S of routes of precedence value
0, |S| > 0, and an advertised route vP , P ∈ S, with
positive precedence value. If this happens, then P must not
be the most locally preferred route; suppose that route is
Q. The precedence value of Q must be positive, otherwise
v could have chosen it. This means there must be some
node w along Q that increases its precedence value; w is
similar to v, in that it must have some other path Q′ with
positive precedence value, causing it to choose Q. Thus, we
can repeat this process at w and subsequent similar nodes.
As the destination node is never encountered, because it
always advertises routes with precedence value 0, we must
ultimately encounter a node already traversed. The resulting
cycle of nodes naturally form a dispute wheel that has been
resolved using the precedence mechanism.

Corollary 4.3: From Propositions 4.1 and 4.2, positive
global precedence values exist when routing converges if
and only if dispute wheels causing oscillations exist.

Corollary 4.4: No dispute wheel with equal route prece-
dence advertised at all hops can exist.

Proof: Assume that such a dispute wheel forms. Since
the precedence value advertised by all nodes are the same,
this implies that the route selected by each node is its most
preferred. This in turn implies that the destination node
must be part of the dispute wheel, which is a contradiction.

B. Autonomy Loss in Presence of Disputes

Corollary 4.3 showed that only the presence of dispute
wheels can cause positive global precedence values to exist
after routing converges. The increased value advertised by
the pivot nodes depends on the number of paths advertised
in parallel by immediate neighboring nodes.

We use Figure 6 to explain this. In the figure, node b has
a spoke path Qb to destination d. Assuming that b locally



A
B

C

Fig. 7. Region A is encompassed by nodes involved in a dispute wheel.
Routes advertised in the external region B have global precedence values
one higher than those in A. Similarly, if the nodes around the edges of B
are in dispute, the global values in C will be one higher than those in B.

prefers routes advertised by neighboring pivot node a along
Ra0 , Ra1 , . . . , Ram compared to Qb, we have the history
table shown in Table I. Clearly, the advertised route will be
(bQbd, βb + m + 1).

A non-uniform increase in global precedence values
around the dispute wheel causes the rest of the network,
i.e.nodes not in dispute and not along spoke paths, to lose
autonomy. To correct this, instead of increasing the winning
route’s value by its local precedence, we bound the increase
by 1. We call this the precedence+ metric.

Proposition 4.5: Usage of the precedence+ metric elim-
inates oscillations caused by dispute wheels.

Proof: The following constraint is added to the proof
of Proposition 4.1:

αi ≤ mi ∀ i

where mi is the total number of nodes along Ri, including
ni+1 and excluding ni. The rest of the proof follows.

Proposition 4.6: Usage of the precedence+ metric results
in an increment in global precedence value at steady state
only in the presence of dispute wheels that result in route
oscillations.

Proof: Exactly the same as the proof for Proposition
4.2.

Corollary 4.7: From Propositions 4.5 and 4.6, the global
precedence value increases by one if and only if a dispute
wheel exists and causes routes to oscillate.

Precedence values can take on multiple non-negative
values as opposed to just binary 0 or 1 values. With
reference to Figure 7, the presence of a dispute wheel causes
routes beyond the nodes in and within the wheel, that is,
nodes in region B and not A, to be advertised with the same
incremented value. Nodes in region B can still be in dispute,
in which case the global precedence will be incremented
again.

Corollary 4.8: Only nodes that prefer routes through
nodes in dispute lose autonomy.

Proof: Trivial.

V. PRACTICAL DEPLOYMENT

In Section IV-A, we assumed that the history table con-
sists only of routes that are encountered in the presence of
oscillations due to dispute wheels 8. In practical scenarios,

8Again, we need only at least one route with higher local precedence
value than that of the stable spoke path.

it is difficult to determine this set of routes from all
routes ever seen. In many cases, we expect routes available
during convergence to disappear when the network becomes
relatively stable.

We propose using a sliding history window together with
the history table to resolve this issue. Entries in the history
table consists of routes received during the window period.
Implementation-wise, each received route is stored in the
history table together with an expiration time, which is the
duration of the history window. If the route has not been
updated when timeout occurs, in the sense that the same
route had not been advertised within the expiration time,
then it is removed. Thus, the history window removes routes
that are seen initially but not thereafter.

To solidify our discussion, we describe the steps involved
in this process. We divide time into periodic intervals, the
duration of which is equivalent to the interval between route
advertisements. To simplify matters we assume just one
network destination. The following route update process
runs at each time interval.
Expiring routes: Expired routes in the history table are

removed.
Adding routes: Using the same rules as the decision pro-

cess, the rank, or local precedence, of each new route
in the history table is determined, and the route is
inserted accordingly with its expiration time set to the
maximum. If the route already exists in the history
table, we reset its expiration time, and update its global
precedence value if necessary.

Choosing routes: We prepend the usual BGP decision
process with an additional step: we begin by selecting
routes with the lowest global precedence values. Tie-
breaking, if necessary, takes place using the decision
process.

Proposition 5.1: If no dispute wheel exists, the network
stabilizes with each node selecting its most locally preferred
route. That is, there is complete autonomy of route selec-
tion.

Proof: We prove by induction as follows:
Base case: We assume that the destination node advertises
its routes with global precedence value 0.
Inductive step: Assume that, in the recent past defined by
the duration of the history window, all nodes receive ad-
vertisements from neighbors with global precedence values
0. This implies that all entries in the history table will also
have value 0. Thus, each node is allowed to select any route,
which results in all winning routes being advertised also
with a value of 0.

Thus, with the history window and no dispute wheel
present, routes selected with and without the precedence
mechanism in place will be the same.

A. Route Fluctuation

Although we focus on dealing with policy-induced BGP
oscillations, there are several other reasons the network



might oscillate, such as router reboots, link fluctuation
due to congestion or malfunctioning hardware. Consider an
oscillation between a stable route and an unstable route
(this language suggests a link flapping, but these could
be any two routes the system is oscillating between);
assume, without loss of generality, that the unstable route is
preferred. Assuming that the history window is sufficiently
large, and that changes are not due to policy conflicts, this
results in route advertisements of precedence value 0 when
the unstable route is up, and 1 otherwise. Thus, outgoing
advertisements will fluctuate both in the route as well as
the precedence value.

A further consideration is the implementation of route
flap damping (RFD) in routers, the disadvantage of which
is discussed in [10]. For non-policy-conflict-based oscilla-
tions, RFD can suppress updates up to a maximum of about
30 minutes. Although the primary objective is to cause the
network to oscillate in “slow motion”, it is detrimental to
dispute resolution delay.

The key observation here is that RFD and precedence
mechanisms are both unable to distinguish between oscilla-
tions due to policy conflicts and other causes. In this case,
however, policy conflicts can be eliminated as a possible
cause of instability.

VI. HISTORY WINDOWS

In this section, we elaborate on the setting of the sliding
history window size parameter, used to eliminate routes
that are only present during routing convergence. When
using the precedence metric, we say that the network has
converged if both the routes and the advertised global
precedence values remain stable. We assume that route
advertisements and updates occur periodically, at intervals
of W , which is our basic unit of window size. Thus, a
window size of 4W is four times as along as the update
period.

A. Simple Example

The sliding history window allows a node to remember
more preferred, but unstable, routes along the dispute wheel,
so that the global precedence value of the current winning
route can be incremented. We demonstrate this using the
simple network configuration given in Figure 2. Here, the
local route precedence for each of the nodes is given.
For instance, node A prefers the indirect route through B
rather than the direct one to D. Figure 8 steps through the
stabilizing process when the precedence metric is used.
Figure 8(i) Destination D advertises its reachability with a

value of 0. With each node having only one route to
the destination, the corresponding history tables each
consists of only that route. Thus, it is also the most
preferred locally.

Figure 8(ii) The routes are advertised with a value of 0,
and are the most preferred for the next hop node. Thus,
these routes have higher rankings in the history table
and are selected.

Figure 8(iii) The most locally preferred routes are adver-
tised, but are filtered by the next hops. For history
windows longer than W , the most preferred routes will
not have expired and thus still exist in the history table.

Figure 8(iv) The only acceptable route, which is the direct
route, is less preferred and is advertised with an
incremented value of 1. This is updated in neighboring
history tables. Thereafter, the direct routes are always
chosen, and the routing is stable.

From the simple example, we note that once convergence
occurs, routes that are more locally preferred are always
advertised with a positive global precedence value. This in
turn causes the pivots to select the less locally preferred but
stable spoke path. As a result, memory of the more locally
preferred routes is no longer required.

B. An Adaptive History Window

From Section VI-A, we see that the history window
is instrumental in increasing global precedence value, and
thereby stabilizing the network. In general, the number of
rim nodes, #rim, between two otherwise neighboring pivots
can be thought of as delaying the route advertisements from
one pivot to another by #rimW , so that the duration of the
history window needs to be at least #rimW . However, the
role of an AS, whether it is a pivot, rim or normal node,
is difficult to obtain in practice. It is therefore even harder
to determine the number of rim nodes and set the window
size accordingly.

To resolve this issue, we use an adaptive history window
that has the following properties:
Initialize It begins with a short duration, t0, so that net-

works with small values of #rim or not containing
disputes can converge relatively quickly;

Grow Its duration increases when convergence does not
occur after some time tc, so that disputes involving
large #rim can be resolved; and

Contract Its duration decreases after the network stabi-
lizes, since the history window is not required after
convergence, and subsequent disputes formed due to
topology changes need not be the same size or involve
the same nodes as the previous ones.

There are two parameters of interest: the history window
size tw, and the period of time tc over which stability of
routes is assumed to mean convergence of the network. We
now describe how each of these are set.
Window Size: Initial, Growth and Bound Clearly, tw

should begin at zero, so that networks without disputes
or small values of #rim can converge fast. We use
an exponentially increasing window size to quickly
resolve disputes involving large numbers of rim
nodes. Since the number of rim nodes is unknown,
the window size can potentially increase to a large
value during convergence. This causes routes to expire
later, possibly resulting in delayed convergence of the
rest of the network.
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History tables for each node is shown in boxes beside them. With the precedence metric and the use of a history sliding window, the memory of the route
with the highest local precedence causes the lower one to be advertised with a greater global precedence value in (iv). Thereafter, the routing stabilizes.

TABLE II
VARIABLE DEFINITIONS FOR ALGORITHMS 1 AND 2

Variable Description
L route update interval
wh history window size, in units of L

thus tw = whL
wc current convergence period, in units of L

thus tc = wcL
wc,next convergence period to use next
Rwin current winning route

Rwin,old previous winning route
max AS length maximum AS path length of winning routes

seen during current convergence period
route change boolean indicator of whether route changed

during current convergence period

To reduce the convergence time, we note that the
path traversing the rim nodes must appear in one of
the route advertisements received. Since in general it
is difficult to determine this path, we simply upper
bound the history window size using the maximum
path length seen during the convergence period.

Convergence Period The second parameter of interest is
the period of time tc during which route changes are
interpreted to mean the network is still converging.
This period is necessary to determine if the history
window size should be increased. Considering a dis-
pute wheel without the presence of rim nodes, we
see that the network is stable if there are no route
changes from one iteration to the next. In the case
where rim nodes are present, we need to ensure that
there are no changes during the period of time routes
are propagated through these nodes. Thus, we see that
the convergence period can again be upper bounded
by the maximum path length observed. We therefore
choose tc = WL, where L is that maximum path
length and W is the route advertisement interval.

Algorithms 1 and 2 provide pseudo-code that govern the
initialization and updating of variables associated with the
history window and convergence period. Table II describes
the notation used in the pseudo-code.

We evaluate the impact of this adaptive history window
on convergence time in the following section.

Algorithm 1 History Window, Convergence Period Initial-
ization
1: wh ⇐ 0
2: wc ⇐ 1
3: wc,next ⇐ 1
4: Rwin,old ⇐ ∅
5: max AS length ⇐ 0
6: route change ⇐ FALSE

Algorithm 2 History Window, Convergence Period Update
1: if wc ≡ 0 then
2: wc ⇐ wc,next

3: if route change ≡ FALSE then
4: wc,next ⇐ 1
5: max AS length ⇐ 0
6: wh ⇐ 0
7: else
8: route change ⇐ FALSE
9: wc,next ⇐ max AS length

10: if wh ≡ 0 then
11: wh ⇐ 2
12: else
13: wh ⇐ max(2wh, max AS length)
14: end if
15: end if
16: else
17: wc ⇐ wc − 1
18: end if
19: update history table, determine winning route Rwin

20: if Rwin 6= Rwin,old then
21: route change ⇐ TRUE
22: max AS length ⇐ max(max AS length, length(Rwin))
23: Rwin,old ⇐ Rwin

24: end if

VII. SIMULATIONS

In this section we evaluate the performance of the prece-
dence mechanism proposed in earlier sections. The primary
parameters of interest are (1) network size and density, (2)
size of dispute wheel, that is, the total number of nodes that
are in dispute, (3) ratio of rim and pivot nodes, specifically,
#rim+#pivot

#pivot , and finally (4) whether an adaptive or static
history window is used. The performance metric we use in
all cases is the convergence time in units of route update
intervals, i.e.W in Section VI. This interval can be thought
of as the equivalent of the Minimum Route Advertisement
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relative to the other entries, using the rules in the BGP decision process.
(b) We first select eligible routes with the least global precedence, and then
amongst them the route with the highest rank, or smallest local precedence
value.

Interval (MRAI) used in routers today9. We describe the
general setup of the simulations below.

A. Experimental Setup

The simulator is event-based, with all events synchro-
nized, and we assume that all route update intervals are
equal. Figure 9 illustrates the update and selection processes
that take place within each router, and Figure 10 provides
the steps that occur at each iteration for every destination
prefix. We simulate the use of the precedence+ metric, since
it is shown in Section IV-B to have significant advantages
over the basic precedence metric. Two types of graphs are
used in our simulations, namely simple and power-law. We
describe them below.

1) Simple Graphs: Simple graphs consist only of rim,
pivot and destination nodes, which are immediate neighbors
of pivot nodes. Figure 2 shows an example of a simple
graph. Whilst these graphs are not representative of a real
network in general, they are still useful in determining
properties of a dispute wheel.

2) Power-law Graphs: These are generated using the
BRITE topology generator [1] and the Barabasi-Albert
model [2]. This model implements preferential connectivity,
which refers to a new node’s inclination to connect to
existing nodes that are more connected, and incremental
growth, where nodes are gradually added to an existing
network. We alter the network density by adding differing
number of edges when a new node is introduced.

To deterministically generate disputes, we make use of
an additional data structure in our simulation that may be of

9The MRAI is by default set to 30 seconds, and is used to reduce the
computation load at a router.

1: for each entry in history table do
2: decrement lifetime
3: remove entry if lifetime is zero
4: end for
5: for each route R received do
6: if route from neighbor N is filtered then
7: set last eligible route from N ineligible
8: else if different route received from neighbor N then
9: set previous route from N ineligible

10: compute R’s local precedence
11: insert R into history table
12: reset R’s lifetime
13: set R eligible
14: else if same route received from neighbor then
15: if previous eligible route R′ not equal R then
16: set R′ ineligible
17: end if
18: update R’s global precedence value
19: reset R’s lifetime
20: set R eligible
21: else if first route R is received from neighbor then
22: compute R’s local precedence
23: insert R into history table
24: reset R’s lifetime
25: set R eligible
26: end if
27: end for
28: select set S of eligible routes
29: select set S′ with lowest global precedence from S
30: select route R with lowest local precedence from S′

31: return R

Fig. 10. Pseudo-code for updating routes in the history table and
determination of the winning route.

different form in real-life deployments. We call this the pref-
erence table, which is local to each node. An entry exists
for each neighbor of the node, and routes from neighbors
of higher ranks in this table are more locally preferred than
those of lower10. To break ties between routes sent from
the same neighbor but at different iterations, we use AS
path length, where a shorter path length is more preferred,
as well as lexical order.

Next, to create a dispute wheel of a particular size, we
randomly pick a node in the graph and perform depth-
first search. The search terminates when a previously en-
countered node is reached, and the length of the path is
that of the desired wheel size. Then, at each node in the
dispute wheel, we set the next node along the wheel to
have the highest rank in its preference table. For the rest
of the nodes and entries, the ranks of neighboring nodes
are set randomly. This ensures that there is at least one
dispute wheel present but not strictly one, since the random
assignment of local preferences may cause others to form.

B. Results

We begin this section by observing the convergence
process for various sizes of dispute wheels, as well as for
different ratios of rim to pivot nodes.

Figure 11 shows the minimum convergence times pos-

10This can be thought of as the local preference rule in BGP’s decision
process.
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sible11 for varying number of nodes in dispute, ratios of
rim to pivot nodes, as well as static and adaptive history
windows. We elaborate on them below.
Static windows We begin by looking at the graphs for

static windows, labeled (s). Although in practice it is
difficult to obtain the number of rim nodes and set the
history window sizes accordingly, we still investigate
the effect of rim nodes on convergence time to gain
better understanding of its impact. Each graph shows
the dependence of convergence time on different ratios
r of rim to pivot nodes. Clearly, we see that (1)
convergence time is a function only of the r and
not the wheel size; (2) the increase in convergence
time is approximately linearly proportional to r; and
finally, from additional simulations performed but not
explicitly shown, (3) convergence time of the entire
network is determined solely by the maximum number
of rim nodes between any two otherwise neighboring
pivots. Since we assume that the route update inter-
val is uniform for the network, this implies that the
convergence time is thus dependent on the maximum
delay between any consecutive pivot nodes.

Adaptive windows We next compare adaptive and static
history windows. Adaptive windows are initialized and
updated using Algorithms 1 and 2. From the figure,
we see that having adaptive window sizes results in
performance that is relatively close to the optimal case.
Even though these window sizes are likely to overshoot
their optimal values, the resulting convergence times
do not increase significantly.

Next, we investigate the effect of varying static history
window sizes, wh, in Figure 12. We note that (1) con-
vergence time generally increases with the ratio of rim
to pivot nodes; and (2) the optimal wh resulting in the

11We vary the static window sizes, and use that which results in the
least convergence times.
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lowest convergence time is equal to the ratio itself; and
(3) an increase in window size beyond a certain point
results in no further reduction in convergence time. This
suggests initially that overestimating wh is less detrimental
than underestimating it. However, this observation is not
conclusive since simple graphs are used, where the pivot
nodes are immediate neighbors of the destination and thus
usage of AS path length is a relatively good estimate of the
maximum number of consecutive rim nodes. We return to
this discussion after evaluating power-law graph results.

Power-law graphs are used for the networks from which
we obtain the results in Figures 13 and 14. Each data point
is the average of 30 simulation runs, except in the case of
static windows, where we ignore runs that do not converge
when the window sizes are set too low. Out of a total of 240
runs, 13 did not converge when using static windows. On
the other hand, usage of adaptive windows always results
in convergence. For the sparse network, two edges are used
to connect an additional node to the network, and twice
as many edges are used in the case of the dense network.
From the two figures, we can see that (1) denser or larger
networks takes slightly more time to converge, which is
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expected as more paths are available and explored before
routing stabilizes; (2) larger history windows also delay
network convergence, since transient routes linger in the
history table for a longer period of time before expiring;
finally, (3) although usage of adaptive windows appear to
increase convergence time compared with static windows,
this is not a wholly valid comparison since static windows
can still result in route oscillations.

We next examine the distribution of convergence time in
power-law graphs. Figure 15 shows that a change in static
window size from 2 to 6 results in the maximum time-to-
converge increasing from 150 to about 230 iterations. The
graph is also more spread out: for history window size of
2, we have 80% of nodes converged within 80 iterations,
whereas for wh = 6 it took around 120. For adaptive
windows, 80% of nodes converge within 190 iterations.
Also, the total convergence time of the network using
adaptive windows is around 480 iterations. Again, we note
that the comparison is not wholly correct since usage of
static windows can still result in route oscillations.

Figure 16 shows results obtained from a denser network.
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Fig. 17. Basic scenario used to describe misbehavior: node a receives
two routes and advertises one. Detection of misbehavior can be performed
by observing incoming and outgoing routes.

We observe that the graphs are similar to their counterparts
in Figure 15. This shows that the network convergence time
does not significantly change with network density when
using the precedence metric.

C. Results Summary

The main take-aways from these simulation results are
• static windows cannot result in routing convergence;
• the minimum history window size that results in

network convergence is dependent on the maximum
number of consecutive rim nodes in a dispute wheel;

• slight overestimation of the optimal history window is
preferred to underestimation,

• larger history windows increase network convergence
time, and finally

• network convergence time remains relatively un-
changed when using the precedence+ metric.

VIII. MISBEHAVIOR

In this section we discuss the impact of misbehaving
nodes on the rest of the network.

Since the global precedence metric can in general restrict
the autonomy of an AS, there may be incentives for not ad-
hering to the general rule. We discuss various ways whereby
nodes can misbehave, and detection methods which rely on
the ability to observe the incoming and outgoing routes of
an AS.



A. Simple Example

Clearly, one type of misbehavior is the selection of an
available route with the highest local precedence regardless
of its global value. We describe several scenarios using
Figure 17, focusing on the routes advertised from a.

• (P2, 0): there is definite misconduct, since the outgo-
ing route’s precedence is less than its incoming’s. This
is true even if a filters (P1, 0).

• (P2, 1): there is no misconduct only if a permanently
filters route (P1, 0). In this case, route (P2, 1) is the
only incoming route and therefore also the most locally
preferred. Thus, the outgoing route’s precedence is not
incremented.

• (Px, v) where v > 2 for x = 1 and x = 2. In
this case, node a is artificially increasing the outgoing
precedence value. This has the effect of not allowing
upstream ASes to select a route traversing this AS.
While some may construe this as misbehavior, it may
be used as a means of indicating that certain links are
used as backup. For instance, the destination node can
advertise a global precedence value of 1 on backup
links, and 0 on normal links.

From this simple example, we can determine that an AS
is misbehaving if one of these two conditions are satisfied:
(1) an outgoing route has a global precedence value that
is less than its corresponding incoming route, or (2) an
outgoing route has a global precedence value that is greater
than its corresponding incoming route by more than one.

B. Adaptive Filtering

Misbehavior that is more difficult to detect involves
adaptive filtering, which we now describe. Let M be the
node representing a misbehaving AS. Clearly, if M is
always filtering its spoke path, it will never become a pivot
node, and thus cannot influence the convergence process.
However, M involved in a dispute can initially accept routes
from neighbors along the spoke and wheel. When routing
stabilizes and the precedence metric forces selection of the
spoke path, M can subsequently decide to effectively filter
that in order to select the locally preferred path along the
wheel.

In this case, two scenarios can occur as illustrated in
Figure 18. In part (a), the total number of pivot nodes in
dispute is an odd number. The selection of a next hop
that is more locally preferred but having a higher global
precedence value eventually results in M not having a valid
route. Subsequent removal of the filter causes the system
to oscillate again.

In part (b), an even number of pivot nodes can cause the
system to settle in a stable state even if M misbehaves. In
this case, M is able to use the path it locally prefers.

In general it is difficult to determine the number of
pivot nodes in dispute, and therefore hard to know if
the implementation of adaptive filtering in M can result
in oscillations (which ultimately does not benefit M ).
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Fig. 18. A misbehaving AS, represented by node M , can have differing
effects on the network. (a) For a dispute wheel with an odd number of
nodes, M eventually lacks a route if it initially filters the spoke one. (b)
For a wheel with an even number of nodes, M does not destabilize the
network.

Furthermore, we believe that the alternative, though less
preferred, routes are still acceptable by the ASes, otherwise
these would have been filtered.

In summary, many misbehaviors can be detected through
monitoring. Undetectable misbehaviors may or may not
give the cheating AS a better stable route (depending on the
dispute wheel configuration) and, even if it does, it does not
greatly harm other ASes. However, we don’t claim to fully
understand all the incentive issues inherent in our approach,
and it is the subject of future study.

IX. CONCLUSION

This paper tries to reconcile two desirable, but seemingly
incompatible, goals. On the one hand, it is a business
reality that ASes would like to set policies according to
their own specialized needs — whether these arise out
of business, or traffic engineering, or other concerns —
and they would like to keep these policies private. On
the other hand, every AS would like to have a stable
Internet, where routes didn’t oscillate. Unfortunately, recent
theoretical results make clear that to ensure a priori, without
knowing the policies beforehand or relying on assumptions
about the structure of business relationships, that routing
will be stable, ASes must be deprived of essentially all
policy autonomy.

In this paper we no longer require an a priori guarantee,
but instead seek to remove policy-induced oscillations when
they arise. This allows us to preserve policy freedom
when possible, and impose stability when required. While
more experimentation will be required to fully validate our
proposal, our theoretical and simulation results suggest that
this might be a promising approach.
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