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ABSTRACT
Recent research has shown that one can use Distributed Hash
Tables (DHTs) to build scalable, robust and efficient applica-
tions. One question that is often left unanswered is that of
simplicity of implementation and deployment. In this paper,
we explore a case study of building an application for which
ease of deployment dominated the need for high performance.
The application we focus on is Place Lab, an end-user posi-
tioning system. We evaluate whether it is feasible to use
DHTs as an application-independent building block to imple-
ment a key component of Place Lab: its “mapping infrastruc-
ture.” We present Prefix Hash Trees, a data structure used by
Place Lab for geographic range queries that is built entire on
top of a standard DHT. By strictly layering Place Lab’s data
structures on top of a generic DHT service, we were able to
decouple the deployment and management of Place Lab from
that of the underlying DHT. We identify the characteristics
of Place Lab that made it amenable for deploying in this lay-
ered manner, and comment on its effect on performance.

Categories: C.2.4 Distributed Systems

General Terms: Design, Algorithms, Experimentation

Keywords: DHTs, Layering, Range queries

1. INTRODUCTION
Distributed Internet-scale applications are typically de-

signed with scalability, availability, and robustness in mind.
An issue that is frequently overlooked is simplicity of imple-
mentation and deployment. Yet, in practice, this is often
an equally important and difficult challenge. This is par-
ticularly true of recent peer-to-peer systems that are highly
distributed in both location and administration.

This paper describes the design and evaluation of an appli-
cation in which concerns about ease of operation dominated
the need for high performance. The application, Place Lab,
is an end-user positioning service for location-enhanced ap-
plications [21]. Place Lab clients estimate their physical lo-
cation by listening for nearby radio beacons such as 802.11
access points and GSM cell towers in conjunction with a
database of known beacon locations. The beacon database
was initially designed as a centralized “mapping service.”
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However, as the system gained popularity—since March 2004,
users have downloaded the Place Lab software from over 5600
unique locations—concerns of privacy and ownership of the
beacon database required transitioning to a decentralized ar-
chitecture composed of mapping servers distributed across
organizational domains.

What makes Place Lab’s mapping service an interesting
case study is that Place Lab’s operators, a small group of
ubiquitous computing researchers, wished to limit the imple-
mentation and deployment overhead involved with providing
a fully decentralized infrastructure. So we ask the question
whether it is possible to isolate the Place Lab developers
from the distributed application’s deployment, management
and robustness concerns.

A powerful design principle that is commonly used to sim-
plify the construction of complex systems is that of layering.
For example, the strict layering between IP and TCP allows
the network to handle the complex operations of packet de-
livery and the end-hosts deal with reliability and congestion
control. At a higher layer, Distributed Hash Tables (DHTs)
are often cited as playing a similar role in building decen-
tralized applications. Building an application on top of a
DHT frees designers from having to address issues of scala-
bility and robustness directly. Such an approach, if viable,
would greatly simplify the building of distributed applica-
tions. CFS [11], i3 [30] and PAST [12] are examples of appli-
cations that make straightforward use of a DHT for simple
rendezvous or storage and are easy to implement in a layered
fashion. On the other hand, systems such as Mercury [8] and
CoralCDN [14] have more sophisticated requirements, which
they achieve by altering the underlying DHT mechanisms.

Place Lab’s mapping service is closer to this second cate-
gory of applications in that it has more complex requirements
than simply storage and rendezvous. Its application inter-
face is based on geographic range queries, not exact-match
lookups. Place Lab clients download relevant segments of the
beacon database as needed. For example, when a user arrives
in a new city, her device will query the mapping service for
all beacon data within that region.

In spite of these requirements, if we could easily layer Place
Lab over an existing DHT, that would go a long way toward
simplifying implementation. However, this would not sim-
plify operation of the service; Place Lab’s operators would
still have to deploy and manage a full-fledged DHT which is
arguably not an easy task. Hence, we decided to push the
notion of layering a step further and outsourced the oper-
ation of the DHT altogether to a third-party DHT service.
Building on top of a third-party DHT service restricts the in-
teraction between the application and the DHT to a narrow
and well-defined API. It is precisely these conflicting needs—
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building a complex data structure while having to live with
a narrow DHT interface—that we believe makes Place Lab a
good (admittedly harsh) stress test for the claim of DHTs as
a composable building block. This is an important question
because a lot of the value of DHTs will lie in the validation
of their flexibility as a re-usable programming platform for
large-scale distributed applications.

In this paper, we describe the design and implementation
of Place Lab’s mapping service over the OpenDHT [2] ser-
vice. We use our experience to answer the following three
questions:

• Is it feasible to use a simple DHT service as a building
block for a larger more complex application?

• Can this application leverage the purported simplicity
and deployability advantages of DHTs?

• What is the performance impact of using application-
independent DHTs for this application?

We recognize that a single case study is not sufficient to
answer the more general question of just how broad a class
of applications can be supported on top of a strictly lay-
ered DHT. Rather, our results provide an initial insight into
the requirements that applications beyond simple rendezvous
and storage can impose on DHT infrastructures. Moreover
these requirements arise from a real application that is be-
ing actively used by members of the research community and
other early-adopters.

Our primary challenge was to address Place Lab’s need for
range-based queries without modifying the underlying DHT.
Our solution is called Prefix Hash Trees (PHTs), a distributed
trie-like data structure that can be built on top of a generic
DHT. A simple PHT can perform single-dimensional range
queries and an extension using linearization techniques [18]
allows us to perform multi-dimensional queries (and specifi-
cally 2-D geographic range queries).

Our experience with building Place Lab has mixed results.
We found that the simple DHT interface goes a long ways
in supporting Place Lab’s non-traditional and varied use of
the DHT. Building Place Lab over a DHT was relatively easy
(2100 lines of glue code) and our system effortlessly inherited
the scalability, robustness, and self-configuration properties
of the DHT. This would seem to validate our hope for a DHT-
based “narrow waist” for networked systems. However, the
simple DHT put/get/remove interface was not quite enough.
OpenDHT has no support for atomicity primitives, which
are crucial for correctness in the face of concurrent updates.
Yet, a simple atomicity primitive can be implemented as an
application-independent extension to the basic DHT API, so
it should be possible for a third-party DHT implementation
to support such primitives. Thus, we remain hopeful that
sophisticated applications can be layered on top of a DHT
service, but think that DHT services should slightly broaden
their interface.

In return for ease of implementation and deployment, we
sacrificed performance. With the OpenDHT implementa-
tion, a PHT query operation took a median of 2–4 seconds.
This is because layering entirely on top of a DHT service in-
herently implies that applications must perform a sequence of
get operations to implement higher level semantics with lim-
ited opportunity for optimization within the DHT. Whether
this loss of performance is a worthy tradeoff for ease of de-
ployment is something that individual application developers
will have to assess.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 describes Place Lab and
its requirements from the DHT framework, while Section 4
presents details on the Prefix Hash Tree data structure. In
Section 5 we discuss our experimental results, highlight the
lessons learned in Section 6 and finally conclude in Section 7.

2. RELATED WORK
There has been a variety of related work in DHT-based ap-

plications, in techniques for distributed range queries, and in
the use of trie-based schemes in networking. Place Lab is by
no means the first application to be built on DHTs. But un-
like most existing applications, it uses DHTs not only for tra-
ditional key-based lookup, but also as a building block for im-
plementing a data structure with richer functionality (PHT)
while still retaining the simple application-independent API
of the DHT.

2.1 Other DHT-based Systems
An early and significant class of DHT-based applications

are storage and rendezvous systems, including PAST [12],
OceanStore [20], i3 [30]and those based on Chord’s DHASH
layer [31] (for example, CFS [11], Ivy [25] and UsenetDHT
[29]). Although these applications make straightforward use
of the DHT, their implementations are not always decompos-
able from their underlying DHT. Scribe [28] and SDIMS [34]
use the DHT topology to construct trees for multicast, any-
cast and aggregation. PIER [17] uses DHTs for relational
database and file-sharing queries, extending the DHT beyond
its basic put/get semantics to support query dissemination,
as well as join and aggregation operations. Lastly, systems
like CoralCDN [14] and POST [23] support large-scale appli-
cations by building custom DHTs underneath. What distin-
guishes Place Lab from all of these applications is its strict
use of a layered approach by building entirely on top of the
OpenDHT service.

2.2 Peer-to-Peer Range Queries
In recent years there has been a flurry of work on provid-

ing peer-to-peer range query functionality. We believe that
the PHT scheme we describe here stands out because it is
built without modifying the internal routing or topology of
the DHT. This clean layering makes it easy to implement
over third-party DHT infrastructures, and allows DHTs to
support multiple functionalities, without being tuned specif-
ically for range search.

In comparison, the Mercury system [8], Sword [26], Karger
and Ruhl’s item balancing [19], and Ganesan et al’s online
balancing work [15] explicitly load-balance the distribution
of items by including specific modifications to the behavior
of the underlying DHT. Typically, with evolving applications
and data sets, this can induce churn in the DHT. PHTs on
the other hand are built entirely on top of an existing DHT
and rely on the spatial distribution of the data to achieve
load balancing.

Aspnes and Shah [4] have proposed skip graphs, a dis-
tributed data structure that implements range search. Awer-
buch and Scheideler [5] build skip graphs over a DHT by
using the DHT mechanism to implement pointers in the the
skiplist structure. However, maintaining load balance while
mapping items to peers in the network requires non-trivial
extensions to skip graphs [3]. In contrast, the PHT is based
on a trie data structure, whose simplicity allows for a simple
realization over a network of peers, as is demonstrated in this
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paper. Other related work includes a DHT-based caching
scheme [16]; P-tree [10], a special-purpose P2P range-search
structure; and a technique specifically for the CAN DHT
based on space-filling curves [32].

2.3 Trie-based peer-to-peer systems
Cone [7] is a DHT-inspired, trie-based distributed data

structure that is used to evaluate aggregation operators, such
as MIN, MAX and SUM, over keys in a DHT. Cone is similar
to PHTs in that it is based on a trie, but it is designed for
aggregation operations, not range queries. In comparison,
the PHT can not only perform range queries, but is easily
capable of evaluating aggregation operators over elements
satisfying a range predicate.

P-Grid is a DHT-like peer-to-peer lookup system that uses
a trie-based approach at its core [1], along with a network of
randomized links. It is quite different in design spirit from
the PHT, which is a data structure layered on top of any
DHT.

Finally, in independent work, Yalagandula [33] has pro-
posed a trie-based scheme that is similar to our PHT pro-
posal. In this paper, we have explored beyond the basic
concept of a PHT and built and deployed it for a real appli-
cation.

3. PLACE LAB

3.1 Overview
Place Lab [21] is a radio-beacon-based device position-

ing system that runs on commodity laptops, PDAs and cell
phones. Client devices listen for broadcasts of beacon mes-
sages from nearby 802.11 access points and GSM cell towers.
They estimate their own position by looking up these beacons
in a beacon database that maps beacon identifiers to their lo-
cation. Using locally cached segments of the database, clients
can position themselves with a median accuracy of 12–40 me-
ters depending on beacon density [21].

Input for the beacon database can come from organizations
that already know the locations of their 802.11 access points
or from war drivers who drive around a neighborhood with a
mobile computer equipped with a GPS device and an 802.11
card gathering traces of beacon availability. Many central-
ized beacon databases already exist (e.g., www.wigle.net).
However, as the Place Lab infrastructure grows and becomes
more popular, a central authority for the beacon database
will raise numerous concerns about privacy, ownership, and
access. Since the database is critical for clients to compute
their own location, centralizing it would in some ways be
analogous to using a single centralized DNS server for clients
to resolve DNS names.

Hence, the Place Lab researchers proposed a decentralized
architecture for Place Lab’s mapper service where any num-
ber of organizations, each with their own mapping servers,
can host a portion of the beacon database. Rather than di-
vide the database geographically (which raises concerns such
as “who is responsible for high-profile areas like Manhat-
tan”), we chose to distribute the data “randomly” across
all servers by making each server responsible for a random
portion of the beacon identifier space. This method elimi-
nates the need to assign servers by geography and ensures
robustness by spreading data for a single region across mul-
tiple random servers. Such an organization is well-suited for
implementation on top of a DHT. Given Place Lab’s require-
ments of ease of deployment, we built the service on top of

OpenDHT [2], a third-party DHT service. OpenDHT pro-
vides a simple put/get/remove interface to its applications.
Applications put data into the DHT along with a time-to-
live; the DHT stores the data until the TTL expires.

War drivers use the DHT to route data to the mapping
servers. Mapping servers are responsible for aggregating in-
formation about individual radio beacons and generating a
single estimate of the beacon’s location.1 In addition, they
build and maintain a geographical index of all access points
to simplify retrieval. The DHT takes care of robustness and
availability of the data. The rest of this section details how
this separation of concerns between the DHT and mapping
servers is achieved.

3.2 Content-based Routing
The processing of war-driving records for a single radio

beacon is independent of those for other beacons. Accord-
ingly, we distribute the mapping data such that data for a
single beacon is always hosted by a deterministic mapping
server and all war-driving records for that beacon are for-
warded to that mapping server.

DHTs provide a natural mechanism for achieving this dis-
tribution. We map beacon identifiers to SHA1 [13] keys.
Each mapping server is responsible for a well-defined por-
tion of the key space. To allow mapping servers to register
with the DHT and for clients to route war-driving records to
appropriate mapping servers, we use the OpenDHT ReDiR
mechanism [2]. ReDiR maintains a hierarchy of rendezvous
points that allows clients to look up the appropriate server(s)
for their records. It is implemented entirely by the mapping
servers and their clients using the simpler put/get interface
of the DHT.

A mapping server coalesces war-driving records for a sin-
gle radio beacon and computes running estimates for the
positions of all radio beacons that it manages. Periodically,
it stores these estimates in the DHT (keyed by the beacon
identifier) to ensure their availability. Effectively, the DHT
provides the routing primitives that clients use to locate map-
ping servers and stores estimates of beacons’ locations as
generated by the mapping servers.

3.3 Indexing for Retrieval
When a Place Lab client enters a new area, she must

first download the beacon data for the new region. This in-
volves performing a geographical range query over the data.
Rather than allow arbitrarily complex query regions, we re-
strict queries to rectangular bounding boxes.

The underlying DHT’s routing algorithm spreads beacon
data uniformly across mapping servers with no semblance
of spatial locality; yet, such locality is important to perform
the above query efficiently. Prefix Hash Trees (PHTs) are our
solution to efficiently coalesce estimated positions of nearby
radio beacons. When a mapping server updates its estimate
of a beacon’s location based on new war driving readings,
it also updates the PHT. For efficiency, these updates can
be batched and performed lazily. We will discuss this data
structure and its implementation on top of OpenDHT in de-
tail in Section 4.

3.4 Deployability, Robustness and Availability
OpenDHT provides the routing, storage, and robustness

substrate for Place Lab. Individual mapping servers connect

1Details are described in [21].
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directly to the DHT. They rely on the DHT to provide much
of the robustness and availability. The servers store the cur-
rent estimates of each radio beacon’s location in the DHT,
while the DHT handles replication and recovery. If a map-
ping server fails, the DHT routing mechanisms automatically
ensure that the failed server’s successor in the routing overlay
takes over responsibility for the failed server’s key space. The
mapping server’s administrator still must handle restarting
of the failed server, but the DHT provides automatic graceful
fail-over in the meanwhile.

Mapping servers periodically refresh their data in the DHT.
This ensures that even in the event of catastrophic failure of
the DHT where all replicas of a beacon’s data are lost, the
mapping servers will eventually recover them. Additionally,
a temporary loss of data does not affect application perfor-
mance. This resilience is due to the temporal and spatial
redundancy in the data. The effect of lost information for
a beacon is reduced by the likelihood that a new war driver
will submit fresh information for the beacon eventually. Spa-
tially, the impact of lost beacons is reduced by readings for
other nearby beacons that map to different servers. As we
will show in section 5.6, a loss of even 50% of the beacon data
results in no noticeable reduction in positioning accuracy.

4. PREFIX HASH TREES
We now look at the PHT data structure in detail. Unlike

the various recent proposals for incorporating range query
support into DHTs [8, 15, 19], Prefix Hash Trees are built
entirely on top of a simple put/get/remove interface, and thus
run over any DHT, and specifically on a third-party DHT ser-
vice like OpenDHT. Range queries use only the get(key) op-
eration and do not assume knowledge of nor require changes
to the DHT topology or routing behavior.

PHTs are efficient in that updates are doubly logarith-
mic in the size of the domain being indexed. They are self-
organizing and load-balanced. They tolerate failures well;
while they cannot by themselves protect against data loss
when nodes go down, the failure of any given node in the Pre-
fix Hash Tree does not affect the availability of data stored
at other nodes. Moreover, PHTs can take advantage of any
replication or other data-preserving technique employed by
the DHT.

4.1 The Data Structure
A Prefix Hash Tree assumes that keys in the data domain

can be expressed as binary strings of length D. It is fairly
straightforward to extend this to other alphabets through
multiway indexing, or by encoding them in binary. A PHT is
essentially a binary trie in which every node corresponds to a
distinct prefix of the data domain being indexed. Each node
of the trie is labeled with a prefix that is defined recursively:
given a node with label L, its left and right child nodes are
labeled L0 and L1 respectively. The root is labeled with the
attribute being indexed, and downstream nodes are labeled
as described above. Each node in the PHT has either zero
or two children. Keys are stored only at leaf nodes. Unlike a
binary search tree, all keys that are stored in the same leaf
node share the leaf node’s label as a common prefix.

The PHT imposes a limit B on the number of keys that
a single leaf node can store. When a leaf node fills to ca-
pacity, it must split into two descendants. Similarly, if keys
are deleted from the PHT, two sibling leaf nodes may merge
into a single parent node. As a result, the shape of the PHT
depends on the distribution of keys; it is “deep” in regions
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Figure 1: Recursive shape of a z-curve linearization to
map a two-dimensional coordinate space into a one-
dimensional sequence. The shaded region represents
a two-dimensional range query for data points in the
space (2,4)–(5,6). The bold line represents the cor-
responding one-dimensional range in the z-curve be-
tween the lowest and highest linearization points of
the original query.

of the domain that are densely populated, and conversely,
“shallow” in regions of the domain that are sparsely popu-
lated.

As described this far, the PHT structure is a fairly routine
binary trie. What makes the PHT interesting lies in how
this logical trie is distributed among the servers that form
the underlying DHT. This is achieved by hashing the prefix
labels of PHT nodes over the DHT identifier space. A node
with label L is thus assigned to the DHT server to which
L is mapped by the DHT hashing algorithm. This hash-
based assignment implies that given a PHT node with label
L, it is possible to locate it in the DHT via a single get().
This “direct access” property is unlike the successive link
traversal associated with typical tree-based data structures
and results in the PHT having several desirable features that
are discussed later in Section 4.7.

4.2 Adapting PHTs for Place Lab
Queries in Place Lab are performed over a two-dimensional

latitude-longitude coordinate domain (−180.0 < longitude <
180.0, −90.0 < latitude < 90.0). To index this domain us-
ing PHTs, we rely on a technique known as linearization
or space-filling curves to map multi-dimensional data into a
single dimension. Well-known examples include the Hilbert,
Gray code, and Z-order curves [18]. First, we normalize all
latitudes and longitudes into unsigned 40-bit integer values,
which in turn can be represented using a simple binary for-
mat. We then use the z-curve linearization technique to
map each two-dimensional data point into an 80-bit one-
dimensional key space. Z-curve linearization is performed
by interleaving the bits of the binary representation of the
latitude and longitude. For example, the normalized point
(2,3) would be represented on the z-curve using the 80-bit key
000...001101. Figure 1 shows the zig-zag shape that such a z-
curve mapping takes across the two-dimensional coordinate
space. We chose z-curves because they are simple to under-
stand and easy to implement. In Section 5.4, we will compare
the performance of the various linearization techniques.

The PHT for two-dimensional queries uses z-curve keys
and their prefixes as node labels. Due to the interleaving of
the latitude and longitude bits in a z-curve key, each suc-
cessive level in the PHT represents a splitting of the geo-
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Figure 2: A portion of a sample two-dimensional
PHT for Place Lab. The table shows the data items
(and their z-curve keys) that are stored at some of the
leaf nodes in the PHT. As shown, each data item is
stored at the unique leaf node whose label is a prefix
of the item’s z-curve key.

graphic space into two, alternately along the latitude axis
and then along the longitude axis. Data items (tuples of
the form {latitude, longitude, beacon-id}) are inserted into
the leaf node whose label is a prefix of the z-curve key as-
sociated with that latitude-longitude coordinate. Figure 2
shows a sample PHT along with an example assignment of
data items to PHT leaf nodes assuming three-bit normalized
latitude and longitude values.

4.3 PHT Operations
Now that we have described what the PHT data structure

looks like, let us focus on the various operations needed to
build and query this data structure using a DHT.

4.3.1 Lookup
Lookup is the primitive used to implement the other PHT

operations. Given a key K, it returns the unique leaf node
leaf(K) whose label is a prefix of K. A lookup can be im-
plemented efficiently by performing a binary search over the
D+1 possible prefixes corresponding to a D-bit key. An im-
portant feature of this lookup is that unlike traditional tree
lookups, it does not require each operation to originate at
the root, thereby reducing the load on the root (as well as
nodes close to the root). Minor modifications to this algo-
rithm can be used to perform a lookup of a prefix P instead
of a full-length key K.

Binary search requires �log (D + 1)�+1 ≈ log D DHT gets,
which is doubly logarithmic in the size of the data domain
being indexed. This ensures that the lookup operation is
extremely efficient. However, binary search has the drawback
that it can fail as a result of the failure of an internal PHT
node. The search may not be able to distinguish between
a failed internal node, in which case search should proceed
downwards, and the absence of a PHT node, in which case
the search should proceed upwards. In such a situation, the
PHT client can either restart the binary search in the hope
that a refresh operation has repaired the data structure (see

section 4.4), or perform parallel gets of all prefixes of the key
K. The parallel search is guaranteed to succeed as long as
the leaf node is alive and the DHT is able to route to it.
This suggests two alternative modes of operation, namely,
low-overhead lookups using binary search, and low-latency
fail-over lookups using parallel search.

4.3.2 Range Query
For a one-dimensional PHT, given two keys L and H (L ≤

H), a range query returns all keys K contained in the PHT
satisfying L ≤ K ≤ H. Such a range query can be performed
by locating the PHT node corresponding to the longest com-
mon prefix of L and H and then performing a parallel traver-
sal of its subtree to retrieve all the desired items.

Multi-dimensional range queries such as those required for
Place Lab are slightly more complicated. A query for all
matching data within a rectangular region defined by (lat-
Min, lonMin) and (latMax, lonMax) is performed as follows.
We determine the linearized prefix that minimally encom-
passes the entire query region. This is done by computing
the z-curve keys zMin and zMax for the two end-points of the
query, and the longest common prefix of these keys: zPrefix.
We then look up the PHT node corresponding to zPrefix and
perform a parallel traversal of its sub-tree.

Unlike the simpler case of one-dimensional queries, not all
nodes between the leaf for the minimum key and the leaf
for the maximum key contribute to the query result. This
is illustrated in Figures 1 and 2 which show a query for
the rectangular region (2,4)–(5,6). As shown in Figure 1,
the linearized range between these two points (shown by
the bold line) passes through points (and correspondingly
PHT nodes) that are not within the rectangular region of
the search. This is also depicted in the PHT representation
in Figure 2. The leaves for the end-points of the query are
P0110 and P1101. However, the entire subtree rooted at P10
does not contain any data items that fall within the query
range.2

Hence, the query algorithm works as follows: Starting
at the PHT node corresponding to zPrefix, we determine
whether this node is a leaf node. If so, we apply the range
query to all items within the node and report the result. If
the node is an interior node, we evaluate whether its left
subtree (with a prefix of zPrefix+“0”) can contribute any
results to the query. This is done by determining whether
there is any overlap in the rectangular region defined by the
subtree’s prefix and the range of the original query. This
check can be performed with no additional gets, so incurs
almost no penalty if it fails. If an overlap exists, the query is
propagated recursively down the left subtree. In parallel, we
perform a similar test for the right subtree (with a prefix of
zPrefix+“1”) and if the test succeeds, propagate the query
down that sub-tree as well. Thus the query algorithm re-
quires no more than d sequential steps, where d is the depth
of the tree.

4.3.3 Insert/Delete
Insertion and deletion of a key K require a PHT lookup

to first locate the leaf node leaf(K). During insertion, if the
leaf node is already full to its limit of B values, it must be

2P10 contains items whose latitude coordinates are of the
form 000...1XX and longitudes are of the form 000...0XX,
that is, items in the range (4,0)–(7,3). This range does not
overlap the query range and hence the entire subtree can be
discounted.
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split into two children. In most cases, the (B+1) keys are
distributed among the two children such that each of them
stores at most B. However it is possible that all (B+1) keys
will be distributed to the same child, thus necessitating a
further split. To avoid this, the split operation determines
the longest common prefix of all of the (B+1) keys and cre-
ates two new leaf nodes one level deeper than that common
prefix, thereby ensuring that neither of the new leaves has
more than B keys. The keys are distributed across these two
new leaves and all nodes in between the original node being
split and the new leaves are marked as interior nodes. All of
these operations can be parallelized for efficiency.

Similarly, when a key is deleted from the PHT, it may be
possible to coalesce two sibling leaf nodes into a single parent
node. The merge operation is essentially the reverse of splits
and can be performed lazily in the background.

4.4 Refreshing and recovering from failure
PHTs inherit all of the resilience and failure recovery prop-

erties of the underlying DHT. However, in the event of catas-
trophic failure of all replicas in the DHT, the PHT can lose
data. Although our algorithms are fairly resilient even in
the face of loss of interior PHT nodes, one must eventually
restore the lost data. To achieve this, we rely on soft state
updates. Each PHT entry (leaf node keys and interior node
markers) has associated with it a time-to-live (TTL). When
the TTL expires, the entry is automatically deleted from the
DHT.

Each mapping server periodically refreshes the values that
it has inserted into the PHT. All keys are inserted into the
DHT with a TTL of T seconds. Every T/2 seconds, a map-
ping server refreshes its keys by resetting their TTL to T.
At the same time, it checks the parent of the leaf node. If
the parent’s TTL has dropped to less than T/2 seconds, it
refreshes the parent as well. This continues recursively until
it reaches the root or a parent whose TTL is greater than
T/2. Thus, interior nodes are refreshed only as needed. If
an interior node is lost due to failure, it will eventually be
refreshed as a consequence of the refresh of a value in one of
its descendant leaf nodes.

4.5 Dealing with concurrency
The PHT as described above has potential race conditions

that can result in (temporary) loss of data as well as du-
plication of work. For example, if two mapping servers at-
tempt to insert keys K1 and K2 into the same leaf node, and
that leaf node is full, both servers will attempt to split the
leaf node resulting in duplicate work. A worse race condi-
tion can cause one server’s insert operation to get lost while
a different server has begun the process of splitting a leaf
node. This however is a temporary problem since the refresh
mechanisms described in the previous section will eventually
recover the lost data.

These inefficiencies occur because the PHT is implemented
entirely outside the DHT by the independent mapping servers.
In the absence of concurrency primitives in the DHT, they
cannot be eliminated. Hence, we added a localized atomic
test-and-set mechanism to the OpenDHT API. Note that this
extension is not PHT- or Place Lab-specific and can poten-
tially benefit many distributed applications. The test-and-
set works as follows: get(key) returns a generation number
for the key. This generation number is updated whenever the
DHT key is modified. We use the modification timestamp
as the generation number. In addition, we implemented a

put conditional(key, value, gen); the put succeeds only if the
key has not been modified since the generation number gen.

To implement this concurrency primitive correctly in the
presence of replication and failures, the DHT must provide
strong guarantees for atomic writes. Etna [24] is a con-
sensus protocol based on Paxos [22] that can provide such
guarantees. However, the protocol is fairly involved and will
significantly complicate the DHT implementation. Instead,
our extension uses a much simpler mechanism that works in
practice for the common case: serialize all put conditional op-
erations through the master replica for each key. In the event
of churn, if multiple DHT nodes think they are the master
replica for a key, this mechanism will fail. Such events will
hopefully be rare for a DHT service and as mentioned ear-
lier will only result in inefficiency in the PHT, not loss of
correctness.

With these primitives, the insert operation is modified
as follows. When inserting key K into leaf(K), we use the
put conditional() primitive to ensure that the leaf has not been
modified or split since we performed the lookup. When a leaf
node needs to be split, we first mark it as being in transi-
tion using the put conditional primitive. If multiple servers
attempt to split the same node, only one of them will suc-
ceed. All of the other PHT nodes that are involved in this
split operation are then marked in transition. Only then is
the split operation performed. The in transition markers are
removed after the split operation has completed.

4.6 Caching to improve performance
The lookup primitive is central to all PHT operations. It

can be optimized by using a client-side hint cache that keeps
track of the shape of the PHT based on previous lookup
operations. When a lookup for key K returns the leaf node
L (a prefix of K), the cache records L as a leaf node and all
entries from the root to the parent of L as interior nodes.
A new lookup for a different key K ′ is first checked against
this cached information. If the cache returns a leaf node
L′, the client performs get(L′) to verify that the PHT has
not been reconfigured and that the node is indeed still a leaf
node. A cache hit thus generates a single DHT operation.
Upon a cache miss, however, the lookup must revert to the
binary search algorithm. For query operations, we can use a
similar caching scheme that finds relevant leaf nodes directly
by querying the cache.

We can use a number of other heuristics to optimize the
performance of PHTs. For example, for certain queries (such
as a small range containing the midpoint of the key-space),
it may be desirable to break the search query into two, and
treat these sub-queries independently. This would ensure
that searches can start at a level in the PHT that is appro-
priate for the query, that is, smaller queries start lower down
in the PHT. Another optimization is to use an n-ary tree in-
stead of binary trees to reduce the number of internal nodes
that must be queried.

4.7 PHTs versus linked data structures
This section compares the merits of the PHT with balanced-

tree-based indexes, such as the B-tree, with particular em-
phasis on implementation in a distributed setting. While
tree-based indexes may be better in traditional indexing ap-
plications like databases, we argue the reverse is true for
implementation over a DHT.

Efficiency: A balanced tree has a height of log N , where N
is the number of elements in the tree; so a key lookup requires
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log N DHT lookups. For PHTs, the binary search lookup
algorithm requires only log D DHT operations, D being the
number of bits in the PHT key.

Load Balancing: Every lookup in a tree-based index
must go through the root, creating a potential bottleneck. In
the case of PHTs, binary search allows the load to be spread

over 2
D

2 nodes (in the case of uniform lookups), eliminating
any bottleneck.

Fault Resilience: In a typical tree-based structure, the
loss of an internal node results in the loss of the entire subtree
rooted at the failed node. PHTs however do not require top-
down traversals; instead one can directly “jump” to any node
in the PHT. Thus the failure of any given node in the PHT
does not affect the availability of data stored at other nodes.

5. EVALUATION
We now measure the performance of the DHT-based im-

plementation of Place Lab’s mapping service. The two main
operations that Place Lab performs are: routing of beacon
records from war drivers to mapping servers for updating
beacon position estimates, and routing of beacon position es-
timates both to and from the PHT. The former is a straight-
forward use of a DHT. Records are hashed based on each
beacon identifier and this hash is used to redirect through
the DHT to a mapping server. Accordingly, we focus our
measurement effort on the prefix hash tree mechanism and
the way it behaves both under insert loads from the mappings
servers and under query loads from downloading clients.

5.1 Setup
We implemented PHTs and the rest of the Place Lab in-

frastructure on top of OpenDHT. The implementation effort
required to build the glue between Place Lab’s application
code and the underlying DHT and to build a robust PHT
implementation was small. The code consists of 2100 lines
of Java. In comparison, the underlying OpenDHT codebase
is over 14000 lines of code.

We have deployed and run the Place Lab mapping ser-
vice and the PHT on top of the public Planet Lab-based [27]
OpenDHT deployment. However, for our experimental eval-
uation, we chose to use our own independent OpenDHT de-
ployment. This was for two reasons: to understand the ef-
fects of concurrent operations, we needed to use enhanced
APIs (put conditional()); and, to evaluate the effect of churn,
we wished to kill and restart OpenDHT nodes as needed.
Our deployment consisted of 24–30 nodes spread across ma-
chines on the US West Coast, US East Coast and England.
We also conducted experiments on a larger deployment using
PlanetLab. However, due to the vagaries of load on Planet-
Lab, the results from those experiments were erratic and are
left out in this discussion.

As input, we used a data set composed of known loca-
tions of 1.4 million 802.11 access points gathered from a
war-driving community web service, Wigle (www.wigle.net).
This data set consists of estimated AP positions based on
war drives submitted by users in the United States to the
Wigle service. Figure 3 shows the distribution of the input
data. We conducted experiments with different data set sizes
picked uniformly at random from this larger set.

We constructed a query workload composed of 1000 queries
to represent a set of typical Place Lab queries; the workload
was proportional to the distribution of access points in the
input data. We made this choice under the assumption that

Figure 3: Distribution of the input data set. The in-
tensity of the dots on the map corresponds to the den-
sity of data points in that region.

Figure 4: The structure of the PHT for the 1.4 million
input data set and a block size of 1000.

high access point density corresponds to higher population
density and thus there is a higher likelihood of queries in
those regions. Each query was generated by picking an ac-
cess point at random from the input data set and building a
rectangular region around the location of that access point
with a size that was picked uniformly at random from [0–1.0]
latitude/longitude units (approximately 0–100km). Such a
query corresponds to requests of the form: “I can hear access
point X, find all APs within distance Y of this AP.”

5.2 Structural Properties
In the first set of experiments, we constructed PHTs with

progressively larger data sets and measured the structure of
the resulting trees. Figure 4 shows a depiction of the PHT for
the entire data set with a block size of 1000 overlaid on top
of a map of the US. Each rectangle on the map represents
a leaf node in the PHT. Comparing to the input data set
shown in Figure 3, we note that areas with high AP density
get sub-divided into smaller rectangular blocks than sparse
areas. This is because we use a constant block size across the
PHT. This organization ensures that queries for dense areas
can be spread across a larger number of DHT nodes thereby
reducing the bottleneck that popular queries may cause.

We measured the tree characteristics using two metrics:
depth of the tree and block utilization (number of elements
per PHT leaf node as a percentage of the block size).

Tree Depth: Figure 5 shows a CDF of the depth of leaf
nodes in a PHT with 1.4 million elements and a block size
of 1000. Between the 20th and 80th percentiles, the tree
depth varies between 18 and 26. Some nodes in the densest
part of the data set have higher depth (as deep as 33) while
a small fraction of nodes in the sparse parts of the coun-
try are shallower. Figure 6 shows the variation in average
depth of the PHT for varying block sizes and different in-
put data set sizes. We can see that the tree depth decreases
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Figure 5: A cumulative distribu-
tion function (CDF) of leaf node
depth for a PHT with an input data
set of 1.4 million and a block size
of 1000.
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Figure 6: Variation in tree depth
as a function of block size for dif-
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Figure 7: Block utilization (num-
ber of items in a leaf node as
a percentage of block size) versus
block size for varying input data
set sizes.

logarithmically with the block size, that is, larger block sizes
result in shallower trees. With larger blocks, fewer accesses
are needed to retrieve a portion of the data space, however,
there is greater contention for nodes within the PHT. The
figure also shows that (as one would expect) the tree depth
increases with increasing data set sizes. Although not obvi-
ous from the figure, this increase is logarithmic as well.

Block Utilization: This experiment looks at how full
the leaf nodes are as a percentage of the block size. Figure 7
shows the utilization as a function of block size for varying in-
put data sizes. The plots for input data size of 50k and 100k
show that the block utilization is high for small block sizes.
It drops as the block size is increased, and eventually begins
to grow again once the block size begins to approach the
total input data size. The non-uniformity of the input data
results in a skewed distribution of data across leaf nodes, and
causes the average leaf utilization to be lower than if the data
were uniformly distributed. Even with non-uniform data, at
small block sizes, most blocks fill to capacity and thus the
utilization in those cases is high. At very large block sizes
(comparable to the input data set size), the tree becomes
shallow and the non-uniformity of the data is averaged out,
thus resulting in better block utilization.

5.3 Performance of the PHT
One critical advantage offered by a PHT over simpler data

structures like a traditional pointer-based binary tree is that
because of its structured key-space-based layout, PHT look-
ups can bypass the root and begin looking for data at lower
levels in the tree. This offers PHTs the potential to avoid
having the upper levels of the tree be hotspots that limit
throughput. Figures 8 and 9 show the spread of DHT ac-
cesses across PHT levels for PHT insert (for 500,000 items)
and query operations (for the entire query workload) respec-
tively. These graphs show that the levels of the tree close
to the root are accessed very seldom, with the bulk of the
activity in the depth range of 16 to 30. For sparse regions,
and for queries for large-sized areas, the query starts higher
up in the tree. Yet, the dominant accesses are for leaf nodes
deep within the tree.

The previous charts only show the distribution of DHT
operations across PHT nodes. The critical test of the viabil-
ity of PHTs is the actual latencies required to perform insert
and query operations. The next set of experiments evaluate
this performance.

Insert Operations: For this experiment, we pre-loaded
a PHT with 100,000 elements. We then started an insert
workload composed of 1000 new randomly chosen elements
and measured the performance of the insert operations. Fig-
ure 10 shows a CDF of the insert operations as a function of
insert latency for a PHT block size of 500.

The graph also shows the effect of the lookup cache (Sec-
tion 4.6). After the PHT had been pre-loaded, we started
the client with an empty cache. Gradually as the client in-
serted more and more elements into the PHT, it discovered
the shape of the tree and was able to skip the binary lookups
by hitting directly in the cache.

We notice that the median insert operation takes about
1.45 seconds. When there is a cache miss, inserts take a me-
dian of 3.26 seconds, whereas on a cache hit, the median is
765ms. Part of the performance deficiency is due to a lack
of optimization in the OpenDHT implementation. During
a DHT get() operation, if a key matches a number of val-
ues, the current OpenDHT implementation returns only the
first 1kBytes of those values and requires clients to perform
additional get() operations to retrieve the remaining values.
Hence, fetches of large leaf nodes can result in a cascade of
a number of DHT-level operations. We have communicated
this issue to the OpenDHT developers and a future version
is expected to fix this by allowing bulk gets. With this and
other minor optimizations of the DHT implementation, we
expect the median insertion latency to be reduced by a factor
of two.

Still, the insertion latency is not negligible. To a large
extent, this is a result of our decision to build our range
query data structure entirely on top of a general-purpose
DHT service. A typical insert operation is composed of a
binary search (median of 6 DHT gets in this experiment)
followed by a put(). Some small number of insertions result in
splits and thus have a higher latency. All of these operations
are invoked from outside the DHT service, and hence cannot
take advantage of any specialized routing within the DHT
for efficiency.3

As we can see from the figure, techniques such as aggres-
sive caching can help reduce latency substantially. In prac-
tice, for a workload like Place Lab’s, we anticipate the PHT
structure to stay mostly static and result in modifications

3A direct comparison of PHTs to the performance of a cus-
tomized system such as Mercury [8] would be ideal; unfortu-
nately, the Mercury implementation is not yet available for
distribution.
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Figure 8: A plot of the accesses
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each tree level while inserting items
into the PHT. There are a total of
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block size is 1000.
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Figure 9: A plot of the accesses
(DHT gets) to a PHT at each
tree level for a query workload.
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points and used a block size of
1000.
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Figure 10: A cumulative distri-
bution function (CDF) plot of the
percentage of insert operations as a
function of the insert latency for a
PHT with 100,000 items and block
size of 500.

Data Query
size time (sec)
5K 2.125
10K 2.761
50K 3.183
100K 3.748

Block Query
size time (sec)
10 6.048
50 4.524
500 2.521
1000 3.748

Table 1: Variation in average query processing time
for different input data set sizes (for a block size of
1000) and for varying block sizes (for an input data
set size of 100K).

(and consequently, potential cache invalidations) only when
a new war drive is submitted into the system. Even then,
it is typically expected that most war drives are local to a
neighborhood and hence affect only one portion of the PHT.
Thus with typical Place Lab usage, we expect the lookup
cache to provide significant improvement for insert latencies.

Query Performance: Next, we look at the performance
of the query workload. We pre-loaded the PHT with input
data sets of varying sizes (as well as varying PHT block sizes).
Table 1 shows the average query latencies as functions of the
input data set sizes and block sizes. As one would expect,
with larger data sets, queries take longer to resolve. However,
even a jump of a factor of 20 (from 5K to 100K) in the data
set size causes the query latency to increase only by a factor
of 1.76. This is due to the parallelism and the logarithmic
performance afforded by the PHT.

When we vary the block size, query latencies initially drop,
since larger blocks implies fewer operations and fewer PHT
nodes that need to be touched. However, if we keep increas-
ing the block size, query latency starts to go up again. This
is because at large block sizes, get() operations on PHT leaf
nodes potentially return more items than the query actually
matches. Note that this is a direct result of our decision to
implement PHTs entirely using a third party DHT service.
If we were to run PHT-specific code directly within the DHT
nodes, we could have reduced this overhead by filtering val-
ues based on the query before returning them from the DHT.

Figure 11 shows a scatter plot of the query times for each
of the queries as a function of the query response size in
one run of our experiments (for an input data set of 100,000
elements and block size of 500). The graph shows the total
time for the query as well as the time taken for the first
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Figure 11: A plot of the query response time (total
time and time for first data item) as a function of
response set size for a PHT with 100,000 items and
block size of 500.

item of the results to reach the client. In general, queries
with larger responses take longer. But even those queries
return their first result within a second or so of issuing the
query. For this experiment, the median query response time
was 2.52 seconds while the median time for the first set of
responses 0.8 seconds.

For our query experiments, the lookup cache did not pro-
vide as much benefit as for inserts. This is because we used
the cache only to perform the initial binary search, and query
latencies were dominated by the sub-tree traversal. That
said, it is easy to extend the lookup cache to apply to sub-
tree traversal as well, and thus help in improving the perfor-
mance of queries.

5.4 Effect of Linearization
Our PHT implementation uses z-curve linearization to con-

vert multi-dimensional indexes into a single dimension. As
an exercise, we compared how this linearization technique
compares with two other techniques, Hilbert curves and Gray-
coded curves [18]. The results of these experiments for an
input data set of 100,000 items and block size of 500 are sum-
marized in Table 2. Although Hilbert curves are theoretically
shown to have better clustering properties than z-curves, for
two-dimensional queries the benefits are limited. Moreover,
the advantage of Hilbert curves in producing linearizations
with fewer non-contiguous segments while resolving a query
is not much of an issue for PHTs since the entire query is
processed in parallel starting at the top of a sub-tree of the
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Linearization Avg Block Average # of
depth occupancy gets

per query
Z-curve 18.417 39.526 26.21

Hilbert curve 18.424 39.063 25.76
Gray code 18.42 39.526 26.206

Table 2: Variation in PHT characteristics for differ-
ent linearization types.

PHT (unlike in the case of disk indexes where discontinuity
implies additional disk seeks).

Although we only experimented with PHTs for two di-
mensions, they can be extended to an arbitrary number of
dimensions. For high-dimensional data, more complex lin-
earizations such as the Pyramid-Technique [6] are known to
perform better. With some effort, it should be possible to
adapt this linearization to use in conjunction with PHTs.

5.5 Handling concurrency
As we mentioned in Section 4.5, concurrent PHT opera-

tions can result in sub-optimal performance in the absence of
concurrency primitives in the DHT. In particular, we notice
three behaviors:

• Multiple clients simultaneously split a full leaf node.

• PHT leaf nodes fill up to larger than their block size
(because multiple clients attempt to insert an item into
the node at the same time).

• Insertions are lost when for instance two clients simul-
taneously attempt to fill the last available slot in a
leaf node, one client succeeds, a third client then splits
the leaf node, and while that is in progress the second
client’s insert is lost.

We measured the frequency with which these behaviors
occur with concurrent operations. We ran an experiment
with 25 concurrent clients inserting data into a PHT (start-
ing with an empty PHT). Figure 12 shows a plot of the av-
erage number of duplicate splits that occur at each node
depth within the PHT. We note that contention happens
more often closer to the root of the tree. As the tree grows,
the number of unique leaf nodes increases and consequently,
race conditions for the same leaf decrease. We saw similar
behavior for the other two cases.

We then upgraded our DHT deployment to include sup-
port for the atomic test-and-set operation and re-ran the
above experiments. With this simple addition to the DHT
APIs, the PHT was able to operate correctly and no longer
exhibited any of the behaviors described above. One should
note though that even in the absence of concurrency primi-
tives in the underlying DHT, the above problems either only
cause fleeting inefficiencies in the operation of the PHT or
can be repaired by the refresh mechanisms.

5.6 Dealing with churn
To evaluate the efficacy of the DHT for handling issues

of robustness, availability, and replication, we performed a
set of experiments where we introduced churn in the DHT.
Over one-minute intervals, we randomly killed an existing
DHT node or started a new node. For a DHT service (as
opposed to a client-based P2P system), this is admittedly
a rather high churn rate. We measured the effect of the

churn on a query workload with respect to the percentage
of expected query responses that were lost due to churn.
Our results indicate that there is negligible loss in query
responses. Only 2.5% of the queries reported fewer results
than expected. Amongst these queries, most still reported
over 75% of the expected results. Only in two cases was the
loss greater, and this was because the total expected number
of results was quite small (fewer than 80 items). Moreover,
the data loss was temporary and was recovered as soon as
the DHT replication and recovery algorithms kicked in.

We also measured the latency overhead introduced as a
result of the churn. We define the churn overhead as the
ratio of the query response time with churn versus the re-
sponse time without churn. Figure 13 plots a CDF of the
percentage of queries as a function of the churn overhead. In
spite of the churn in the system, most queries show negligible
overhead, and only a small number of queries are affected sig-
nificantly and take much longer to respond. The overhead is
largely due to momentary increases in DHT routing latency
and replication overhead. Most of the queries that reported
fewer than expected items were exactly the ones that had
amongst the highest overhead. (On the other hand, some
queries performed faster under churn, that is largely an ef-
fect of the vagaries of Internet latencies.)

Finally, the true evaluation of the effect of churn is how
it affects the end-user application. Here, we reproduce data
from an experiment that we published in previous work [9].
This experiment demonstrates the effect of data loss in the
PHT (due to large amounts of churn) on the accuracy of
client device location. We used a Bayesian positioning algo-
rithm (described in [9]) to estimate a user’s position. Even
under catastrophic failure that causes significant loss of Place
Lab’s mapping data, the application is resilient enough to be
able to handle this loss. Figure 14 shows that even with a
drop of availability to as low as 50%, we see negligible ef-
fect on positioning error. Thus, even ignoring the fact that
the DHT hides most of the effects of churn from Place Lab,
when data does get lost Place Lab is capable of absorbing
the effects of that loss with minimal observable effects for
the user.

6. LESSONS LEARNED
Our experience with building Place Lab on top of Open-

DHT demonstrates that it is indeed feasible to build appli-
cations with more complex semantics than simply put/get

entirely on top of a third-party DHT. Below, we summarize
some of the lessons drawn from this experience.

6.1 Simplicity of implementation
The code required to hook Place Lab into the underlying

OpenDHT service including the entire PHT implementation
consists of 2100 lines of Java compared to over 14,000 lines for
OpenDHT. A customized non-layered implementation would
have required Place Lab to implement from scratch all of
the scalable routing, robustness, and management properties
that we got from OpenDHT for free.

A number of features of Place Lab made it well-suited
for this strictly layered implementation. Its data structures
are link-free. This makes each node largely independent of
the others and hence can be easily distributed on top of the
DHT. Similarly, information for each Place Lab beacon is
mostly independent of the other beacons, thus making it easy
to decompose the data across servers. Place Lab’s mapping
data has significant redundancy, allowing it to mask transient
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Figure 12: The average number
of duplicate splits as a function of
node depth for 25 concurrent PHT
writers.
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Figure 13: A CDF of the percent-
age of queries as a function of the
churn overhead. Churn overhead
is defined as the ratio of the query
response time with churn versus
response time without churn.
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Figure 14: Median positioning er-
ror in Place Lab as a function of
availability of beacon data.

failures effectively. Finally, the data structures are capable
of refreshing themselves and recovering from failures. This
makes them well-suited to deployment on an infrastructure
over which the Place Lab developers have no control.

6.2 Ease of deployment
We started this discussion by asking the question of whether

building Place Lab’s mapping service on top of OpenDHT
simplifies its deployment. This question has two facets: long-
term service deployment, and experimental deployment for
performance testing. As a long-term deployment strategy,
our implementation of Place Lab is able to hand off much
of the management overhead of running and maintaining the
distributed system to OpenDHT. Each mapping server in
Place Lab is essentially independent of all other servers. By
outsourcing the OpenDHT deployment to a third-party, a
participant in the Place Lab infrastructure only has worry
about the management of their individual mapping servers
and their connection to the DHT.

On the other hand, while experimenting with the applica-
tion and its performance, we still ended up having to install
our own OpenDHT infrastructure (separate from the existing
deployed version). Since OpenDHT is a shared service, the
maintainers of the service were unwilling to kill machines at
random to allow us to experiment with the effects of churn.
Similarly, as we discuss below, we extended the OpenDHT
APIs, which would have also resulted in a disruption of the
shared OpenDHT deployment if the maintainers were to up-
grade it to support the new APIs. To a large extent, this is
no different from experimenting with, say, Internet protocols
where one cannot expect to tinker directly with the deployed
shared infrastructure.

6.3 Flexibility of APIs
We were able to build Place Lab entirely on top of a narrow

set of application-independent APIs. Our experience demon-
strated that although put/get/remove were the primary inter-
faces that Place Lab relied on, it needed additional auxiliary
APIs to correctly and efficiently support the distributed data
structures for its application.

Typically, DHTs are designed for “best-effort” performance.
They provide no concurrency primitives nor do they provide
any atomicity guarantees for reads and writes. Although
this may be sufficient for simple rendezvous and storage ap-
plications, they make it difficult to build more complex data
structures. This principle of simplicity over strong guaran-

tees is a central tenet of the design of the Internet. Obviously,
it has served the Internet well, but it is less clear whether
it is sufficient for large applications over the Internet. PHTs
overcome this by using TTLs and periodic refresh to recover
from concurrency problems, but even a simple test-and-set
operation (e.g., our put conditional() extension) that provides
more than best-effort guarantees goes a long way to improv-
ing PHT performance.

6.4 Performance
Although the use of DHTs to implement Place Lab’s dis-

tributed infrastructure significantly simplified its implemen-
tation and deployment, this was at the expense of perfor-
mance. Queries take on average 2–4 seconds (depending on
the size of the input data set). In contrast, a single central-
ized implementation would eliminate the many round trips
that account for the performance overhead. Similarly, an
implementation that allowed for modifying the underlying
DHT routing (for example, Mercury) can also provide op-
portunities for optimization. This tradeoff is inherent in any
layered versus monolithic implementation.

Aggressive caching significantly improves Place Lab’s per-
formance. For example, if the PHT data structure is modi-
fied infrequently, we can eliminate many of the round trips
by caching what amounts to a representation of the cur-
rent shape of the tree. Applications that can use such forms
of caching will be well-suited to provide reasonable perfor-
mance. Of course, in the end, whether the performance
tradeoff is worth the ease of implementation and deployment
depends entirely on the requirements of the application and
its users.

7. CONCLUSION
In this paper, we have explored the viability of a DHT

service as a general purpose building block for Place Lab, an
end-user positioning system. In particular, we investigated
the suitability of layering Place Lab entirely on top of a third-
party DHT to minimize its deployment and management
overhead. Place Lab differs from many traditional DHT ap-
plications in that it requires stronger semantics than simply
put/get operations; specifically, it needs two-dimensional ge-
ographic range queries. Hence, we designed and evaluated
Prefix Hash Trees, a multi-dimensional range query data
structure layered on top of the OpenDHT service. PHTs
provide an elegant solution for gathering radio beacon data
by location from across the many Place Lab mapping servers.
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The layered approach to building Place Lab allowed us to
automatically inherit the robustness, availability, and scal-
able routing properties of the DHT. Although we were able
to significantly reduce the implementation overhead by lay-
ering, this simplification was at the price of performance.
Place Lab and PHTs are unable to make use of optimiza-
tions that would have been possible if one were to use a
customized DHT underneath.

This is certainly not the last word on the feasibility of
general-purpose DHTs as a building block for large-scale ap-
plications. However, Place Lab demonstrates that if ease of
deployment is a primary criterion (over maximal efficiency),
the simple DHT APIs (with minor extensions) can provide
the necessary primitives to build richer more complex sys-
tems on top.
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