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Abstract
An overall sensornet architecture would help tame the in-

creasingly complex structure of wireless sensornet soft-

ware and help foster greater interoperability between dif-

ferent codebases. A previous step in this direction is

the Sensornet Protocol (SP), a unifying link-abstraction

layer. This paper takes the natural next step by proposing

a modular network-layer for sensornets that sits atop SP.

This modularity eases implementation of new protocols

by increasing code reuse, and enables co-existing proto-

cols to share and reduce code and resources consumed

at run-time. We demonstrate how current protocols can

be decomposed into this modular structure and show that

the costs, in performance and code footprint, are minimal

relative to their monolithic counterparts.

1 Introduction
The field of wireless sensornets (hereafter, sensornets)

has made great strides over the past few years, produc-

ing better devices, larger deployments, and more func-

tional and stable systems. The different and varied nature

of sensornet applications, coupled with heavy need for

optimization, called for an exploratory phase in which

boundaries between hardware/software, application/OS,

and networking components were flexible and in flux [7].

As a result, there are several vertically integrated designs,

created by separate research groups, which employ quite

different modularities.

Across these designs, there is a general lack of con-

sistency in terms of the functionalities implemented in

modules as well as their interfaces, resulting in unnec-

essary coupling between modules. The creation of new

protocols thus requires more effort to reorganize func-

tionalities or even reimplement them from scratch. 1 In-

consistencies in service interfaces also cause the porting
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of applications onto different protocols to become non-

trivial. Additionally, co-existing protocols with modules

implementing overlapping functionalities unnecessarily

consume more resources in terms of memory and en-

ergy, and can therefore reduce the lifetime of a sensor-

net. Thus, the lack of an overall sensornet architecture

minimizes code reuse, complicates porting, and leads

to increased memory consumption for already resource-

constrained systems.

The first steps towards such an architecture were taken

in [4, 21], which identified the narrow waist of the sen-

sornet architecture as lying between the link and network

layers. In this paper we take the next step in this endeavor

by defining a modular network layer.

Our goals are simple: to increase code reuse and run-

time sharing. Code reuse will foster more rapid proto-

col and application development, as well as greater syn-

ergy between various research groups. Run-time sharing

refers to the sharing of code and resources such as mem-

ory and radio, and will allow several protocols to co-exist

without burdensome memory requirements or contention

problems. Even though most current applications are

simple and require just a single network protocol, future

developments may result in usage of multiple ones in the

same network.

To accomplish these goals, we start by outlining the

services provided by and functionalities implemented in

the network layer. These requirements lead to a com-

ponentized network layer consisting of reusable modules

from which we can easily construct network-layer proto-

cols.

It is challenging to find the right granularity at which

to break up functionality at the network layer; a very

fine-grained decomposition will incur unnecessary run-

time overhead, while too coarse a decomposition will

not leverage all of the possible sharing and may result

in significant reimplementation. In Section 3, we present

why and how we modularize routing protocols to archi-

tect network layer, and we describe the basic modules in
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Section 4.

As we show in Section 5, we have successfully imple-

mented multiple published sensornet routing protocols in

our architecture. The ability to accommodate a wider va-

riety of existing protocols hopefully minimizes changes

with the advent of new ones. We also implemented a

number of previously inexistent variations of these pro-

tocols by replacing specific modules2. Furthermore, the

performance cost of this modularity must be low, other-

wise designers will circumvent the proposed interfaces,

undermining any benefits of the architecture. Thus, in

Section 7 we quantify both the performance costs for our

modular implementations (which are minimal) and the

reductions in protocol-specific code (which are signifi-

cant). We conclude in Section 8 with a discussion of

future challenges for a sensornet architecture.

2 Related Work

This paper builds on two previous pieces of work. The

creation of an overall sensornet architecture was pro-

posed in [4]. Following the example of the Internet ar-

chitecture, where the “narrow waist” allowed rapid in-

novation both above and below IP, the paper starts by

trying to locate the narrow waist of a sensornet architec-

ture. The Internet’s narrow waist, IP, provides the ab-

straction of point-to-point (or point-to-multipoint) best

effort packet delivery. This is not a suitable unifying ab-

straction for sensornets because they have a far wider

variety of packet delivery models — such as converge-

cast (many-to-one), dissemination, data-centric routing,

data-centric storage, and others — some of which em-

ploy application-specific processing at each hop. Fur-

thermore, IP also provides a standard addressing scheme

which is insufficient for sensornets. Given this network-

layer diversity, the natural location for the sensornet nar-

row waist lies lower, between the link and network lay-

ers. This idea was substantiated in the SP proposal [21]

as a unifying link layer abstraction. In this paper we build

upon SP and address the next natural step by proposing

an architecture for the network layer in sensornets.

Our work is also inspired by a number of prior ef-

forts in creating modular systems in different contexts.

The x-Kernel [10] is an operating system and framework

for protocol implementation that combined composabil-

ity with performance. It focuses on high-performance

communication among complete, stand-alone protocols,

whereas we attempt to distill many protocols to their

common elements in order to maximize reuse.

The Click modular router [15], on the other hand,

proposes a flexible composition model for packet-

processing modules that enables fine-grained extensions

to the forwarding path of an IP router. In contrast, we

attempt to modularize entire protocols at a level coarse

enough to reduce the effort required to piece separate

components together, yet fine enough to ensure flexibil-

ity of combinations. We believe that the components pro-

posed in this paper can be constructed from Click-like

elements and are complementary.

Maté [17] is a virtual machine enabling efficient dis-

semination of code in sensornets. Much like Click, it is

concerned with low-level modularity, and does not focus

on the definition and construction of multiple network

protocols. It is a tool for code dissemination, and as such

can be used to distribute network protocols in sensornets.

We believe that Maté is complementary to our work.

The work by Condie et.al. in [3] deals with compos-

able transport layer protocols for DHTs, and employs a

dataflow model akin to Click. The authors observe that

highly-distributed Internet systems exhibit more diverse

traffic patterns, and are more suitable for modular proto-

col designs. We can draw a parallel with the network

layer in sensornets, where one of the motivations for

modularity is diversity. However, they only deal with the

data path, treating routing as a black box. Furthermore,

their primary focus is on ease of experimenting with pro-

tocol variations, and not run-time code reuse and sharing.

MACEDON [22] provides a framework to describe

overlay protocols in the form of finite state machines,

enabling the concise expression of any overlay protocol

resulting in ease of implementation. P2 [19] allows for

declarative specification of new overlay protocols. Both

MACEDON and P2 focus on reducing the effort required

to generate a single overlay network layer, whereas we

also consider co-existing ones.

Finally, Aspect-Oriented Programming (AOP) [13] is

a programming technique that allows for isolation, com-

position and reuse of code that cross-cut different objects

or modules. In this paper we focus on network layer

properties that can be cleanly separated and encapsulated

into distinct components, leaving those that affect multi-

ple components in systemic ways to future work.

3 Modular Network Layer
In this section, we present our modular network layer that

aims to achieve the two goals set forth in Section 1: (1)

code reuse, and (2) run-time sharing. Achieving these

goals fundamentally requires one to decompose the net-

work layer into smaller components that can be re-used

by various protocols.

To motivate and provide intuition behind our decom-

position, consider the five network protocols shown in

Figure 1(a). While these network protocols expose dif-

ferent service interfaces and come with their own im-

plementation, a more careful inspection reveals multi-

ple commonalities among them (Figure 1b). Identifying

and encapsulating common functionalities would make
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Figure 1: Basic decomposition of five protocols. (a) Current situation: all functions are protocol-specific. (b) Common
functions can be shared, reducing the total number of components in the system.

it both easier to build new protocols and enable multiple

protocols to share components during run-time.

In the following subsections, we address three ques-

tions that are central to defining a network layer:

• What are the services provided by the network

layer? (§3.1)

• What are the components of the layer, and what

functionality does each component implement?

(§3.2)

• How do the components interact with each other,

and what is the packet format? (§3.3 and §3.4)

3.1 The Network Layer Service

Similar to IP, the network layer in sensornets provides a

best-effort, connectionless multihop communication ab-

straction to higher layers. However, unlike IP, the net-

work layer in sensornets exposes different addressing

and naming schemes, which are required to implement

various communication abstractions. Figure 2 summa-

rizes the services provided and functionalities imple-

mented by the network layer.

To provide these services, the network layer needs to

implement a variety of functions. These functions can

be classified into two categories: control plane and data

plane. Control plane functions include identifying and

addressing nodes, as well as route discovery and mainte-

nance. Data plane functions include packet forwarding,

queue management, and packet scheduling.

In our design we assume that the network layer sits

above the sensornet protocol (SP), the narrow waist of

the sensornet protocol stack as proposed by Polastre et

N
et

w
or

k
La

ye
r

S
P

Services Functions

FunctionsServices

� Multihop communication
� Connectionless
� Best effort

� Multiple addressing formats
� Packet interception

� Data plane
� Packet forwarding
� Queuing
� Scheduling
� Fragmentation

� Control plane
� Naming, addressing
� Route discovery, 

maintenance

� Single-hop communication
� Connectionless
� Best effort

� Link-level addressing
� MAC-independent

� Neighbor-table management
� Link estimation

(Beyond our scope,
refer to SP paper [21])

Figure 2: Services provided by, and functionalities imple-
mented in, the network layer, as well as services provided
by SP.

al. [21]. The lower part of Figure 2 summarizes the ser-

vices SP provides to the network layer.

3.2 Network Layer Components

A key question in defining the network layer decompo-

sition is the granularity we should achieve. We strove

for one coarse enough so that closely related functions

were grouped together (such as topology creation and

maintenance), while still providing the flexibility to max-

imize code-reuse when implementing protocols. We be-

gan with a coarse-grained decomposition, and progres-

sively split these components up in order to reach this

desired granularity. Further, we attempted to create nar-

row and well-defined interfaces in order to avoid depen-

dencies, allow for interchangeability of components and

minimize composability constraints for new protocols.

At the first level, we follow the natural decomposition

of the network layer into separate control and data plane

components. Not surprisingly, this is similar to the way
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Figure 3: The network layer decomposition, with the flow
of packets and control information among the compo-
nents.

the software is structured in today’s IP routers. However,

this is too coarse-grained, as it enables little code reuse.

Of the two components, the control plane is typically

far more complex than the data plane, as it needs to im-

plement non-trivial functionalities such as topology dis-

covery and routing. To facilitate further reuse, we split

the control plane into two components: routing engine
(RE), and routing toplogy (RT). RT is responsible for

discovering and maintaining the network topologies, ex-

amples of which include trees, multi-trees, and meshes.

Once the topology is created, RE computes and main-

tains routes over the topology. This decomposition al-

lows one to reuse various routing protocols with different

topologies. For instance, the data-centric routing proto-

col PathDCS [6] and the point-to-point protocol Beacon

Vector Routing (BVR) [8] both use a multi-tree topology,

which can therefore be reused.

While the data plane is in general simple (compared to

the control plane), our second goal of achieving run-time

sharing induces a natural decomposition of the data plane

as well. Upon the arrival of a packet, the data plane needs

to obtain the next hop(s) to forward the packet from the

control plane (i.e., RE in our case). If multiple packets

need to be forwarded at the same time, the packets have

to be enqueued and scheduled appropriately. This sug-

gests a decomposition of the data plane into two com-

ponents: forwarding engine (FE) that obtains the next

hop(s), and output queue (OQ), which implements buffer

management and packet scheduling across different pro-

tocols.

Figure 3 shows our decomposition and the the inter-

action between components. We discuss the services

and functionalities implemented by each of these compo-

nents below, and provide examples in the next section3.

Output Queue (OQ) The OQ module performs buffer

management and packet scheduling across all packets

forwarded by the node. Different queuing disciplines,

as well as network-level transmission scheduling, can be

implemented in the OQ. For co-existing protocols to use

the communication resource fairly (as defined by the im-

plemented policy), only one OQ module can be in use at

any one time. This is in contrast to the FE, RE, and RT

modules, multiple instances of which can operate simul-

taneously on the same node.

Forwarding Engine (FE) The main function of the

FE is to obtain the next hop to which the packet is to be

forwarded. In the case of multicast communication, mul-

tiple next hops will need to be obtained. This is achieved

by having the FE query the corresponding RE based on

the protocol used. Subsequently, the packet is sent to the

OQ to be forwarded. The FE is agnostic to naming and

addressing, to maximize module replaceability.
Other functions of an FE include local delivery when

the RE determines that the local node is the destina-

tion, hooks for interception of packets for purposes of in-

network aggregation, network level retransmission, and

multicast. Finally, the FE may opt to perform buffer

management and packet scheduling across packets be-

longing to the same network protocol. In contrast, the

OQ operates on all packets traversing that node.

Routing Engine (RE) The RE provides naming and

addressing services to the higher layers, and is the only

component in the system that understands the protocol’s

address format. Functions implemented in the RE in-

clude (1) determining whether a packet should be for-

warded, has reached its destination and thus be accepted,

or dropped, (2) if the packet is to be forwarded, the next

hop(s) given its destination. The RE implements the

logic for determining routes given a destination, using

information about an abstract representation of the net-

work topology given by an RT module.

Routing Topology (RT) RT modules are responsible

for creating and maintaining basic communication ab-

stractions, with related routing information used by REs

either to determine next hops or to construct more com-

plex protocols. The RT is the module that will exchange

control traffic with RTs in other nodes, for determin-

ing and maintaining the network topology. Examples of

communication topologies are trees, geographic coordi-

nates, or any node labeling allowing routes to be found.
We make the distinction between the RE and RT

clearer with an example. One common communication

topology is a tree, used for sending data to a basestation.

There are several ways to build a tree: they can vary in

characteristics with respect to stability, convergence, bal-

ance, or whether the tree is periodically maintained or is

a one time construction. These would correspond to dif-

ferent RTs providing the same abstraction. An RE, on

the other hand, performs the actual lookup process to de-
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termine the next hop(s) to a destination, and is coupled

to a topology class and not a particular RT.

3.3 Interfaces

We now provide high level descriptions of the network

layer service interface as well as interfaces between the

four major components.

Modules in the data path, namely FE and OQ, pass

complete packets around and thus their corresponding

interfaces are narrow. On the other hand, the FE/RE in-

terface consists of two basic calls: one to obtain the next

hop(s) for the packet given its destination, and the other

to obtain the cost-to-destination from the current node4.

The RE interacts with the RT to obtain the necessary

information for determining routes. In defining the di-

vision between the RE and RT, the diversity in routing

algorithms and communication abstractions in sensor-

nets becomes apparent. Creating a unified interface be-

tween the two components would have increased code

size, added complexity, and enabled untested and poten-

tially unstable combinations of RTs and REs. Conse-

quently, this interface will be somewhat more protocol

specific, in the sense that each class of communication

topologies will export a standard interface. On the other

hand, a programmer can independently decide to split the

RT component by adding a shim layer that would export

a standard interface to the RE if he wants.

Finally, the components layered above interact with

the network layer by specifying a protocol, an address,

and providing a data packet to be sent. This service

interface exposes the protocol-specific network address,

which is subsequently interpreted by the RE.

3.4 Packet Header Format

Network protocols rely on node coordination to imple-

ment their services. This coordination requires inter-

action between similar components at different nodes,

and is typically enabled using information carried in the

packet headers. Thus, the packet header format ulti-

mately dictates how components at different nodes in-

teract with each other.

The main issue we are faced with when designing the

format of the packet header is the portion of the header

each component can access. Our decision is to associate

a sub-header with each component involved in forward-

ing the packet, and allow a component to access only its

own header with the rest being opaque. This way, we

avoid unnecessary bindings, and make it easier to inter-

change different components. For example, the destina-

tion address is only understood by RE. This allows the

same routing engine (for example, one that routes based

on geographic coordinates), to be combined with differ-

ent forwarding engines, such as opportunistic [1]. Ex-

cept for the network protocol identifier, sub-headers may

be absent depending on the corresponding components.

Figure 4 shows our packet header format. Since mul-

tiple network protocols can exist in a sensornet, we use a

protocol identifier to select the appropriate components.

This identifier is the only required field in the packet

header. The rest of the header consists of three sub-

headers, one for each component (OQ, FE and RE) in-

volved in packet forwarding. The size and the format of

each of these headers is component-specific, and we give

a brief description of each below.

1. The OQ header contains scheduling and buffer man-

agement information (e.g., packet priority) and is

interpreted by the OQ module.

2. The FE header contains information required to for-

ward the packet (e.g., hopcount or a unique message

identifier for suppressing packet duplicates).

3. The RE header holds information required to deter-

mine the next hop.

4 Module Examples
In order to demonstrate the feasibility of the modular net-

work layer, we describe examples of individual compo-

nents in this section, and show in the next section how

they can be composed to implement several of currently

available network protocols.

4.1 Output Queue Modules

An Output Queue (OQ) module is the one place in

the system which all outgoing packets must traverse,

a necessary condition to implement packet scheduling

for all network protocols. Thus, while multiple types

of OQs exist, only one can be in use in a node at any

time. A basic module may implement simple priority

scheduling, whereby control packets are given higher

priority when queue drops occur and when selecting the

next packet to send. More complex scheduling can be

implemented to improve end-to-end fairness, as well as

to reduce physical-layer contention5 amongst neighbor-

ing nodes. Finally, scheduling of packet transmission

can be influenced by the routing topology, useful in

the case of in-network aggregation. We begin with the

description of a basic, simple priority scheduler.

The Basic OQ provides simple priority scheduling

and queue management functionality. Given a packet of

high priority, the basic module transmits it before one of
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lower priority. The determination of a packet’s priority

is dependent on the network protocol. For instance,

some protocols may require their control packets to be

sent as soon as possible and preferably not dropped

when the queue is full, and may set these as high priority.

Flexible Power Scheduling (FPS) [9] is a network-

level, time-division multiple access (TDMA) algorithm

that aims to provide high utilization and fairness on a

per-destination basis. FPS divides time into cycles, with

a fixed number of slots in each cycle. In each cycle,

FPS allocates slots on a per-destination basis. At the

next-level, slots allocated for a particular destination D
at node N are divided among the neighbors that forward

packets to D through N . This allocation is based on

the neighbors’ queue occupancies: FPS allocates more

slots to the neighbor with more packets destined to it.

This policy aims to balance supply and demand at each

neighbor, and at the same time achieve high utilization.

Note that since FPS requires knowledge of the flow

to which a packet belongs, interaction with the RE is

necessary: classification of the packet is based on the

destination address, the format of which is known only

to the RE.

Epoch-based Proportional Selection (EPS) [5] is

another example of an OQ. Unlike FPS which uses a

static total number of slots per cycle, EPS dynamically

adjusts this based on the current demand. EPS enforces

fairness using non-work-conserving, weighted round-

robin servicing of children’s queues, using the number

of upstream nodes of each child as the weights. This

number is carried within each data packet transmitted in

the OQ header. Similar to FPS, EPS requires classifica-

tion of packets based on their network destination, thus

interaction with the RE is necessary as well.

Finally, unlike the FPS and EPS components, the

Epoch module’s transmission schedule is determined

by external components such as the routing topology.

Using this knowledge, the Epoch module allows nodes

further away from the destination to transmit before the

rest, enabling aggregation of data at each intermediate

hop towards the collection node. This reduces the

total number of packets transmitted and thus energy

consumed.

4.2 Forwarding Engines

Forwarding Engines (FEs) are components that are more

protocol-specific in the data-plane, determining how

and when packets are to be forwarded. Opportunistic

forwarding and multicast are examples of FEs. We begin

by describing a basic forwarding engine.

The Basic FE obtains per-packet next-hop informa-

tion from the corresponding RE and checks for packet

interception requests from higher layers. Additional

functions include detection of routing loops and sup-

pression of duplicate packets.

The Opportunistic Forwarding engine implements per-

packet suppression functionality similar to ExOR’s [1].

Packets eligible for forwarding include those received

from neighbors further away from the destination. These

packets are held onto for a pre-determined period of

time; if no similar packets from nodes equally far or

closer to the destination are received within this time, the

packet is sent, otherwise its transmission is suppressed.
Note that the precise next-hop neighbor need not be

identified. Instead, we require knowledge of the cost to

destination, which can be provided by certain REs.

Multicast FEs forward multiple copies of the same

packet to different next-hop nodes. These FEs only

provide the functionality, they do not decide whether a

packet should be multicast. This decision is made by

the RE during packet lookups, when the RE implicitly

indicates that multicast should take place by returning

the list of all next-hops.

4.3 Routing Engines

A Routing Engine (RE) can build upon basic commu-

nication abstractions provided by Routing Topologies

(RTs) to construct more complex ones. MintRoute,

PathDCS and Beacon Vector Routing (BVR) are exam-

ples of such REs. On the other hand, simpler ones such

as Broadcast can operate independent of RTs.

The Broadcast RE handles all packets that are log-

ically broadcast to all one-hop neighbors. Thus, this

simple RE does not provide any specific next-hop to

which a packet should be forwarded, neither does it

provide a cost-to-destination metric. It is a basic RE that

can be used by all protocols, either at the transport or

network layer, that require logical one-hop broadcasts.
The rest of the protocols, PathDCS, MintRoute and

BVR, will be discussed in greater detail in Section 5.

Briefly, PathDCS [6] provides data-centric routing capa-

bilities using routing trees rooted at random nodes (bea-

cons). Each piece of data is mapped onto a network path

using the beacons as guides, and the destination node for

that data is the terminating node of the path. BVR [8]

on the other hand uses the same many-to-one routing ab-

straction to construct a logical coordinate system based

on hop distances from the roots of these beacons. For

simpler protocols such as MintRoute [24], the RE can be

very light-weight since there is little additional function-
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ality to be implemented. We note that in general REs are

more specific to the network protocol than FEs or RTs.

4.4 Routing Topology

Communication abstractions can be composed from a

few basic Routing Topologies (RTs), which REs can use

to construct more complex ones. Interfaces provided

by RTs can vary significantly with the abstractions

provided. Examples of RTs include MTree, Gradient

and Geographic, which we describe below.

The MTree RT provides many-to-one routing ab-

straction using trees. The primary metric used in tree

construction is the minimization of expected packet

transmissions to the root. Periodic control information

exchanged between neighbors determine the bidirec-

tional, one-hop as well as end-to-end path quality.

MTree constructs M routing trees rooted at random

nodes in the network, except for the first which is at the

base, or collection, station. Thus, this module can be

also used for basic route-to-base applications.

Since MTree maintains routing information in the

form of routing tables, it can provide hop-distances to

each root. This information can be used by BVR to

construct a logical coordinate system on which point-

to-point routing can be implemented, by a basic FE to

detect loops, or by PathDCS to determine the maximum

number of hops to take towards a certain beacon (root).

Next-hop information can be used by FPS to determine

the parent from which supply slots can be requested.

The Gradient topology is similar to MTree in that

each node maintains its cost-to-destination. However,

this module does not specifically determine the next-hop

to which a packet should be forwarded. Such a topology

is simple to construct and maintain, and is useful for

purposes of scheduling and opportunistic forwarding.

The Epoch module, focusing on scheduling, is advanta-

geous for in-network aggregation of data as mentioned

earlier. Opportunistic Forwarding, which requires just

the cost-to-destination and not the specific next-hop, can

use the function provided by Gradient as well.

Finally, the Geographic RT provides geographic

coordinates via, for example, the Global Positioning

System. This module can be used by multiple other

components: by a GPSR-like RE to provide point-

to-point routing, or by the application to determine,

say, the location of a fire. The Geographic RT can be

augmented with more functions. For instance, it can

periodically probe neighboring nodes to obtain their

coordinates, enabling it to provide information such as

the closest next-hop node towards a given destination.

getNextHops
MTreeMintRoute

Routing Topology

Basic

Routing Engine

(b)

(a)

payload

Routing HeaderForwarding Header

msg_uid root_idother headers

Forwarding Engine

Figure 5: (a) Main modules in the implementation of
MintRoute. (b) Packet header contents.

Also, Euclidean distance to destination can be provided

as the cost metric.

5 Composition of Protocols
We now describe how various existing protocols can be

composed from the modules providing services and im-

plementing functions required of the network layer. Ta-

ble 1 provides a summary of several protocols and their

corresponding components. Since there are modules

that, by their very nature, cannot interoperate efficiently

or at all due to their inability to provide required func-

tions, there exist constraints that restrict possible module

combinations. We elaborate on this at the end of this sec-

tion.

5.1 Collection

MintRoute [24] is a collection protocol that routes pack-

ets towards the root of a tree, and is the basis for many

data gathering applications. A message is recursively

forwarded to the current node’s parent until the root

is reached. Figure 5 shows the main components that

make up MintRoute. We use Basic FE that provides

routing loop detection ability, MTree as the RT, and a

MintRoute-specific RE.

Although multiple routing trees are provided by

MTree, MintRoute uses that rooted at the collection

point. Similar to the monolithic version of MintRoute,

the destination address is therefore implicit and need not

be included in the RE header. To remove duplicate pack-

ets due to retransmissions, the FE uses unique identifiers

placed in the FE header. Finally, the OQ provides sim-

ple priority scheduling, and can give higher priority for

control traffic from MTree than for data traffic.

A variant of collection protocols involves in-network

aggregation of data. Synopsis Diffusion (SD) [20] is one

such protocol, providing duplicate-insensitive aggrega-

tion in sensor networks. A gradient is set up originat-

ing from the destination node, with nodes further away

sending packets earlier so that those closer can aggre-

gate before they forward. This reduces the total number
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Table 1: Decomposition of current and composition of new network protocols. Implemented mod-

ules in italics.
Network Protocol Output Queue Forwarding Routing Topology

Existing Protocols
MintRoute FPS/Epoch/Basic Basic - MTree
GPSR Basic Basic GPSR Geographic Coords +

GG/RNG Planarization

CLDP Basic Basic GPSR Geographic Coords +

CLDP Planarization

PathDCS Basic Basic PathDCS MTree
BVR Basic Basic/Re-xmit6 BVR RE MTree
Synopsis Diffusion7 Epoch Basic - Gradient
Directed Diffusion Basic Multicast Directed Diffusion -

AODV Basic Basic On-demand point-to-point -

GRAd Basic Opportunistic On-demand point-to-point -

ExOR Basic Opportunistic8 OSPF -

Trickle9 Basic Basic Broadcast -

New, Hybrid Protocols
Opp. MintRoute FPS/Epoch/Basic Opportunistic - MTree/Gradient
Alternate Paths Epoch/Basic Basic/Re-xmit - MTree
Scoped Trickle Basic Basic Scoped Broadcast -

of transmissions by each node. The natural RT to use is

thus Gradient, and the scheduling mechanism can be pro-

vided by the Epoch OQ with information from Gradient.

At intermediate hops, data packets have to be intercepted

by the FE and sent up the stack for aggregation. There-

after, the packet is scheduled for transmission in the OQ

module.

5.2 Point-to-Point

We next describe two classes of point-to-point network

protocols in sensornets, based on either logical or ac-

tual geographic coordinates. We begin with the latter.

There is a large number of variations on Geographic

Routing [2, 12, 16, 14], and we present the basic idea

here. Each node maintains knowledge of its coordinates

as well as those of its neighbors’. Next-hop(s) to which

a packet is forwarded is(are) determined using the desti-

nation’s coordinates carried within the RE header.

Two routing phases exist, greedy and face routing. In
greedy routing, nodes forward the packet to the neighbor

closest to the destination. If the current node is clos-

est compared to all its neighbors, the forwarding node

switches to the next phase: face routing. Packets are

then forwarded along the face edges of an underlying

planar graph, changing faces when appropriate and ap-

plying rules that guarantee progress towards the destina-

tion. In this phase, additional state has to be carried in the

packet10: the current phase, the node’s coordinates when

face routing begun (Lp), as well as the coordinates (Lf )

and the edge (e0) where the packet entered the current

face. At each step the node checks if greedy can resume

and does so if possible.

Figure 6 shows the modules implementing geographic

getNextHops

dest coords
(x,y)

Planar Graph
CLDP, GG or

RNG

Geographic
CoordsGreedy +

Face Routing
GPSR or
GOAFR

Routing Topology

Basic

Routing Engine

phase
(G or F) payload

Routing Header

(b)

(a)

Lp Lf e0

Forwarding Header

msg_uid

Forwarding Engine

other headers

Figure 6: (a) Main modules in the implementation of Ge-
ographic Forwarding. Notice that there can be many
variations (GPSR, CLDP, GOAFR, GOAFR+CLDP),
with reuse of many modules. (b) Packet header contents.
The routing header includes state for face routing.

routing and the contents of their corresponding head-

ers. The routing topology components provide two ab-

stractions: (1) Geographic Coordinates, which maintains

and provides the coordinates of the current node and

its neighbors, and (2) Planar Graph, which provides a

planarized version of the underlying connectivity graph.

The Planar Graph functionality can, for instance, be pro-

vided by CLDP, Gabriel Graph, or Relative Neighbor-

hood Graph. The RE is responsible for determining the

next-hop to the destination, and maintains state in the RE

header. By replacing the face routing rule, the RE can

implement GPSR or GOAFR routing, reusing the RT.

In contrast with Geographic Routing, Beacon Vector

Routing [8] (BVR) uses a topology-based logical coor-

dinate system to find routes. A subset of the nodes is

chosen as beacons, and all nodes in the network learn
their distances in hops to each of these beacons. Rout-

ing is performed in a greedy fashion by minimizing a
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distance function on the coordinates. Next-hop informa-

tion can be determined using the destination’s, current

node’s and neighbors’ coordinates. BVR’s RE consists

of a simple module that derives coordinates from MTree

and computes the distance function between two coor-

dinates. Routing is performed in three phases. First,

greedy routing is attempted. If that fails, packets are

routed towards the root closest to the destination. Upon

reaching that root, scoping flooding is performed. The

routing header consists of the destination’s coordinates

and identifier, the minimum cost the packet has seen so

far, the current routing phase, and the time-to-live for

scoped flooding. The FE used by the original BVR tries

to send messages to alternate next-hops upon transmis-

sion failure. The BVR RE can also be paired with other

forwarding disciplines, such as opportunistic, since the

cost-to-destination can be obtained from the virtual co-

ordinates created.

5.3 Data-Centric

PathDCS [6] is an example of a data-centric routing pro-

tocol. Rather than map data onto specific locations in a

geographic or logical coordinate system, PathDCS maps

it onto a path through the network. This path is divided

into parts, or segments, which is in turn defined by a cer-

tain number of hops to take towards a particular network

beacon. The storage location for the data is then the ter-

minating point of the concatenated segments. Mapping

data storage location onto terminating nodes of existing

paths ensures that a node always exists at that location.

This eliminates the need to know the network bound-

aries, a requirement necessary for coordinate-based sys-

tems.
The PathDCS network protocol can be decomposed

into a protocol-specific RE that runs atop the MTree

topology. Its RE header contains the data key, the current

segment being traversed, and the current number of hops

to traverse towards the next beacon. PathDCS can use

other kinds of FEs, such as Opportunistic, and is com-

patible with OQ modules providing scheduling function-

alities.
Directed Diffusion (DD) [11] is another example of

a data-centric routing protocol. DD names data using

attribute-value pairs, and interests for data are dissemi-

nated through the network. The dissemination process

sets up gradients allowing nodes with the relevant data

to forward them to the querying nodes. In Directed Dif-

fusion, multiple overlapping interests can be aggregated,

enabling data to be sent once from the source to the ag-

gregation point before being duplicated for forwarding

towards each interest source. Thus, DD is primarily com-

posed of an RE that sets up gradients from each interest

source, as well as a multicast FE. In this case, no routing

topology module is required.

5.4 Dissemination

Trickle [18] is a code dissemination and maintenance

protocol. Since the objective of Trickle is to have all

nodes in the network run the same code, it can be con-

sidered a transport layer protocol that implements one-

to-all reliable transfer of data. To support Trickle, the

network layer provides a simple one-hop broadcast RE.

A received, logically broadcast packet is passed to the

Trickle transport layer. Trickle subsequently uses de-

layed transmission and suppression to control the rate

at which messages are broadcast in the network. Al-

though functionally similar to opportunistic forwarding,

Trickle’s suppression mechanism requires transport layer

knowledge, and therefore is not placed in the FE.

5.5 New, Hybrid Protocols

The network layer modularity simplifies the creation of

new protocols by swapping one component for another,

or making slight modifications (Table 1). For instance,

in the case of the collection protocol MintRoute, we can

route to any of the roots provided by MTree by including

the destination root address in RE’s header (Figure 5b).

Network-level retransmissions can also be added by

having the RE return all next-hops closer to the destina-

tion. An FE providing the retransmission function can

attempt to resend packets to alternate next-hops. Such

an RE can also be used by an FE that probabilistically

selects a next hop to balance forwarding load. Lastly,

replacement of the basic FE with the Opportunistic FE

yields opportunistic collection routing.

A different kind of collection protocol can be imple-

mented using the Gradient RT and the Opportunistic FE.

The former readily provides knowledge of the current

node’s distance to destination, required by the latter. One

can imagine various performance benefits to be gained

from such a pairing, but the evaluation is beyond the

scope of this paper.

5.6 Composability Constraints

We end this section by looking at the constraints encoun-

tered when attempting to combine different routing, for-

warding, and output queue modules. In the following

discussion we use the term routing to mean the com-

bination of RE and RT. Table 2 lists the combinations

that are feasible and those that aren’t. We see that the

basic OQ works with all protocols, as does the basic

FE. Network-level retransmission is a functionality em-

bedded in the FE, but is effective only if routing pro-

vides multiple distinct next-hops. From column Re-Xmit,
this is not the case for Table Driven and Broadcast rout-

ing. Opportunistic forwarding, in turn, requires a glob-

ally meaningful cost-to-destination metric. PathDCS,

MintRoute, Gradient, Geographic, and BVR routing pro-
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Table 2: Constraints on the composition of routing engine/topologies with forwarding engines and

output queuing. The composition may be good(
√

), not optimal (*), or not possible (-).

Forwarding Engine Output Queuing

Routing Basic11 Re-xmit12 Opport.13 Multicast Basic14 Epoch FPS

MintRoute
√ √ √

-
√ √ √

Gradient
√ √ √

-
√ √ √

Table Driven
√

- - -
√

* *

PathDCS
√ √

* -
√ √ √

BVR
√ √ √

15 -
√

* *

Geographic
√ √ √

-
√

* *

Broadcast
√

- - -
√

* *

Directed Diffusion - - -
√ √

* *

vide such a cost field for each destination, although for

the last two there are local minima, and routing solely

based on these may not lead to the destination. Finally,

while both Epoch and FPS are currently designed for col-

lection routing, and thus will work optimally only with

MintRoute and Gradient routing, they can be extended

for the case of multiple destinations.

6 Completing The Picture

The previous sections discussed details of the major parts

of the network layer, but at the high level. In this section

we discuss the rest of the components and bring every-

thing together by providing a short description of the ac-

tual packet forwarding process.

6.1 Miscellaneous Components

Four additional components, the Protocol Service, Net-

work Service Manager, Buffer Manager, and the Dis-

patcher, are minor components but are still essential to

the network layer. We describe them below.

Protocol Service As described in Section 3, we de-

composed each network protocol into a Forwarding En-

gine, Routing Engine, and possibly a Routing Topology.

To simplify the usage of these components, we wrap

them in a Protocol Service module, an instance of which

exists for each different network protocol. This mod-

ule provides a unified service interface to higher-layer

programmers and specifies the necessary connections be-

tween the wrapped components.

Network Service Manager The Network Service

Manager aggregates and maintains information related

to service requests originating from higher-layer compo-

nents. For instance, applications can register with the ser-

vice manager hooks to intercept certain protocols’ pack-

ets. The service manager is then queried by the for-

warding engines to determine if interception is necessary.

Since there may be multiple applications requiring such

services, and since these functionalities are required of

all protocols, we gather them into a single module.

Buffer Manager The traditional way of managing

buffers, that is, RAM space required to hold packets re-

ceived or due for transmission, is to have each compo-

nent statically allocate space at compile time. Sharing

of buffers between different components is not possible,

thus in general the system is less able to accommodate

bursts of buffer requests and usage of available buffers

are less efficient. The Buffer Manager tackles this issue

by aggregating available buffers from all components at

node initialization time, and provides them on request

based on some user-defined policies. Since this module

works across layers, it is not part of the network layer,

but instead simply provides buffer aggregation services.

Thus, in-depth design and evaluation of this module is

beyond the scope of this paper.

Dispatcher The dispatching module maintains a pro-

tocol table with an entry for each network protocol run-

ning on the node. Upon receiving a packet, the packet’s

protocol identifier is used to determine the correspond-

ing forwarding engine which the packet should be sent.

This protocol table will generally be configured at com-

pile time and be uniform across a sensor network.

6.2 Packet Forwarding Procedure

To show how various parts of the system fit, we next de-

scribe the forwarding process undertaken upon reception

of a packet using Figure 7.

1. Messages first arrive at the dispatcher either locally

or from the network. The dispatcher determines

the protocol identifier, either from the higher-layer

component if local, or otherwise from the message

itself.

2. The message is subsequently sent to the correspond-

ing FE based on the identifier.
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Figure 7: Data path in the network layer.

3. The FE checks whether an application has regis-

tered to intercept messages of this protocol, if so

the message is handed to the application, otherwise

4. the RE is queried to determine the specific next

hop(s) for the message, or provide some cost value

to determine if the current node is closer to the mes-

sage destination. Since the RE is the only compo-

nent that understands the address format, it can at-

tach the identifier of the flow to which the message

belongs for purposes of scheduling later in the OQ.

5. FE then sends the message to the OQ specifying

whether it should be forwarded or sent to a higher-

layer component.

6. At the OQ, if the message is determined by the RE

to be destined for this node, or by the Network Ser-

vice Manager to be intercepted, it is sent up the

stack, otherwise

7. the message is to be forwarded, and is scheduled for

transmission based on the implemented policy.

7 Evaluation
In this section we evaluate a subset of the protocols im-

plemented with the proposed network layer. We revisit

our goals of code reuse and run-time sharing of compo-

nents by multiple protocols, with a minimal penality at

storage and performance, and show that they are largely

achieved.

7.1 Methodology

Our two basic metrics in the evaluation are code size and

memory footprint on the one hand, and forwarding delay

on the other. We require only the addition of one byte

for the protocol identifier and not the transmission of ad-

ditional packets. This, coupled with the fact that energy

consumption is dominated by communication rather than

computation in today’s sensornets, lead us to believe that

this consumption should not increase significantly and

thus we do not include it as a metric.

To quantify real benefits and costs, we compare the

implementations of just three protocols (due to space

constraints), PathDCS, BVR, MintRoute. These im-

plementations include the original, monolithic version

(Original), implementation over SP without the network

layer modularization (SP),20 and our modularized ver-

sion running on the network layer, on top of SP (NLA &

SP). All evaluations are performed on TelosB motes [25].

To measure the forwarding cost, defined to be the de-

lay encountered by a packet when it first enters the net-

work layer until it is sent to the link layer for transmis-

sion, we instrumented the code to read a hardware clock

with the granularity of microseconds, properly account-

ing for the (small) measurement overhead.

7.2 Code size and memory footprint

One of the main objectives of creating a modular net-

work layer for sensor networks is to increase code reuse,

thereby allowing for multiple protocols to coexist cleanly

and efficiently on a single node and simplifying future

network protocol design. There is some overhead, how-

ever, to allow demultiplexing and configuration among

different modules, when compared to the monolithic im-

plementations. Table 3 compares code and memory

sizes between the different implementations. Code size

refers to the amount of program memory occupied by

the networking code, while memory footprint refers to

the amount of RAM allocated. The former is important

since it is desirable that non-application code not con-

sume significant amounts of limited memory. Volatile

memory, however, is more crucial, since there is a direct

relationship between RAM and energy consumption.

Three observations can be made from Table 3:

1. When we combine different protocols we observe

clear gains: the two combinations use up 40% and

58% less memory, and occupy 18% and 37% less

program memory. Of course, the gains are limited

by the extent to which protocols share underlying

primitives, but we note that our network layer real-

izes these gains, and that we have seen considerable

potential sharing among existing and new protocols

(c.f. Table 1).

2. For the individual protocols (upper section), code

size and memory size are comparable. As we will

show next, much of the difference in code size re-

sulted from additional functionalities. The memory

consumption numbers are similar, which is good

from an energy-conservation perspective.

3. The last observation relates to code reuse at devel-

opment time. We have decomposed network proto-

cols such that protocol-specific code is limited to a
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Table 3: Code and Memory Size Comparison of Architectures
Network Protocol16 Code Size17 Memory Footprint18

Mono SP NLA & SP Mono SP NLA & SP

MintRoute 2562 2356 6140(92) 1400 1273 1862

PathDCS 6786 4968 6450(988) 1764 1981 1766

BVR 642219 - 9060(1512) 1411 - 1889

Synopsis Diffusion - - 3686 - - 872

Protocol Coexistence
MintRoute + PathDCS 9348 - 7684 3164 - 1894

MintRoute + PathDCS + BVR 16430 - 10354 4575 - 1917

single component in most cases, typically the rout-

ing engine. The numbers in parenthesis in Table 3

show the code sizes that are protocol-specific and

not likely to be reusable. Protocol-specific code is

substantially less in our implementation21. For the

Original and SP versions, these numbers are essen-

tially the same: most of the code is not reusable as a

result of tight integration, or unusability of modules

by other designers due to the lack of common in-

terfaces or unclear division of functionalities imple-

mented in modules. In the case of the SP implemen-

tations, neighbor-table management, and link esti-

mation are moved into SP itself, but the remaining

network layer code is again protocol-specific, hin-

dering substantial code reuse.

We now return to the increase in code size observed

for BVR andMintRoute, by examining, with reference to

Table 4, how the Original and NLA implementations of

BVR are decomposed. The decomposition of MintRoute

presents similar trends and is omitted for brevity. The

modules are grouped by approximate functionality. It

is comforting that the code implementing primary BVR

functions (Core Protocol Code) are similar in size. The

communication stack on which each implementation sits

has a queue and a link estimator in the original ver-

sion. In addition, SP provides neighbor-table manage-

ment, simple one-hop scheduling, and duty cycling22 of

the radio. These additional features account for SP’s

larger code size. The last group, Additional Features,

are unique to our implementation, and account for most

of the difference in total code size. These include dy-

namic demultiplexing, tools for maintaining header in-

dependence, multiple queues for buffers23, and dynamic

memory management. We note that not all of these ex-

tra features are a requirement of the network layer, and

that in most cases one can implement simpler and smaller

modules.
Finally, we look at each individual component, drawn

from a general library which developers can use to assist

in creating new protocols. Table 5 provides the code size

and memory footprint for these components. In general,

we consider routing engines to be the heart of network

protocols, and are thus less likely to be reused. On the

Table 4: Detailed Comparison of BVR Implementations
Monolithic NLA & SP

Component Size(B) Component Size(B)

Core Protocol Code

Router 1194 Routing Engine 1512

Topology State 2638 Routing Topology24 2136

Coordinate Table 1422 Coordinate Table 1422

Coordinate Functions 754 Coordinate Functions 754

Forwarding Engine 504

6008 6328
Underlying Communication Stack

Queuing Buffer 394 SP 4244

Link Estimator 2856

3250 4244
Additional Functionalities

Service Manager 490

Output Queue 1822

NetService 324

BufferManagerM 252

2888

other hand, components such as the MTree routing topol-

ogy are much more general and can consequently be uti-

lized by a wider variety of protocols. These generic com-

ponents are the key factor in enabling clean co-existence

of multiple protocols with a substantially smaller overall

code size and memory footprint relative to their mono-

lithic counterparts.

7.3 Performance

Next we evaluate the modular network layer from a per-

formance point of view. Table 6 provides comparisons

of forwarding delay, per module, for the original and

NLA& SP implementations of MintRoute, PathDCS and

BVR.

As one would expect, packets traversing our network

layer experience more delay than they do in the mono-

lithic architecture. The additional delays are incurred due

to component and layering abstractions: in the mono-

lithic architecture, it is assumed that only one link layer

exists at each node. It is thus possible to have the packet

header format known to all components in the system.

On the other hand, to improve portability and reuse, the

network layer uses the payload and length meta-data

fields to indicate the location of the next payload for the

next component receiving the packet. This reduces the
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Table 5: Code Size and Memory Footprint of Individual

Components
Component Code Size (B) Memory (B)

Output Queues

Basic 1822 396

Epoch 1892 396

Flexible Power Sched. 2696 564

Forwarding Engines

Basic 384 64

Opportunistic 1830 169

Retransmit 504 64

Routing Engines

Broadcast 42 0

MintRoute 92 0

PathDCS 988 2

BVR 1512 0

Routing Topologies

MTree 2766 88

Gradient 372 82

BufferManager 252 84

Network Protocol Service 324 24

Service Manager 490 8

Table 6: Forwarding Cost Comparison

Mono NLA & SP

Protocol Time(μs) Component Time(μs)

MintRoute 65 Routing Engine: 19

Routing Topology: 24

NetService: 12

Output Queue: 573

Forwarding Engine: 178

806
PathDCS 181 Routing Engine: 165

Routing Topology: 24

NetService: 12

Output Queue: 573

Forwarding Engine: 178

952
BVR 3752 Routing Engine: 366

Routing Topology: 2795

NetService: 12

Output Queue: 573

Forwarding Engine: 178

3924

need to know, say, every possible MAC header in exis-

tence. The tradeoff is the necessity of additional oper-

ations required to access these fields. Furthermore, ad-

ditional overhead due to function calls is incurred since

the network layer is composed of multiple small modules

instead of just one that is tightly integrated.

We observe a fixed overhead cost induced by NetSer-

vice, Output Queue, and Forwarding Engine components

that is significant compared to the cost of the simpler pro-

tocols. For BVR, which involves more complex lookup

processing, the relative overhead is considerably smaller,

representing a 4.3% increase in forwarding time. These

numbers must be placed in perspective: although perfor-

mance is important, unlike the Internet, it is not the pri-

mary goal. Most applications we see are very low data

rate, low duty-cycle, and the cost in terms of energy of

processing a byte is low compared to the cost of send-

ing a byte over the radio. On the same platform, it takes

at least 6.25ms to forward a common packet of about

40 bytes25, and thus even with BVR we are still operat-

ing under “line speed”. In none of these examples will

packet processing be a bottleneck. Lastly, the compo-

nents can be further optimized to reduce processing time.

8 Conclusion
In this paper we proposed, implemented, and evaluated a

modular network layer for sensornets that aims at max-

imizing composability and reusability of protocol mod-

ules. We verified that many existing protocols fit natu-

rally in the architecture, and that less effort is required

to create new ones. Through evaluation of modules and

protocols implemented in the new network layer, we are

able to obtain up to 58%memory reduction and 37% less

code when running protocols concurrently. Furthermore,

we believe that the additional processing latency incurred

is acceptable in the context of sensornets.

Looking forward, the work towards a sensornet archi-

tecture is still incomplete. One consequence of estab-

lishing more strict layering is that certain functionalities,

like power management, security, reliability, and time

synchronization, need to be accessible to multiple lay-

ers. Our hope is to address these cross-layer issues in the

future.

Notes
1As evidence of that, the original implementations of four routing

algorithms — MintRoute, PathDCS, BVR, and CLDP — have four

different and incompatible implementations of common modules such

as link estimation, neighborhood and queue management.
2 Note that our goal is to facilitate the implementation of network-

layer solutions, it does not actually, say, make end-to-end transfer of

data more reliable. As such, we do not focus on implementing new

functionalities.
3Minor components, like the dispatcher, are discussed later in § 6.
4This can be used by protocol implementing some form of oppor-

tunistic forwarding.
5in the case of shared mediums
6Network retransmission to alternate next-hops.
7Higher layer computes synopsis.
8The complete ExOR algorithm is not implemented.
9This is just the network layer support for Trickle. The main algo-

rithm runs in the transport layer.
10See [12] for details.
11Includes variations, like duplicate detection and max TTL.
12Requires alternate next-hops.
13Requires global cost-to-destination function.
14Includes variations like priority, round-robin, fair queuing
15Does not guarantee delivery due to local minima.
16A dash ’-’ indicates that no implementation existed in that partic-

ular format.
17In bytes. This code size includes only network layer code, thus

the code size of SP, approximately 4200 bytes, is not included in the

figures for the SP and NLA & SP implementations.
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18In bytes. In order to provide a fair comparison, the memory foot-

print figures for SP and NLA & SP implementations include the neigh-
bor table overhead portion of the SP memory footprint, as monolithic

implementations maintain their own neighbor table.
19This figure does not include the code for link estimation, as that

feature is not currently provided in our implementation. With that ca-

pability included, the code size is 9278 bytes
20The ‘MintRoute on SP’ combination is the only one in which the

original SP implementation [21] is used. All other experiments were

run using an enhanced version [23], which has several additional fea-

tures, and thus, larger code size.
21We do not have a figure for Synopsis Diffusion because all of the

protocol-specific functionality for duplicate-insensitive aggregation is

at the application level. The network layer components are all reusable.
22Duty-cycling refers to the turning off of the radio from time to time

to conserve energy, which can be consumed even when listening to the

channel.
23Including queues for different message priorities.
24The RT in this comparison is not MTree, but an equivalent RT

ported directly from the original BVR code, to make the comparison

closer.
25The usual size in a sensornet.
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