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Abstract

The development and deployment of a large-scale, wide-area
multicast infrastructure in the Internet has enabled a new

family of multi-party, collaborative applications. Several of
such as multimedia slide shows, shared

these applications,

whiteboards, and large-scale multi-player games, require re-
liable multicast tramsport, yet the underlying multicast in-
frastructure provides only a best-effort delivery service. A
difficult challenge in the design of efficient protocols that
provide reliable service on top of the best-effort multicast
service is to maintain acceptable performance as the protocol
scales to very large session sizes distributed across the wide
area. The Scalable, Reliable Multicast (SRM) protocol [6]
is a receiver-driven scheme based on negative acknowledg-
ments (NACKs) reliable multicast protocol that uses ran-
domized timers to limit the amount of protocol overhead in
the face of large multicast groups, but the behavior of SRM
at extremely large scales is not well-understood.

In this paper, we use analysis and simulation to investi-
gale the scaling behavior of global loss recovery in SRM. We
study the protocol’s control-traffic overhead as a function of
group size for various topologies and protocol paramneters,
on a set of simple, representative topologies — the cone (a
variant of a clique), the linear chain, and the binary tree.
We find that this overhead, as a function of group size, de-
pends strongly on the topology: for the cone, it is always
linear; for the chain, it is between constant and logarithmic;
and for the tree, it is between constant and linear.

1 Introduction

The advent and deployment of IP Multicast [5] has enabled
a number of new applications (17, 10, 9, 7, 22] that utilize
large-scale multipoint communication over wide-area inter-
networks. TP Multicast extends the traditional, best-effort
unicast delivery model of the Internet architecture to enable
efficient multipoint packet delivery. In this model, the net-
work delivers a packet from a source to an arbitrary number
of receivers by forwarding a copy of that packet along each
link of a distribution tree rooted at the source subnet (or, de-
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pending on the routing protocol, at a rendezvous point [4] or
core router [1]). As with unicast, IP multicast is not reliable
— packets might be dropped at any point along the distri-
bution tree. However, many new multicast applications like
shared whiteboards, webcast tools, and distributed simula-
tinn are not tolerant of nacket logses, Whllﬂhn:}rd ‘if'ﬂ.l’f’ f()'l’
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example, is persistent; 1f a piece of a drawing update is Iuat
the application cannot leave the drawing in an incomplete
state. Instead, that application must recover the missing
packet to repair the damaged portion of the drawing. In
short, this particular application, and in fact a large class of
emerging applications, require a reliable multicast transport
protocol. Although mechanisms for reliable unicast trans-
mission are comparatively well-understood and have proven
extremely successful (e.g., TCP), making multicast reliable
at large scales remains a formidable challenge.

A fundamental problem in the design of a reliable mul-
ticast protocol is the well-known message implosion [6, 19
problem. Reliable transport protocols rely on some form
of feedback between or among communicating end-points to
confirm the successful delivery of data. While some proto-
cols rely on positive acknowledgments or ACKs (signalling
the successful receipt of data), others rely on negative ac-
knowledgments or NACKs (signalling the failure to receive
expected or desired data). Positive acknowledgment-based
schemes are successful for reliable unicast transport but scale
poorly in the multicast case when there are many receivers.
In this case, each delivered packet causes a flood of positive
acknowledgments sent from the receivers back to the source,
overwhelming either the source or the intervening routers, if
not both.

A number of solutions to the ACK implosion problem

T oer boaand wal e
Log-based reliable multicast [8] uses

hiave been proposed.
logging servers to constrain recovery traffic to loaa.l:/ed groups
of receivers. TMTP [24] and Lorax [12] construct a hierarchy
in the form of a tree, in which multiple identical ACKs are
fused together before they are propagated up the tree toward
the root. RMTP [13] uses a similar approach based on trees
that are (statically or dynamically) configured into the net-
work rather than constructed by the application. XTP [2]
takes a markedly different approach, however, and instead
multicasts control traffic to all end-points. To limit the pro-
liferation of this control traffic, XTP employs a “slotting and
damping” algorithm: a receiver waits for a random amount
of time before generating control traffic and cancels that
message if some other hosts multicasts the same informa-
tion first. The algorithms in SRM [6] elaborate this simple
yet powerful primitive with adaptive timers that improve
performance across wide-area, heterogeneous networks.



While TMTP, Lorax, and RMTP limit recovery traffic
using unicast transmission over an artifically constructed hi-
crarchy, XTP and SRM limit recovery traffic using multicast
transmission and explicit suppression. Although this latter
approach is potentially more robust because it does not re-
quire an elaborate protocol for tree construction, mainte-
nance, and reconfiguration, it also entails potentially more
overhead because recovery traffic is multicast to the entire
group and not just to those members impacted by the packet
loss. To address this problem, [6] proposes that their SRM
reliable multicast framework be cast as two complementary
pieces: a global recovery component that ensures the delivery
of all desired data across the entire multicast session, and a
local recovery component that constrains the reach of recov-
ery traffic to the multicast neighborhoods where packet loss
occurs. Although [6] focuses primarily on global recovery,
the SRM authors argue that local recovery is an important
and necessary optimization to scale their protocol to large,
heterogeneous sessions. Since then, several promising ap-
proaches to local recovery have been proposed [11, 14] and
the problem remains a focal point of ongoing research.

Even though a viable local recovery strategy is criticial
to SRM’s scalability, in certain configurations (e.g., where
packet loss occurs near the root of the distribution tree), the
degree to which local recovery enhances performance may be
limited and the protocol’s overall performance may strongly
depend on that of the global recovery scheme. Hence, we
claim that a thorough understanding of global recovery in
SRM is not only important in and of itself, but will also
be useful in predicting the performance of SRM even when
coupled with local recovery.

In this paper, we use analysis and simulation to inves-
tigate the scaling behavior of global loss recovery in SRM.
We study the growth control traffic (measured by NACK
counts) as a function of group size for various topologies
and protocol parameters, on a set of simple, representative
topologies — the cone, the lincar chain, and the binary tree.
We find that the number of NACKSs, as a function of group
size, for the cone is always linear, for the linear chain is be-
tween constant and logarithmic, and for the tree is between
constant and linear.

The rest of this paper is organized as follows. We start
with a brief overview of the SRM protocol in Section 2. Sec-
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tion 3 summarizes related work. In Section 4,

our simulation methodology. We discuss the effects of vary-
ing the protocol parameters for the various topologies in
Sections 5, 6, and 7, and conclude in section 8.

we describe

2 Overview of SRM

SRM is a NACK-based, fully-decentralized reliable multi-
cast protocol originally described by Floyd, et al., in [6]. The
SRM framework builds on Clark and Tennenhouses’s princi-
ple of Application Level Framing (ALF) [3], which provides
an elegant solution to the problem of reliable-multicast API
design because its flexibility offers applications the oppor-
tuntity to actively participate in the loss-recovery procedure.

To avoid ACK-implosion, SRM uses NACKs. Receivers
detect losses from discontinuities in sequence numbers (or by
other means with a generic data naming scheme [20]) and
tr.mbrmt NACKSs as a request for retransmission of the lost
data’. A randomized algorithm determines when a receiver

1 B srdiona CF Lho GRINA Aooii oo
To be true to the original intentions of the SHM AESIgNers, we

rmust admit that our use of the term “NACK” is somewhat inaccurate
since it implies that the underlying protocol generates NACKs to
guaraniee that all data is eventually received by all receivers. In fact,
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transmits a NACK. These NACKs are multicast to the entire
group so that any receiver, in particular the closest receiver
with the requested data, may generate a repair in response
to a NACK. The repair messages are also multicast to the
entire group, so that all receivers that missed that packet can
be repaired by a single response. The repair message traffic
likewise makes use of the randomized timer algorithm.

To avoid NACK implosion, receivers that observe a NACK
for data that thev too have not received do not send their
own NACK? and await the repair data. The goal of the ran-
domized NACK transmission algorithm is to minimize the
number of duplicate NACK messages sent. To accomplish
this, cach receiver delays the transmission of a NACK by an
amount of time given by the expression

backoff = D -(Ci+ Car)

where backoff is the amount of delay, D is an estimate of
the one-way delay from the receiver to the source that gen-
erated the lost data packet, Cy, C, are non-negative protocol
constants, and r is a uniformly distributed random number
in [0, 1]. This random delay provides receivers with the op-
portunity to suppress the transmission of similar pending
NACKSs; that is, delaying the transmission of NACKs by a
random amount increases the likelihood that a NACK from
one receiver is delivered to another receiver before that re-
ceiver sends its own NACK, and thus, reduces the total num-
ber of NACKs. Figure 1 illustrates the suppression mecha-
nism in SRM.

As in [6], we call C1 D the deterministic delay and CyDr
the random delay. The deterministic-delay component in-
duces suppression effects across receivers situated at vary-
ing distances from the point of loss (e.g., a chain topology),
while the random-delay component induces suppression ef-
fects across receivers situated at equal distances from the
point of loss (e.g., a star topology). We say that a receiver’s
timer fires if no suppressing NACK has been received when
its backoff period has expired.

Since NACKs are multicast to the group, any receiver
that has the data can respond, not just the original source.
However, we again have the potential for a control-traffic
storm if all hosts respond simultaneously. Thus, to avoid
repair-packet storms, SRM reuses its NACK suppression

machinery to limit Lhe number of redundant repair pack-

ets. Because both NACKs and repairs are sent to the entire
multicast group, we call this the SRM global recovery mech-
anisim,

A number of performance metrics have been used to
characterize recovery schemes for reliable multicast, but two
widely used metrics are:® (1) the degree of duphcate control
traffic, and (2) the recovery latency. The first metric can
be summarized as the average number of NACKs sent for
each dropped packet, which clearly depends on the size of
the group experiencing the loss. We denote this number by
N(G), where G is the number of members experiencing the
loss. The larger this metric, the less effective the random-
ized timer algorithm is at suppressing duplicate NACKs and

SHM is receiver-reliable and does not require that all receivers obtain
all data. Instead, reccivers issue “repair requests” to repair only those
data wanted. For this paper, we use the terms “NACK" and “repair
re~quut interchangeahly.

*More precisely, they scale their transmission timer awaiting a
response. All receivers, if they have not received the repair data, will
eventually transmit a NACK.

#The metrics we describe here ignore topological heterogeneity,
where not all receivers are identical. More detailed performance met-
rics would measure the latencies on a per receiver basis.
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Figure 1: Suppression in SRM

avoiding NACK implosion. N(G) is a non-decreasing func-
tion of G, so the suppression performance for large group
sizes is a critical factor in SRM’s performance.

We define the second metric, the loss-recovery latency,
as the time delay between the instant a packet drop is de-
tected to the time at which the first NACK is sent (from
the perspective of a particular session member). Recovery
latencies for these randomized algorithms typically decrease
as group sizes increase, so the sensitivity of latency on group
size is not of primary importance in the scaling behavior of
SRM.

In this paper, we focus on the performance of SRM with
large group sizes; that is, roughly speaking, the asymptotic
scaling limit. Thus, we focus on the number of duplicate
messages and do not address latency performance. Since
the timer mechanisms for NACKs and repair messages are
similar, we restrict our attention to NACKs. Therefore, our
paper addresses the following question: how does the num-
ber of duplicate NACK messages increase as the group size
grows? In short, what is the scaling behavior of N(G) in
SRM?

The scaling behavior of SRM depends both on the topol-
ogy of the underlying network as well as the details of the
timer algorithm. To explore the relationship between topol-
ogy and scaling behavior, we experimented with three simple
network topologies: the cone (a variant of a clique), line, and
tree, shown in Figures 2 and 3 While these topologies are
instructive because they explore the behavior of SRM under
extreme toplogies, they are by no means exhaustive.

The scaling behavior also depends on several aspects of
the timer algorithms. We focus on two such factors. First,
we look at the dependence of the scaling behavior on the
constants C; and C3. There are several applications, such
as large-scale multi-player games that are highly interactive,
for which low-latency loss recovery is important, and the
choices of C; and C. critically impact this. In general, the
expected latency to transmit the first NACK upon detecting
a loss is bounded above by (C:1 + C3/f)D, where f is a
function of the network topology and is always at least 2.
Thus, there is a trade-off between recovery latency and the

92

choices of C; and Ca. In particular, smaller values of these
constants lead to better latency, but also to increased N(G).
The need for low latency by many applications motivates our
work on investigating the (C;, Cy) parameter space, and in
particular, our consideration of 0 < C; < 1 (little or no
deterministic suppression).

We also briefly consider the case where C; and C; are
a Munction of the location in the topology; this aspect of
our work was inspired by the results on adaptive timers in
[15]. There, the timer constants were set in response to
the number of duplicates observed and the latency of the
responses, and this naturally led to the parameters being
different for different members — e.g., members located at
different depths in a tree would have different settings. We
do not directly address the dynamic nature of these timer
adjustments, but merely study how location dependence in
C and C; changes performance.

We then investigate how the scaling behavior depends
on the accuracy of the delay D. In SRM, the i** group
member estimates D;;, j = 1,2,...n, j # i, the delay from
itself to each of the other members of the group. Delay esti-
mates are calculated from round-trip time (RTT) informa-
tion which is derived from timestamps in session messages of
the SRM protocol. Since the protocol’s control bandwidth
is limited to a constant fraction of the total available ses-
sion bandwidth, the estimated RTT does not readily track
changes in actual delay for large session sizes'. We study
how RTT estimation might affect asymptotic scaling behav-
ior in the different topologies by comparing performance in
two extreme cases: one with exact RTT estimations and one
where all members have the same hardwired RTT estimate.

3 Related Work

In this section, we summarize some important prior work
related to the analysis of SRM. The seminal work of Floyd
et al. [6] simulated group sizes of up to a few hundred nodes
ranging across a set of simple topologies. They showed that
it was often possible to choose values of C) and Ca that
resulted in N(G) scaling as a constant independent of G. In
particular, picking Cy = C; = 2 achieved this for the chain
topology, and picking C2 = VG resulted in constant scaling
for the star topology (a special case of the cone topology
in our work). Using simulations they demonstrated that
N(G) < 4 for random trees with bounded degree for session
sizes of up to 100. They also proposed an adaptive algorithm
to dynamically adjust C) and C3 based on past information
for better performance.

Our work extends their important findings in two ways.
First, we investigate performance for session sizes of up to
two orders of magnitude larger than in [6], thus improving
our collective understanding of SRM’s asymptotic behavior.
Reassuringly, our results agree with [6] where the experi-
ments overlap. More generally, we have assessed in detail
the behavior of N(G) as a function of €y and C». Not only
do these results help us predict the performance of SRM, but,
they could influence the design of related sub-components of
SRM, e.g., the choice of bounding values of Cy and C3 in
the proposed adaptive algorithm. A more recent paper [15]
studied scaling behavior for group sizes up to 200 members,
with Cy = 0 and C- set adaptively.

In addition, Nonnenmacher and Biersack [18] looked at
the effect of timer distribution on scaling behavior and showed

4Even in the case of a single TCP connection, where RTT estimates
are gathered on every ACK, the sender’s RTT-estimator is known to
hy
often be inaccurate [21].



that exponentially distributed timers yield better scaling
properties. They found that having this distribution de-
pend on the group size could result in improved scaling. We
do not address the effects of different timer distributions at
any great length in this paper.

This paper is primarily concerned with global recovery
in SRM with constant 'y and C2. Variants of SRM have
been proposed that use local recovery, in which NACKs and
repairs are not sent to the entire group. (6], [14] look at two
methods to limit the range of these methods: hop-scoping,
and local recovery groups. [15] considers methods for adap-
tively setting the values for C) and C». We do not consider
any of the local recovery methods, nor adaptive timer set-
ting. Thus, our work should not be seen as a statement
about how SRM-like protocols should function in the fu-
ture, when they may well incorporate such features, but
rather as an attempt to study the current deployed version
of SRM with its use of global recovery. Our hope is that
understanding this basic version of the protocol may inform
future design efforts to improve it.

4 Simulation Methodology

In our simulations, we studied three classes of network topolo-
gies: cone, linear chain, and binary tree, each with a single
source. The cone is a topology where each member has
the same delay ¢ to every other member, and a distance
A from the source. Similarly, for the linear chain and the
binary tree, J represents the link delay between adjacent
members, and A is the link delay from the source to the
closest member(s). Figures 2 and 3 show A and 4 for the
three topologies.

We are only modelling the behavior of NACKs, so we
need only consider the receivers that suffer losses. Thus, we
only consider the case where the loss occurs on the link ad-
jacent to the source ®. This causes little loss of generality,
since if the loss occurs elsewhere we need only model the
topology beneath the loss point. Note, however, that then
the size of the group we are considering, G, is the size of the
loss group — the number of members experiencing a particu-
lar packet loss — and not always the size of the entire group.
Session messages in SRM give members knowledge about
the size of the entire group, but not about the size of the
loss group. If members knew the size of the loss group they
might also be able to employ various forms of local recovery
(hop-scoped recovery, or local recovery groups) that would
more directly address the NACK traffic problem (not just
limiting the number of NACKSs, but also the portion of the
group they are sent to). Thus, we do not consider varying
the timer constants with group size, as in [18], as this does
not seem like a realistic possibility.

Furthermore, we assume that losses are detected imme-
diately when the next packet arrives. Since a packet is deliv-
ered to different receivers at different absolute times, losses
are detected at different times. This typically allows the
receivers closer to the source to suppress the NACKs from
receivers further away. One of the key points in our investi-
gation is how the setting of the timer constants affects this
behavior.

We used the VINT network simulator ns [16] for our
work. In its original form, ns turned out to have prolific
memory usage with heavy-weight nodes, links, and multicast
routing infrastructure, and could not support more than a
few hundred nodes on an ordinary workstation. However,

SMeasurements reported in [23] show that most correlated losses
occur close to the source.

O Oy I
\ Nk
source 1 2 G

Figure 2: Linear Chain Topology: the X-ed packet marks
the location of packet loss.

we took advantage of ns’s extensible object-oriented archi-
tecture and made several modifications and extensions to
it. Using the basic ns framework for event handling, we
extended the simulator to support regular topologies with
static routing without explicit routing table state. These
modifications and extensions to ns enabled large-scale sim-
ulations of up to 50,000 nodes.

Losses occur on the link closest to the source, and are
thus shared by all receivers in the group. We measure the
average number of NACKs generated in response to a loss.
The variation between different measurements is induced by
the randomness in the recovery algorithm we are studying.
We ran between 30 and 50 simulations of each case to com-
pute the average value of the metrics, depending on the vari-
ance of the measured samples. Table 1 summarizes notation
used in the rest of this paper.

source

Figure 3: Binary tree and cone topologies: the X-ed packet
marks the location of packet loss.

[ Symbol | Description
A | Delay from source to the closest receiver
[ Delay of link connecting receivers
R A/
G Group size
N Average number of copies of a single NACK
L Average NACK latency caused by backoff
D; Estimate of one-way delay from node 2
to the source node
banlmffl-, D (C| + Oy x ?‘.‘]
at host ¢ | where, r; are uniformly distributed
random variables in [0, 1]
| ti Absolute time at which receiver i's timer fires

Table 1: Summary ol notation

In the following sections, we present our analytical and




simulation results for the three topologies: cone, line and
binary tree.

5 Scaling in the Cone Topology

The cone topology can be used to model the case of a broad-
----- LAN. If the source is on the LAN then A = & but
when the source is off the LAN, the delay from the LAN to
the source is much greater than the LAN propagation time,
vielding A >> d. In general, the cone can be used to model
a topology where all receivers have similar round-trip time
ostitnates to the source. In practice, RTT estimators tend
to be coarse-grained resulting in clusters of receivers with
similar RTT values.

We use the following probabilistic analysis to compute
the expectation of N(G). Because all the reccivers are at the
same distance from the loss in a cone, the deterministic back-
off component has no impact on the number of duplicates
(all timers have the same constant offset). The average de-
lay in transmitting the first NACK depends on the expected
value of the minimum timer and is given by A(C, + (ﬁfT :
This result follows directly from noting that the expectation
of the minimum of G uniformly distributed random variables
in [0,1] is .
expected number of timers that fire within [t,,in, Emin + 0],
where t,:, is the value of the smallest timer. Since back-
offs are uniformly distributed in [C\ A, (C) + C2)A], we can

asiiv o H ¥ 2 i il Ny
casily compute this expectation. Defining cv = T we have,
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Thus, the number of duplicates is roughly linear in the group
size. [6] reports a similar result for the star topology, which
is a cone with A = §. Observe that this linear dependence
applies regardless of whether the delay estimates are accu-
rate or not. If the estimated value of the delay (assuining
all members achieve the same estimate) is larger than the
true estimate, then the number of duplicates is smaller, but
the dependence on @ is still linear. Our simulations, shown
in Figure 4, confirm this result.
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Figure 4: In the cone topology, N(G) grows linearly in G,

where o = -(%5 and C) > 0, C» > 0.

N(G) grows roughly linearly for any fixed timer distri-
bution. However, as shown by Nonnenmacher and Biersack
[18], if one makes the distribution dependent on the size of
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the loss group then one can change this linear scaling. For
instance, if one takes a bimodal distribution such that with
a probability p = & a receiver sends a NACK immediately
npon detecting a loss, and with probability 1 — p sends a
NACK after a delay 4, then as G diverges N(G) is given by
a(l—e *)+Ge . By tuning a one can lower the slope of the
linear dependence, and if one sets a = In G the growth is log-
arithmic, not linear. One can remove the linear term entirely
by considering the scheme where each receiver picks a num-
ber k from an exponential distribution with average & and
sets the backoff to kd. This is essentially a discrete version
of the exponential distribution considered by Nonnenmacher
and Biersack [18]. Here, the average number of NACKs is

E(N) = a and the average latency is E(L) = -1_“:f, . One
can show that this achieves the lowest latency for a given
number of NACKs (or equivalently, the smallest number of
NACKs for a given latency) in the asymptotic limit. How-
ever, as we argued earlier, schemes that have the timer dis-
tribution depending on G are perhaps of little interest since
the parameter G must be the size of the loss group, and once
one has this information it might be better used in some lo-
cal recovery approach rather than using it merely to tune
the timer parameters.

6 Linear Chain
For the linear chain topology, we first consider the case

where RTT estimation is exact. When C'; > 0 and C2 > 0,
the data in Figure 5 suggests that N(G) is constant in G.

Line: Estimated ATT, C1=1.0,C2=1.0

3 RA=1

8 R=10 —
R=100 —
R=1000 —

7k

6 4

Number of NACK, N(G)
ow

Figure 5: N(G) is a constant for A/§ = 1, 10, 100, 1000, with
exact RTT estimation and €, = C» = 1. Similar results
hold for other C) and C3 as long as Cy > 0.

We now show that in this parameter range there is a
bound k on the maximal number of NACKSs sent. Receiver
i picks C1(A+(i—1)8) < backof f; < (Cy+Ca)(A+(i—1)8).
Consider some message sent at time ¢t = 0, and assume that
losses are detected immediately. Receiver i detects the loss
at time (A+(i—1)d) and sends its NACK (if not suppressed)
no later than a time (A + (i — 1)8) + (Ci + C2)(A + (i —
1)d) and no sooner than (A + (i — 1)d) + C1(A + (i — 1)4).
Therefore, receiver i and receiver j cannot both send NACKs
if, assuming j > i,

(Cr+C2)(A+(i=1)8)+(j—i)d < (j—1)8+5+C1(A+(j—1)9)

This follows by recalling that it takes time (j — 2)d for #'s
NACK to propagate from 7 to j. Thus, the first member



on the line suppresses all but the next & members, where
k is given by k = 54-4] Thus, N(G) is bounded above
by k + 1. The simula.tmnc. suggest that the average number
N(G) is much less than this upper bound, and in particular,
is independent of I2.

For C; > 0, the value of N(G) appears, as shown in
Figure 6, to be roughly independent of C». The dependence
on C) is also shown in Figure 7, where, for a fixed G, N
decreases with increasing C as expected.

LN Estimated ATT, G = 10,000
Claooor

NiC1,C2)
a
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o W 20 30 4 S0 &0 TO 80 90
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Figure 6: N as a function of C; and Cs.

Lina: Estimated RTT, G = 10,000
E p— Ty

N(C1)
%

1e-05 0.0001 0.001 001 o1 1 10

Figure 7: N as a function of C.

When €, = 0, there is no deterministic delay and the
preceding argument fails. In fact, it appears that N(G)
diverges slowly with the group size G, as shown in Figure 8.
We can argue that N(G) does not grow faster than a certain
expression derived below (but are not able to provide a lower
bound). The probability that node i is not suppressed is
bounded above by the probability that it is not suppressed
by the members ahead of it in line. This ocenrs if and only

if (ignoring ties) the backoff timer t; = min{t,,...t; 1}.
Considering the case A = ¢ for convenience. Using the
notation z4 = max[0, 2], we have
j=i=1
Prit; = min{ty,... ti-1}|ti = x] = H Prit; > 2]
j=1
j=i—-1
IT @~ =/io)
i=1
and so, changing variables,
1i= ‘ 1 1
1y, dy
N(G) < Z f -4
=1
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i—1
Approximating Hj:{ e Y)as Y 2513 and then not-
-1y
ing that ¢ " D e "' and substituting into the in-
tegral, we see that this expression diverges as InlnG.

We now consider the case where there is no RTT esti-
mation, and all receivers use the same hardwired delay esti-
mate D. Note that since deterministic delay is useless when
round-frip times are not used (all members have the same
deterministic delay), C» = 0 results in no suppression at all,
and N(G) = G. This is true independent of topology; if
there is no RTT estimation, then one needs Ca > 0 or else
N(G) = G, and N(G) is independent of C.

Figure 9 shows N(G) for the case €'y = 0 and C2 = 1 and
fixed RTT. The growth, for all values of R = %— appears to
be logarithmic. Similar logarithmic-like behavior is observed
in simulations with different values for C and D.

The following probabilistic analysis suggests why, for
Cy = 0 and C; = 1, N(G) grows as a logarithmic func-
tion of the group size. The backoffs are picked in the range
[0, D]. We first compute the probability that the NACK at
node i is not suppressed. The following condition must hold,
for i’s timer to fire:

dj+rid+d;; > di+ rid, Vj#i

where d; is the one-way delay to receiver j from the source
and d,; is the one-way delay from receiver ¢ to receiver j.
ri,7; are uniformly distributed random numbers picked in
[0,1] by the random timer mechanism. We then must have:

s A ) (1)
T‘jts +2d;; > r:0, Vi > i, and (2)
di; > 8,Vdy (3)
=1 < 264710, Vj>i (4)
5 Line: Estimated RTT,C1=0,C2=1
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Figure 8: N(G) diverges as A/d = 1,10, 100, 1000, with RTT
estimation, C; =0, C» = 1.

From equation 4 above, we can conclude that a NACK
at node 7 cannot be suppressed by a NACK at a later node.
The condition for suppression at node ¢ is therefore i =
min{ri,ra,ra,...,ri—1}. Thus, P[i fires] = N = and so E[N] =
Z:_i Pli fire s] ~ InG+0.577. Similar loga.nthmlc growth
is seen empirically for larger C5. The behavior of N(G) for
the line case is summarized in Table 6.



Line: Fixed RTT,C1=0,C2=1

Number of NACKs, N(G)

" L

1500 2000 2500
Group Size, G

§ EEE—

3500 4000

o il - L i
0 500 1000 3000

Figure 9: N(G) grows as a logarithmic function of G for
AJd = 1,10,100, 1000, fixed delay (no RTT estimation),
C;=0,C;>0. N(G)=InG+0.577, when C; =0,C: = 1.
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Figure 10: N(G) converges to a constant when Cy = /D
for the linear chain.

With C; =0, N(G) grows as Inln G for the linear chain
topology. In order to reduce this growth in N(G) to a con-
stant, while still retaining €, = 0 for the sake of low latency,
we can make C'y a function of the delay from the source. This
follows the work Liu ef al. who propose, in [15], using a new
adaptive timer algorithm. Analysis similar to the previous
case (equation (4)) shows that the number of duplicates is
bounded by a constant when we use Cy = D" for any € > (.
This is because

@ La=i—1
y .\ dy
ve) < 3 [ TTa-Ait
T e J
o 1 1
£ Yawsc

The graph in Figure 10 shows that N(G) converges to a
constant for € = 0.5. We should note that becanse we do
not have a lower bound for the case of C; fixed (e = 0). Our
simulation results show that N(G) diverges for ¢ = 0, but
our analytical proof is ounly for ¢ > 0.
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7 Binary Tree

[n the binary tree topology (Figure 3), N(G) grows linearly
with G when RTT is not estimated, as shown in Figures 11
and 12. The slope of this lincar growth depends on C2 and
D (the fixed RTT). This linear behavior is in contrast with
the logarithmic behavior observed in the line topology, but
similar to the behavior in the cone topology. When RTT is
known exactly, we still have linear behavior for C7 = 0, as
shown in Figure 12. The slope of this linear growth depends
on both %\- and O,

Tree: Fixed RTT=D,C1=0,C2=1

80 T v 5 ™ T T "
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0 200 400 600 800 1000 1200 1400
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Figure 11: With €, = 0, C > 0 and without RTT esti-
mation, N(G) scales linearly with G for different values of

R =A/s.
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Figure 12: With €, = 0, C2 > 0 and with accurate RTT

estimation, N(G) scales linearly with G for different values
of R = A/é.

However, as soon as we have Cy > 0, D(G) appears to
asymptotically reach a constant. Figure 13 shows the func-
tion N(@) for different values of 0 < € < 1. The growth
law for intermediate G is linear, and then the slope decreases
as (7 increases. For all cases where we have been able to
reach sufficiently large G, the slope continues to decrease
until N(G) goes to a constant.

When € > 0, we see that the asymptotic scaling behav-
ior depends on whether deterministic suppression or ran-
domized suppression is dominant in reducing the number of



[ Afd RTT [ Ci | Cs | N(G) | Figure |
1, 10,100, 1000 | Fixed C, >0 | Cy >0 | Logarithmnic 9
(InG + 4, when C, =0,C> = 1)
1,10,100,1000 | Fixed C, >0 | Cy=0 | Linear (N(G) = ()
1,10, 100, 1000 | Estimated | €; >0 | C» = 0 | Constant (< 4) 5
1,10, 100, 1000 | Estimated | C; =0 | Cs > 0 | Diverges 12
Table 2: Scaling behavior in the linear chain topology

NACKs. In cases where deterministic snppression is dom- Binary Tree: 0<C1<1,C2=1

inant, the asymptotic scaling is constant. Scaling is lin- 1600 A ' T —

car when suppression depends on the randomized suppres- 1400 |

sion. In Figure 16, these two important effects are evident: o

as A/d increases, deterministic suppression becomes weaker 1200

and randomized suppression is more effective. For large val- 1000 |

ues of A/ > 100, backoff timer ranges are large enough and

the average separation between timers grows. ] 800 r

We now trv to illustrate this behavior in a different foru. 600 |

The function (ﬁ plotted against ¢ is shown in Figure 14.

This ratio appears to be a linear functions of G, with the 400

slope depending on €. If we label the slope of this line by 200 |

m and the intercept by f, we have, for small € and large

G, the following form for N: 0

G
mG + f

Th 5 1
This linear fit applies over a wide range of C,C, values.
This functional form for N(G) is consistent with our obser-
vation of a linear increase for small values of G, followed by
this slope decreasing and the curve flattening to a constant.
In particular, note that limeg 00 N — ﬁ, a constant for a
given value of Cy and Cy. Thus, the slope of this functional
fit in Figure 14 yields the asymptotic value for N(G). Fig-
ure 15 shows this dependence on a log scale. # decreases
with increasing €' as expected.

=
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Tree: Estimated RTT, C1 <1.0,C2=1.0
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2000

Figure 13: N(G) in the binary tree for R = A/d = 1, accu-
rately estimated RTT and 0 < €y <1, Cs = 1.

If we hold G fixed and vary R (the ratio of A to 4) we
find that the dependence is not monotonic. Figure 17 shows
this unimodal behavior. This behavior may be explained
by the following reasoning. There are two kinds of sup-
pression, deterministic and random, so-called depending on
whether the possible firing times overlap or not. Determin-
istic suppression decreases with R, but random suppression
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Figure 14: G/N vs. G in the binary tree for R = A/§ =1,

RTT estimated, 0 < C) <1, Cy = 1.
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Figure 15: L =limg—oe D(G,Cy) as C) is varied. Cy =

increases with R. Thus, as R is increased we first see an
increase as the deterministic suppression becomes less effec-
tive, and then see a decrease as random suppression becomes
dominant and deterministic suppression is no longer much
of a factor (and so cannot decrease significantly further).

With Cy = 0, and C> > 0, N(G) grows linearly with G.
In order to reduce this growth in N(G) to a constant, while
still retaining € = 0, as we did for the linear chain topology,
we make Cv a function of the delay from the source. The
adaptation algorithm described in [15] results in C> values
that increase roughly linearly in D, the distance of a receiver
from the source.

Here we do not model the dynamics of the ada.ptati(m
but instead merely insert the dependence on D directl gr
consider several variants, with C» increasing as D, D*,
VD. Ti igure 18 shows the results of these smmldtumsh

d.nd
We



[A]d RTT Cy C N(G) Figure
1,10, 100, 1000 | Fixed C, >0 Cy > 0 | Linear 12
1,10, 100, 1000 | Fixed C1 >0 Co=0| NG)=G
1,10, 100, 1000 | Estimated | C, =0 C2 > 0 | Linear 12
1,10 Estimated | 0<C, <1 [ C: >0 | G/(mG + f)

limg oo G/(mG + f) = constant | 13

100, 1000 Estimated [ 0 <, <1 [ €% > 0 | Linear 16

Table 3: Scaling behavior in the tree topology
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Figure 16: N(G) in the binary tree with A/§d =

1,10,100, 1000, RTT estimated, C; = 0.5, C» = 1.

find that Cy needs to be “super-linear” in D to make scaling
constant.

8 Conclusions

In this paper, we used analysis and simulation to study
the scaling behavior of global loss recovery in SRM. The
SRM protocol is NACK-based and uses a randomized, timer-
based decentralized algorithm to reduce NACK implosion.
We use the number of NACKs N(G) generated in response
to a loss, as a metric for scalability. The two protocol pa-
rameters, C; and €, govern the deterministic and random
delays in the firing of a NACK from a receiver. There is
a trade-off between low-latency loss recovery and the num-
ber of NACKs - in general, making these parameters small
leads to lower latency, but usually at the expense of poorer
asymptotic scaling. We study N(G) as a function of group
size, G, for various protocol parameters, on a set of simple,
representative topologies — the cone, the linear chain, and
the binary tree.

In the cone topology, we find that random backoff is the
dominant reason for suppression and scaling is linear. This
linear scaling can be reduced by using a distribution that is
dependent on the group size. The cone models topologies
in which receivers have similar round-trip time estimates to
the source. For the linear chain N(G) is between constant
(when Cy > 0,Cy > 0, and RTT estimation is perfect),
and logarithmic, when RTT is not estimated. In the tree,
scaling is between constant (when €, > 0,C> > 0, and
RTT estimattion is perfect), and lincar, when RT'T is not
estimated. For the linear chain we show that C; = D"
results in constant scaling even when Ci = 0, where D is
the one-way delay to the source. Similarly, for the binary
tree, C'» = D? results in constant scaling.
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Tree: Estimated RTT, C1 =05,C2=21

: ~
: [N
S

Figure 17: For small values of R, the round-trip times from
the source to the receivers are distinguishable, and deter-
ministic suppression effectively keeps the NACK count low.
When A/d increase, randomized suppression is the domi-
nant cause for suppression. The “turning point” value of
A/§ depends on the topology.

We find that in topologies where deterministic suppres-
sion is effective in reducing the number of duplicate NACKs,
asymptotic scaling tends to a constant. For topologies in
which randomized suppression is mainly responsible for elim-
inating duplicates, asymptotic scaling is not constant, e.g.,
in the cone topology and in the binary tree with & >> 4,
N(G) grows linearly.

In conclusion, we have shown that there is a rich parame-
ter space in the SRM protocol and that the best asymptotic
scaling performance is sensitive to the choice of these pa-
rameters. We expect our results to be useful in obtaining a
better understanding of the reasons for SRM’s scaling prop-
erties in different situations, and in aiding the design and
analysis of future modifications to SRM and similar proto-
cols that use multicast transmission and suppression.
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