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Abstract

Congestion is a longstanding problem in datagram net-
works. One congestion avoidance technique is feedback
flow control, in which sources adjust their transmission
rate in response to congestion signals sent (implicitly or
explicitly) by network gateways. T'he goal is to design flow
control algorithms which provide time-scale invariant,
fair, stable, and robust performance. In this paper we
introduce a simple model of feedback flow conirol, in
which sources make synchronous rate adjustments based
on the congestion signals and other local information, and
apply it to a network of Poisson sources and exponential
servers. We investigate two different styles of feedback,
aggregate and individual, and two different gateway ser-
vice disciplines, FIFO and Fair Share. The purpose of this
paper is to identify, in the context of our simple model,
which flow control design choices allow us to achieve our
performance goals.

Aggregate feedback flow control, in which congestion sig-
nals reflect only the aggregate congestion at the gateways,
can provide time-scale invariant and stable performance,
but not fair or robust performance. The properties of indi-
vidual feedback flow control, in which the congestion sig-
nals reflect the congestion caused by the individual source,
depend on the service discipline used in the gateways.
Individual feedback with FIFO gateways can provide
time-scale invariant, fair, and stable performance, but not
robust performance. Individual feedback with Fair Share
gateways can achieve all four performance goals. Further-
more, its stability properties are superior to those of the
other two design choices. By making robust and more
stable performance possible, gateway service disciplines
play a crucial role in realizing effective flow control.

1. Introduction

As datagram computer networks have grown in both size
and usage, network congestion has become an increas-
ingly common problem. Fortunately, there have been
some recent advances in datagram network congestion
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avoidance techniques. The algorithmic ideas of Jacobson,
as implemented in the 4.3bsd TCP networking code
[JacB88], have helped alleviate the previously severe
congestion in the Internet. Similarly, the DECbit algo-
rithm of Ramakrishnan, Jain, and Chiu [Jai8i7, Jai88,
Ram87, Ram88, Chi89)] appears, based on simulations, to
greatly reduce congestion. Both of these approaches, as
well as the earlier but less well studied source quench
mechanism [Pos81, Pos87, Fin89], are examples of feed-
back flow control. In this paper we analyze a qualitative
model of feedback flow control, in order to better under-
stand its power and limitations.

Whereas originally flow control was seen solely as a
mechanism to ensure adequate buffer resources at the
receiving end of a connection, feedback flow control is
designed to avoid network congestion. In feedback flow
control, sources adjust their flow in response to feedback,
or congestion signals, sent by network gateways. In the
case of DECbit, the feedback signal is a special conges-
tion bit contained in each packet header; gateways which
are experiencing congestion set this bit in packets as they
pass through the gateway, and this signal reaches the
source in the returning ACK packets. The TCF feedback
flow control algorithm of Jacobson, which is similar in
spirit, uses packet drops as an implicit feedback signal
(the dropping of a packet is not explicitly comnunicated
to the source, but is detected by the source’s flow control
algorithm via timeouts or duplicate acknowledgements).
Source quench uses explicit choke packets sent by gate-
ways directly to the source.

These different implementations of congestion avoidance
all share the two common characteristics of feedback flow
control: gateways sending congestion signals (either
implicitly or explicitly) and sources adjusting their
transmission rate in response to these signals. Note that
there is an important conceptual separation between
these two aspects of feedback flow control. The congestion
signalling mechanism is only a function of the congestion
in the network, and is not based on how the source will
respond to that signal. Similarly, the rate adjustment
algorithm is solely a function of the congestion signals
received, and the source’s local state, and is conceptually
independent of the congestion signalling mechanism. We
study the properties of this general approach to conges-
tion avoidance. To this end, we introduce a simple quali-
tative model of feedback flow control which, while admit-
tedly unrealistic, captures some essential aspects of the
feedback flow control approach. This model allows us to
explore the implications of different design choices in
feedback flow control.



The first basic design choice is the nature of the conges-
tion feedback, of which there are two basic styles. In the
aggregate feedback approach, the feedback sent to a
given source is a function of the aggregate congestion at
the gateway. All sources receive the same congestion sig-
nal from the gateway, regardless of which sources are
actually causing the congestion. This feedback style was
used in the original version of the DECbit scheme [Jai88,
Ram88, Chi89] and also is implicitly present in the
Jacobson algorithm (here the feedback signal is a pro-
perty of the gateway’s packet dropping algorithm, which
is usually just to drop the arriving packet when there are
no free buffers, and is independent of the TCP code itself).
Alternatively, the feedback to a source can be more indi-
vidualized, reflecting the relative traffic load of that par-
ticular source. This individual feedback approach has
been adopted in the latest version of DECbit [Ram87,
Jai8T7].

The other basic design choice is the nature of the service
discipline at the gateway. This is of no concern when
using aggregate feedback, but is of crucial importance for
individual feedback. Most congestion control achemes
assume that gateways use the FIFO service discipline
[Ram87, Jai87, Fin89]. We consider the effect of using a
rather different service discipline called Fair Share (FS),
first introduced in [She89].

In order to evaluate these different design choices, we
identify a set of very general performance goals for flow
control algorithms, These goals are to provide uncong-
ested throughput allocations that are time-scale invari-
ant, fair, and stable. In addition, we require that the per-
formance remain adequate even when the sources are not
all using the same flow control algorithm. We include
this requirement, which we call robustness, because we
believe future networks will likely have some degree of
diversity.

The purpose of this paper is to determine, in a qualitative
manner, which design choices make for effective feedback
flow control. All of the design choices we consider can
provide time-scale invariant performance. The issue then
becomes which of the other performance goals can be met
with these time-scale invariant algorithms, We find that
no time-scale invariant aggregate feedback flow control
can guarantee fair or robust performance. While every
time-scale invariant individual feedback flow control with
FIFO gateways guarantees fair performance, no such
algorithm guarantees robust performance. The precise
stability properties of these two design choices, aggregate
feedback and individual feedback with FIFO gateways,
remain undetermined, but we conjecture that there are
such algorithms that can guarantee stable performance.
In contrast, we find that every time-scale invariant indi-
vidual feedback flow control with Fair Share gateways
guarantees fair and robust performance. Furthermore, we
can show that there are such algorithms that can guaran-
tee stable performance.

In the next section we introduce our mathematical model,
defining the network, the feedback flow control algo-
rithm, and the goals of flow control. In Section 3 we

analyze the performance of various feedback flow control
schemes, examining their ability to achieve each of the
four performance goals in turn. We then, in Section 4,
briefly discuss the applicability of these results to real
networks and conclude with a summary.

In many ways this work is inspired by the pioneering
efforts of Jacobson, Jain, Ramakrishnan, and Chiu. They
have identified the control-theoretic aspects of feedback
flow control (this connection is particularly clear in
[Chi89] and [JacB8]) and have devised algorithms that
produce remarkable benefits in real networks. Further-
more, Ramakrishnan, Chiu, and Jain [Ram87, Jai87]
bave recognized the inherent unfairness of aggregate
feedback flow control schemes, and have introduced an
individual feedback DECbit algorithm which delivers
better fairness than their previous algorithm. The service
discipline in this algorithm is still FIFQ, but the conges-
tion signals are now sent to selected connections.

In contrast, the work presented here is not practical and
we do not propose a particular feedback flow control
scheme. Rather, we attempt to provide a more systematic
and abstract exploration of the control-theoretic issues,
focusing especially on the previously underappreciated
role of gateway service disciplines in achieving satisfac-
tory congestion avoidance. Nagle [NagB87] was perhaps
the first to identify this role, and indeed the Fair Share
service discipline studied here is modelled after his propo-
sal of Fair Queueing (see also [Dem89] and [Zha89]).
Morgan {Mor89] has also investigated this role in a
slightly different context.

In addition to their practical proposals, Chiu and Jain
{Chi89] investigated a control-theoretic model of feedback
flow control similar to the aggregate feedback model con-
gidered here, except that their model has only binary
feedback and they focused primarily on linear rate
adjustment functions. They produced a rather complete
taxonomy and characterization of such rate adjustment
algorithms in networks with a single congested gateway.
They investigated issues of fairness and stability, but did
not examine robustness (time-scale invariance was
inherent in the model they considered). Also, since the
feedback in [ChiB9] was aggregate, the issue of service
disciplines was not addressed. Because of the limitation
of binary feedback, the feedback flow control in [Chi89)
was either increasing or decreasing at every point, and
thus the system was never in a steady state. Qur analysis
here concentrates almost exclusively on the steady state
behavior, and thus our results are rather different than
those of [Chi89].

There have also been many other theoretical discussions
of how to achieve stable and fair throughput allocations.
Hayden [Hay81], Gafni [Gaf82,84] and Jaffe [Jaf80,81]
introduced algorithms which, through synchronous source
responses to network gateway signals, produced stable
and fair throughput allocations. Mosely [Mos84] defined
an algorithm that was able to do this asynchronously.
This line of inquiry utilizes 2 more general sort of feed-
back in which the congestion signals directly dictate the
resulting transmission rate of the sources. Thus, their
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results depend on the rate adjustment algorithms and the
signalling mechanisms being closely coupled. This is in
contrast to our model, in which there is a conceptual
independence between the two different pieces of feed-
back flow control. OQur model is similar in style, but obvi-
ously not in detail, to currently implemented feedback
flow control algorithms.

2. Mathematical Model

In this section we first present our mathematical model,
describing in turn the network, service disciplines, feed-
back flow control, and performance goals. We then discuss
the limitations of this model.

2.1. Network

We consider networks of communication lines connected
by gateways. For notational simplicity, at every physical
gateway we associate with each outgoing line a separate
logical gateway (i.e. a gateway that connects five incom-
ing lines to three outgoing lines will be considered logi-
cally as three distinct gateways, one for each outgoing
line), so there is a one-to-one correspondence between
gateways and communication lines (traffic on a line goes
in only one direction). The traffic on these networks is
composed of a number of connections, which are source-
destination pairs, exchanging packets. The sources are
Poisson, with r; denoting the sending rate of connection i.
The gateways are exponential servers with infinite buffer
space, with gateway a having service rate p* In addition
to the queueing delay at each gateway, there are also
latencies [ (traffic-independent propagation delays) asso-
ciated with each communication line. The set of source-
destination pairs and the routing pattern are both
assumed to be static. Thus, each network and traffic
topology is completely described, for our purposes, by the
two sets y(i) and I(a). y(i) is the set of gateways through
which the i’th connection flows, and I'(a) is the set of con-
nections flowing through the a'th gateway. Let N* be the
number of connections flowing through the a'th gateway.

In steady state, the i’th connection will have an average
queue length @Q%(r) at the a’th gateway. This queue
length is a function of the vector of sending rates of all of
the other connections using this gateway (we will use
bold characters to denote vectors). The function Q°(r)
depends on the service discipline used at the gateway. We
will focus on two specific service disciplines, the FIFO
service discipline and the Fair Share service discipline,
which are discussed below.

We make two additional modelling approximations. First,
we assume that the queue lengths @%(r) always reflect
the current instantaneous sending rates;, we neglect the
transient equilibration process. Essentially we are assum-
ing, for the purpose of this model, that the time scale of
the transient equilibration process is fast compared to
that of the flow control rate adjustment process. Second,
in order to consider networks of gateways, we assume
that the flow of a connection’s packets out of a gateway
still constitute a Poisson stream, regardless of the service
discipline used (this assumption, while true for FIFO ser-

vice, is not true for Fair Share service).

2.2. Service Disciplines

The service discipline is represented by the function Q(r).
Since gateways in datagram networks have no a priori
koowledge about connections (which is not true in
reservation-based communication networks), the function
Q(r) must be symmetric in r (i.e., a permutation of the
r’s results in the same permutation of the @;’s). Further-
more, we assume that the service disciplines are time-

scale invariant, which means that, holding pEL con-

stant, Q(up) must be independent of the server rate u.
We also make, for technical reasons, two monotonicity

o)
assumptions: (1) % =0,and (2) @:>Q; & r;>r,.
.
The function Q(r) cannot be arbitrary; those that can be
realized by a nonstalling service discipline (one in which
the server is idle only when the queue is empty), must

satisfy the constraint EQ, g(zr) where g(x)= x
[

I
[Cof80, Reg86]. The ﬁmctmn must satmfy the further con-
Qi

straint that, numbering the connections so that the —r—

are in increasing order, the*: folluwinF inequalities hold for
each integer k€[1L,N —1]: 2Q;=g(Xr).
i=1 i=1

We will be primarily focusing on two service disciplines,
FIFO and Fair Share. The FIFO service discipline makes
no distinction between connections; packets are just ser-
viced in order of arrival. This gives rise to the well-
Pi
1-puu

known result for the average queue sizes: Q;(r)=

. N
where p;=—- and py = 2pi
B i=1

The Fair Share service discipline, introduced ia [She89],
is designed to guarantee that each connection receives
fair treatment at the gateway. It embodies the same
intuition of protecting sources from each other that led to
our version of Fair Queueing [Dem83] which e¢ssentially
approximates a Head-of-Line Processor Sharing algo-
rithm without using time-glicing. The similarity between
Fair Share and Fair Queueing is based only on their
being derived from the same intuition; we make no
claims about the two algorithms being mathematically
related.

The Fair Share service discipline is a preemptive priority
queueing discipline which is perhaps best explained
through the following example. In this example, there are
four connections, labelled so that the r; are in increasing
order, There are also four priority classes. We will
separate each connection’s Poisson stream into several
substreams, one for each priority class, with the total rate
for each connection summing to r;, All of connection 1’s
packets are in the highest priority class, and all of the
other connections get the same rate ry of packets in the
highest priority class. Similarly, the rest of connection 2’s
packets are in the second highest priority class, and all of
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the other connections get the same rate ro—r; of packets
in the second highest priority class. The pattern repeats
until all of the throughput is assigned a priority,

FS Priority Level
connection | A B C D
1 r - . -
2 ry | re—r
3 ry | rg—=ry | rs=rsg -
4 Py | rg—ry | ra—ry | rq—ry

Table 1; The Fair Share Service Discipline

The resulting function for Q(r) can be computed in a
straightforward manner from well-known results on
preemptive priority service disciplines. With the r;
labelled in increasing order, the average queues can be
defined recursively from the following relation:

B 1 N i-1
Q=577 g(EMmm,nn EQ.m
recalling that g(x)= ix' Note that locally @; depends

only on those r; such that r;<r;. The resulting triangu-
larity of the matrix ;i is crucial in deriving the proper-

J
ties of the Fair Share service discipline.

2.3. Feedback Flow Control

Feedback flow control consists of two parts; congestion
signals from gateways and rate adjustment at sources.

2.3.1. Congestion Signals: Each gateway a sends a
congestion signal b% to each connection i flowing
through it. These signals b% are real numbers in [0,1],
with a signal of 1 reflecting maximal congestion and a
signal of 0 reflecting minimal congestion. For each con-
nection i, the set of signals b% from the individual gate-
ways are combined into a single congestion signal b;.
Employing the philosophy of bottleneck flow control
[Jaf81], in which each source responds only to the signal
from the most congested gateway, we set b;=Max(b%;),
where the maximum is taken over all a€y(i). Any gate-
way a for which 5% =0, is deemed a bottleneck for con-
nection i.

While, for the purposes of our analysis here, it is
irrelevant how the signals reach the source, one can
think of the signal b; as being carried in a special field of
each packet. The value of b; is inserted into this field as
the packet passes through the gateways and then
returned back to the original source through the return-
ing ACK packets. The combining procedure could be
implemented by having, at each gateway a, b; set accord-
ing to bj—Max(b;,6";). Then, the congestion number b;
contained in returning ACK packets would be the max-
imum of all the congestion signals b%; over all gateways
a along the path of the connection. This scenario is quite
similar to the DECbit scheme, with the gateways enter-
ing their congestion information into a designated field

on packets as they pass though, except that here the
gateways set a real number rather than flip a single bit.
This is an illustration of how feedback flow control might
be implemented in practice; in our model, however, we
ignore the feedback delay inherent in such a scheme,

We assume that the gateways do not exchange congestion
information with each other, so gateways have no global
information. Thus, the congestion signals must only
reflect conditions local to the gateway. The only local
congestion information available is the set of average
queue lengths @°;. The larger these values are, the more
congested a gateway is. There are two basic kinds of
congestion signals, aggregate and individual. In an
aggregate feedback flow control scheme, all connections
receive the same congestion signal which is a function of
the aggregate congestion C®:. the signal is given by
b%;=B(C*) for some function B. There are many ways to
measure the aggregate congestion; here we take C*® to be
just the total queue size C*=Q%,= Y, @°;. These sig-
i€lial
nals b% reflect the aggregate congestion at the gateway,
independent of the amount each connection is contribut-
ing to the problem. The signals are totally insensitive to
the the service discipline used (since the feasibility con-
straints require that @, be conserved). We assume that
the congestion signal function B(C) is nowhere constant,

% >0, and that B(0)=0 and B(x)=1,

In individual feedback flow control, the connections are
treated separately. We want the congestion signal sent to
the i'th connection, b%;, to reflect the i'th connection’s
contribution to the total congestion at gateway a. If we
denote this contribution by C?;, then we want the conges-
tion signal to be a function of this: % =B(C%). In
designing the function C% we have two requirements:
(1) the individual feedback algorithm yields results that
are consistent with the aggregate feedback, in that at
steady state the total queue length Q%, at each
bottleneck gateway is the same under the two algo-
rithms, and (2) the congestion signal sent to the i’th con-
nection does not reflect the congestion due to queues
larger than its own. These requirements lead to the indi-
vidual congestion measure C%= ¥ Min(Q%,Q%). For
kel

the connection with the smallest @°;, C*=N*Q*® and
the individual congestion signal is the same as the aggre-
gate feedback signal would be in the case where every
connection has the same queue size. For the connection
with the largest @%;, C% =@Q%y and the connection must
respond to the aggregate congestion. The performance of
feedback flow control with individual congestion signals
depends crucially on the service discipline employed.

2.3.2. Rate Adjustment: Rate adjustment is a synchro-
nous process occurring at discrete time steps. At each
such time step, every connection updates its sending rate
from the old value r; to a new value r; according to the
formula F=r;+f (to prevent unrealistic transmission
rates, if f; <0 we truncate it to 0). As with the gateways,
we assume that the sources base their updating decisions
only on local information. Each source has three pieces of
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local congestion information; the current sending rate r;,
the congestion signal b;, and the average roundtrip delay
of its packets d;. The rate adjustment is then a function
of these three quantities; F,=r;+ f(r;,b;,d;). The function
f(r,bi,d;) contains the essence of the flow control mechan-
ism, as it determines how sources respond in the presence
of congestion. We assume that this function is never

L/
3b 0.

The dynamics of this iterative procedure are captured in
the notation #=F(r).

insensitive to changes in the congestion signal,

We hope that this iterative procedure, repeatedly apply-
ing F to the initial set of transmission rates r, leads
eventually to a steady state allocation of throughput,
Steady state is a vector of sending rates rgs such that
flri,bi,d))=0 for all i; equivalently, rss=F(rss). In our
analysis of flow control algorithms, we will primarily be
concerned with the properties of the resulting steady
state. These steady states need not be unique; flow con-
trol algorithms can have a multidimensional manifold of
steady state solutions. Furthermore, the iterative pro-
cedure does not always lead to a steady state, but can
lead to oacillatory or chaotic behavior.

2.4. Goals

There are four performance goals that we want to achieve
with a flow control algorithm: time-scale invariance, fair-
ness, stability, and robustness in the presence of hetero-
geneity. We discuss each of these goals in turn.

2.4.1. Time-Scale Invariance: The flow control algo-
rithm should not have any intrinsic time scales, but
rather should respond to the time scales defined by the
server rates present in the network. This leads to two
different conditions. First, we require that the steady
state scale with the server rates. Denote by rgs(p) the
steady state solution of a network with a set of server
rates p. Time-scale invariance (TSI) requires that, for any
positive scaling constant ¢, rss{ep)=crss(p). Second,
time-scale invariance requires that the steady state solu-
tion be independent of the latencies in the communica-
tion lines.

2.4.2. Fairness: The flow control algorithm should result
in fair allocations of bandwidth. The particular notion of
fairness we use here is borrowed from [Jaf80, Jaf81,
Gaf82, GafB4, Mos84, RamB87], but is modified for our
specific application where connections always consume as
much bandwidth as flow control allows. A steady state is
then deemed fair if, at each bottleneck a for connection i,
there are no sending rates greater than rg
b;=b% = r;=r; for all j€l(a). This condition essentially
states that throughput is allocated evenly among those
connections for whom the gateway is a bottleneck. A flow
control algorithm is considered guaranteed fuair if all its
resulting steady state solutions (for all network
configurations) are fair. However, steady state solutions
are not always unique, so there is a weaker form of fair-
ness that can be defined; we consider a flow control algo-
rithm potentially fair if every network configuration has
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at least one fair steady state.

2.4.3. Stability: The previous two conditions refer only
to the steady state allocation rgg itself. However, it is
important that the iterative procedure #=F(r) actually
converges to steady state. Optimally, all initial
configurations r should converge to the steady state., This
condition is extremely hard to verify so, instead, we con-
sider the weaker condition of linear stability. Linear sta-
bility requires that small deviations from the steady state
dissipate under the iterative procedure #=F(») (in the
case where we have a manifold of steady state solutions,
rather than a unique steady state solution, only those
deviations perpendicular to the steady state manifold
need dissipate under iterations). If all of the partial
derivatives are continuous, one can define the stability

oF;
matrix, DF, via DF.-J':EP—. A steady state is linearly
J

stable if all eigenvalues of DF have magnitude less than
one.

2.4.4. Robustness in the Presence of Heterogeneity:
Most of the treatment here assumes that all sources use
the same rate adjustment algorithm f. In practice, how-
ever, it is perhaps unreasonable to expect universal
implementation of any one particular flow control algo-
rithm, It is then important that the resulting steady state
provide a certain guaranteed level of throughput, even
when there is a heterogeneous set of rate adjustment
algorithms f; in use. We call a feedback flow control algo-
rithm robust if, for all networks and all traffic patterns,
each connection receives at least as much throughput as
it would if it were the only connection in a network with

T L
reduced server rates o =N“' One could, in a

reservation-based network (as opposed to a datagram net-
work) reserve for each connection an equal share of the
server rate. This ensures adequate service in spite of
heterogeneity in flow control algorithms, but at the cost
of losing statistical multiplicity at the server. The robust-
ness performance guarantee says that the datagram
approach should never give worse service, in terms of
throughput allocation, than the reservation-based
approach,

2.5. Limitations of Model

Before exploring the possibility of achieving these goals,
we first critically assess our model. This model makes
several rash and uncontrolled deviations from the real
world. There is the traditional, if unjustified, modelling
assumption of Poisson sources and exponential servers.
The iterative procedure is synchronous, with finite and
fixed feedback delays, even though such a process in the
real world is asynchronous, with much of the asynchrony
arising from communication delays brought about by net-
work congestion and differing roundtrip delays. We have
also assumed instant equilibration of queues sizes (the
queue lengths Q%(r) reflect the current sending rates r).
By considering only file-transfer-like traffic (infinitely
long-lived essentially one-way connections that send at



the maximum rate allowed by flow control) we have
neglected the effects of dynamic traffic patterns and
different type-of-service requirements.

There are two reasons why, in spite of these unrealistic
assumptions, we can still derive insight from this model.
First, the assumptions tend to make congestion control
easier, lending credence to our negative conclusions.
Second, most of the conclusions in this paper are qualita-
tive, and thus may be unaffected by particular modelling
inaccuracies. However, the lack of asynchrony in our
model certainly affects the stability results, and we are
currently investigating the extent of this effect,

In addition to the above unrealistic modelling assump-
tions, the present treatment is limited in that it considers
only a restricted class of feedback flow control algorithms.
There are three main restrictions. First, we look only at
steady state phenomena, so that oscillatory algorithms
like those in [ChiB9] are not considered. Second, in our
model only the congestion at a connection’s bottleneck
matters, Third, the congestion signals b% are time-scale
invariant, in that they remain constant under a scaling
of both the line speeds and source transmission rates.
This restriction enforces the conceptual separation
between the congestion signalling and the source
response alluded to in the Introduction, and thus excludes
algorithms such a those in [Hay81, Gaf82, Gaf84, Jaf80,
Juf81, Mos84]. It is important to note that the results in
this paper apply only to the limited class of algorithms
under consideration.

3. Performance Results

We now discuss the conditions under which the four goals
of time-scale invariance, fairness, stability, and robust-
ness can be met.

3.1. Time-Scale Invariance: Which design choices yield
time-scale invariant steady states? It turns out that
time-scale invariance is a property only of the rate
adjustment algorithm,

Theorem 1:
A feedback flow control algorithm is time-scale invari-
ant iff there is a unique value bgg such that
(1) f(r,bgs,d)=0 for all r and d.
(2) f(r,b,d)=0 for all r and d when b #bgs.

Proof:
First, to prove sufficiency, assume that we have a rate
adjustment algorithm that satisfies conditions (1) and
(2). Then, steady state occurs only when b;=bgs for
each connection i. However, for both individual and
aggregate feedback, the signals 6% depend only on the

ri .
ratios —;, so that rgg necessarily scales with the line
gpeeds,

To prove the necessity of conditions (1) and (2), con-
sider a single connection at a gateway with server
speed p and latency ! in the communication line. There
is no distinction between aggregate and individual

feedback in this case. With p= L the roundtrip delay
B
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1

)
merely a function of the average queue

is given by d=1+ . The congestion signal b is
length
Qup)= —I-E— Time-scale invariance requires that
there be a steady state solution pss which satisfiea

Pss 1

flapss,B( 1= psy L+ H0—psy) )=0 for all p and L
This shows that condition (1) must hold. Condition (2)
actually follows from condition (1) and our condition
that f be strictly monotonic in b.[]

Thus, time-scale invariance depends only on the rate
adjustment function f, and not on the signalling function
B or service discipline Q(r). In the rest of the paper, we
will restrict ourselves to TSI rate adjustment algorithms.
For TSI rate adjustment algorithms, the steady state con-
dition is merely that b;=bgg for all i{. For aggregate feed-
back flow control, this is merely a condition on
I = 2 r; at each gateway, which can give rise to a
i€la)

multidimensional manifold of steady state solutions. In
contrast, the steady state is always unique for individual
feedback flow control. Furthermore, the steady state is
independent of the service discipline, We will prove these
statements in the next section after we develop a result
on fairness.

3.2. Fairness: We now consider under what conditions
TSI feedback flow control algorithms are fair, Our first
result is the following theorem:

Theorem 2:
For aggregate feedback flow control,
(1) No TSI flow control is guaranteed fair.
(2) Every TSI flow control is potentially fair.

Proof:
(1) If we consider a network with a single gateway
with N connections, the steady state condition is
merely the condition ry=A for some constant A.
There is clearly an N~ }vdimensional manifold of solu-

tions r to the equation Er;zA; only one of these solu-
i=1

tions, the one where r;= N is fair. Thus, no TSI flow

control can guarantee fairness.

(2) We demonstrate that among the various steady
state solutions there is exactly one that is fair. The fol-
lowing construction is similar to the one in [Ram87].
Every TSI rate adjustment function is characterized by
a steady state congestion signal bgg as in Theorem 1. A
signalling function B(C) defines a steady state value
pss where B(l'oL

)=bss. Let B be the gateway with
= Pss

o
the smallest value of the quantity }'G—“ and, for each

connection { in I(8), set ri:Nﬁ pss. These sending

rates are considered fixed and we remove them from
the system. For each of these removed connections i,
weﬂ decrement N® by one and subtract the quantity
}%f from p“ for each a€y(i). Continuing this iterative



procedure results in a fair steady state solution. Note
that there can be no other fair allocations, since all fair
allocations must satisfy the conditions used in this con-
struction; this fair steady state is unique.[]

Thus, TSI aggregate feedback flow control can never
guarantee fairness. What happens with individual feed-
back flow control? Here, we have the opposite result:

Theorem 3:
Every TSI individual feedback flow control is
guaranteed fair,

Proof:

Recall that for TSI flow control, at steady state we
must have b;=bgg for all i. Assume that we have a
TSI individual feedback flow control algorithm which is
not guaranteed fair. Then, there must be some network
configuration with a steady state in which there exist
connections j and k and a gateway a such that (1)
Jj.k€l(@), (2) b%=by, and (3) ry>r;. But,

ry ;"l"j = Q&k)Qllj = C“*>C“j = bG‘}bnj
This leads to the contradiction
bg_I;:b* Zbakbbaj:b}':bss

Thus, every TSI individual feedback flow control is
guaranteed fair.["]

We can now easily establish the aforementioned fact that
the steady state is unique and independent of the service
discipline for TSI individual feedback flow control.

Corollary:
Every TSI individual feedback flow control has a
unique steady state, which is independent of the ser-
vice discipline.

Proof;

From Theorem 3 we know that all steady states of a
TSI individual feedback flow control algorithm are fair.
Also, given our form of individual feedback where
C%=Q"%,, for the maximal r; in I(a), these fair steady
states are identical to the unique fair steady state asso-
ciated with the aggregate version of the flow control
algorithm, as constructed in the proof of Theorem 2,
which are independent of the service discipline.[]

Note that the converse to Theorem 3 is not true; there
are guaranteed fair individual feedback flow control algo-
rithms that are not TSI. Similarly, there are guaranteed
fair aggregate feedback flow control algorithms that are
not TSI. The steady states resulting from guaranteed fair
feedback flow control must be independent of latencies,
but they need not scale with the server rates. Consider,
for example, the rate adjustment balgorithm
f=Q—-b)n—Bbr. At steady state, rizn—uﬁz—'}.
1]
connection sharing the same bottleneck has the same
sending rate, so the rate adjustment algorithm is
guaranteed fair. However, the steady state result does
not scale linearly with line speeds, so it is not TSI.

Every
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3.3. Stability: Given a particular network and traffic
pattern, it is possible to devise a stable feedback. flow con-
trol algorithm using either aggregate or individual feed-
back. However, one would like to find an algorithm that
is stable for all networks and traffic patterns. Barring
that, one would like to be able to guarantee that the sys-
tem is stable without having to investigate the entire sta-
bility matrix DF. In a large network, it will be hard to
determine DF in practice. However, the responses of indi-
vidual connections, that is the matrix elements DF;;, are
easy to determine (connections can make smali variations
in r; and easily measure their own response; measuring
the off-diagonal terms requires synchronization among
connections). Thus, we are interested in the relationship
between stability of the system as a whole and stability
of individual connections. Recall that a sufficient condi-
tion for systemic stability is that all of the eigenvalues of
DF must have magnitude less than one. This condition is
somewhat inadequate because not all of the partial
derivatives are continuous at the steady state solutions,
which is a result of the MAX and MIN functions in the
definitions of b; and C%. In our description that follows,
we do not introduce the cumbersome notation needed to
express these discontinuities, While the resulting
theorems remain true in spite of these discontinuities,
some of the following text avoids the complications usso-
ciated with the discontinuities.

We will call a system unilaterally stable if, at the steady
state, when we hold all other r; fixed and vary only r,
any small initial deviation from steady state will disap-
pear exponentially under the iterative procedure
Fi=ri+[(rib;,d;). When the derivatives are continuous,
this is equivalent to requiring |DF;;| <1 for all i. In this
section we focus on the relationship between this notion
of unilateral stability and that of systemic stability.
There are two different stability questions that emerge
from this focus,

First, under what circumstances does unilateral stability
imply systemic stability? For aggregate feedback flow
control unilaterally stable systems need not be stable.
This can be seen in the following example. (Consider a

single gateway with p=1 shared by N connections. Let

the feedback flow control have B(C):f'i-_f and

f(r,b,d)=n(8—b) with B,n positive constants. The fair
steady state is ;=

trol, DF;;=8(ij)—7. When n<2 this is unilaterally
stable. However, the leading eigenvalue of DF is 1—9N
which, for large enough IV, is unstable.

N For aggregate feedback flow con-

As an aside, we note that when the steady state is
unstable the iterative process #=F(r) can lead to oscilla-
tory and chaotic behaviorb If we change the signalling
. C
function to be B(C)= 11CP
initial condition, then the updating process reduces to
Fiot =l + MN(B—ry?). For small enough 7, as one
increases N this recursion relation proceeds from stable
behavior, to oscillatory behavior, to chaotic behavior (see
[Col80] for a review of such iterative dynamics).

and start in a symmetric



One can give similar examples showing that for indivi-
dual feedback flow control with FIFO service, unilaterally
stable systems need not be stable. However, for this case,
the discontinuity in the partial derivatives render the
matrix DF inappropriate and necessitates the direct
investigation of the dynamics of the original recursion
relation. We will not do that here,

In contrast to the examples above, unilaterally stable sys-
tems are always systemically stable when employing
individual feedback flow control with Fair Share service.

Theorem 4:
For T8I individual feedback flow control with Fair
Share service, unilaterally stable systems are always
systemically stable.

Proof:
First, assuming continuity of the matrix DF,;;, we
argue that the eigenvalues of the matrix are just the
diagonal elements DF;;. The matrix DF;;, at steady
of 9B 3C:

tate is gi i 1b =080 .
state is given in general by DF; ;= 8(i j)+ ab; 3C, %"é

The simultaneous triangularity of % and of ——

BQJ' Brj
implies the triangularity of DF;;, which then makes
the eigenvalues just the diagonal elements DF;;. Since
unilateral stability requires that |[DF;;|<1 for all i,
this implies systemic stability, The above argument
assumes the continuity of derivatives. While the par-
tial derivatives can be discontinuous, the triangularity
of the matrix always holds with Fair Share service, It
is straightforward to show that in the presence of
discontinuities, this triangularity and the condition of
unilateral stability are sufficient to guarantee systemic
stability. Thus, the conclusion of the theorem holds
despite the discontinuities.[]

Thus, individual feedback flow control with Fair Share
service is the only design combination we have discussed
which allows us to guarantee systemic stability merely
through checking unilateral stability. This guarantee of
systemic stability might be achieved through a more gen-
eral condition on the unilateral stability properties. We
will call a feedback flow control algorithm guaranteed
unilaterally stable if at steady state, for all network
configurations, it is always unilaterally stable. An exam-
ple of such a system is either aggregate or individual

ith B(C)=
feedback wi (C) C+1

f(r,b,d)=nr(B—b) with 7<2. Our second stability ques-
tion is: does guaranteed unilateral stability imply sys-
temic stability? The answer to this question is clearly yes
when we use individual feedback with the Fair Share ser-
vice discipline. For other design choices we have no firm
answers to this question, but we do have the following
conjecture:

flow control and

Conjecture:
A guaranteed unilaterally stable TSI feedback flow
control algorithm, with either aggregate or individual
feedback, will always be systemically stable,
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If this conjecture is true then, by choosing guaranteed
unilaterally stable TSI feedback flow control algorithms,
we can guarantee systemic stability with either aggre-
gate or individual feedback.

3.4. Robustness in the Presence of Heierogeneity:
Since aggregate feedback flow control is not guaranteed
fair even for networks with a single gateway, it clearly
cannot be robust. However, its performance in the pres-
ence of heterogeneity of rate adjustment algorithms f; is
appallingly bad. Consider a single gateway with two con-
nections having TSI aggregate feedback flow control with
steady state congestion signals bds and biy respectively,
with bdg>bZs. Under the iterative procedure F=F(r),

this system drives r,—»0 and r,—rss where
r-

B(” “’i )=bdg. This is a steady state despite the fact
—rss

that fa(ra,bs,d,) <0 since we truncate the ri’s to be nonne-
gative, Thus, any connections sharing a bottleneck gate-
way with a connection which has a larger bgs will even-
tually be completely shut down.

Whether or not TSI individual feedback flow control is
robust depends on the service discipline,

Theorem 5:
TSI individual feedback flow control is robust if and

r

only if the service discipline satisfies @;(r) < for

- ]
all r, where N is the number of connections at the

gateway.

Proof:
Consider a TSI individual feedback flow control algo-
rithm and let Cgy be the value such that B(Cys)=bgs,
Css
14+ Css
connection at a gateway with service rate g, its steady
state sending rate 7; is given by F;=ppys. To see the
necessity of the condition in Theorem 5, consider a sin-
gle gateway with N connections, and let r; be the
minimal steady state sending rate, so that C;=N@,.
Then, from robustness, we must have r;=<r; so, holding
all the other r; fixed and dropping them from the nota-
Css i
N  u—Nr
hold for all bgg, the necessity is established.

and define pss= . If connection i were the only

tion, Qi(R)=Qi(r)= Since this must

To see sufficiency, assume that the above condition
holds. Assume that the robustness criterion is violated,
so that, for some connection i, r;<7; where, wil:k‘%i bss

and pgs as defined above for connection i, Fi= pss

N8
a
where 8 minimizes -#: over all a€y(i). Again using a
notation where only the functional dependence on r; is
shown, at every bottleneck gateway a,
N°F;
Fu_Nnﬂ

=Cys

Css=C%(r)<C%(r)=N°Q%(r)=

which is a contradiction.[]]



The FIFO service discipline does not satisfy this condi-
tion. Thus, TSI individual feedback flow control with
FIFO service at the gateways is not robust. However, it is
not as bad as TSI aggregate feedback flow control in this
regard, in that in general all connections get a nonzero
amount of throughput. The Fair Share service discipline
does satisfy the condition in Theorem 5. This service dis-
cipline is able to provide robust service in the presence of
heterogeneous rate adjustment algorithms,

A robust flow control algorithm never gives worse service,
in terms of throughput allocation, than the reservation-
based approach, In addition, the queueing delays arising
from robust TSI individual feedback flow control algo-
rithms are lower, compared to those of a reservation-
based approach, by at least a factor of N® at each gate-
way.

4. Relevance to Real Flow Control Algorithms

It may not be appropriate to analyze currently imple-
mented feedback flow control algorithms, with their
attention to the real-life issues of averaging, transients,
dropped packets, and dynamic traffic patterns, within the
oversimplified framework presented here. However, if we
examine only the underlying design principles of these
real algorithms, there may be some insight to be gained.

The original DECbit algorithm [Jai88, Ram88, Chi89]
uses a linear-increase multiplicative-decrease window
adjustment algorithm (Jacobson [Jac88] uses something

similar). This can be modelled as f=(1 —-b)%*ﬁbr, with

b heuristically interpreted as the probability that the
DECbit is set. This is neither TSI nor guaranteed or
potentially fair. The lack of fairness is due to the latency
sensitivity of d; connections with longer roundtrip times
get less throughput. This is easily corrected by interpret-
ing the algorithm as a rate, not window, adjustment algo-
rithm where the form becomes f=(1—b)n—Bbr which is
guaranteed fair but still not TSI. The analysis leading to
the adoption of linear-increase multiplicative-decrease as
the optimal choice for rate adjustment [Chi89] assumed
only a single congested gateway and a binary aggregate
congestion signal so that the asymptotic behavior is not a
steady state but rather a periodic oscillation. In this set-
ting, the linear-increase multiplicative-decrease algo-
rithm is yields long-term averages that are both TSI and
guaranteed fair. However, the period of oscillation grows
linearly with the server rate.

It is hard to analyze the stability of these algorithms,
given the complicated nature of their averaging
processes. However, Zhang [Zha89) and Hashem [Has89]
have observed pronounced oscillatory behavior in
Jacobson’s algorithm, indicating that there may be some
stability problems. These authors have also observed the
lack of robustness of aggregate feedback flow control by
comparing the performance with two different kinds of
flow control present (see also [Dem89]).

In [Dem89], following the insights of Nagle [Nag87], we
analyzed the Fair Queueing service discipline, which can
be considered a realistic version of Fair Share (see also
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[Zha89)). Simulation results show that, in the context of
real flow control algorithms (DECbit, Jacobson’s algo-
rithm, and generic sliding window flow control), Fair
Queueing provides better fairness and robustness than
FIFO service. We did not investigate issues of stability or
time-scale invariance, nor did we explore other flow con-
trol algorithms.

5. Discussion

We began with four goals: time-scale invariance, fairness,
stability, and robustness. Time-scale invariance is
perhaps the most important goal. Networks will soon
have line speeds ranging from 1.2 kbits/sec phone lines to
gigabit/sec optical fibers. Similarly, there will be laten-
cies ranging from half of a second (satellite links) to
microseconds, With both line speeds and latencies span-
ning six orders of magnitude, any algorithm that has an
intrinsic time scale is likely to seriously malfunction.

Since time-scale invariance merely puts a condition on
the rate adjustment algorithm, both individual and
aggregate feedback algorithms are able to provide time-
scale invariant performance. In the rest of our analysis,
we considered only TSI rate adjustment algorithms, and
investigated the extent to which individual and aggre-
gate feedback algorithms could achieve the other three
goals.

TS1 aggregate feedback flow control algorithms are
inherently potentially fair, in that there is always one
fair steady state, but are never guaranteed fair, in that
there are always some networks which necessarily have
other unfair steady state solutions. Aggregate feedback is
not robust in the presence of heterogeneity; in fact, the
less greedy connections receive no throughput at all. We
conjecture that TSI aggregate feedback that is
guaranteed unilaterally stable will always result in sys-
temic stability. However, unilateral stability does not
always result in systemic stability.

In contrast, TSI individual feedback flow control is
guaranteed fair, with a unique steady state. These con-
clusions apply no matter which service discipline is used
in the gateways. When individual feedback is combined
with FIFO gervice at the gateways, the performance is
not robust against heterogeneity in rate adjustment algo-
rithms, but the inequities are not as severe ae for aggre-
gate feedback. The stability provided by this combination
is similar to that provided by aggregate feedback.

When we combine TSI individual feedback flow control
with Fair Share service, we get robust performance.
Furthermore, unilateral stability does guarantee systemic
stability. At least in this simplified model, it is clear that
TSI individual feedback flow control with Fair Share ser-
vice provides the best performance among all of the
options we have considered.

The question of implementation remains largely unad-
dressed. It is clear that the implementation issues become
more vexing as we proceed from (1) aggregate feedback
flow control to (2) individual feedback flow control with
FIFO service to (3) individual feedback flow control with



Fair Share service. The goal of this paper is to examine,
at least in this limited theoretical context, to what extent
the quality of the flow control improves as one makes this
progression,
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