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ABSTRACT

Routing on the Internet combines data plane mechanisms
for forwarding traffic with control plane protocols for guar-
anteeing connectivity and optimizing routes (e.g., shortest-
paths and load distribution). We propose data-driven con-
nectivity (DDC), a new routing approach that achieves the
fundamental connectivity guarantees in the data plane rather
than the control plane, while keeping the more complex re-
quirements of route optimization in the control plane. DDC
enables faster recovery from failures and easier implementa-
tion of control plane optimization.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

General Terms
Design, Reliability

1. INTRODUCTION

Networking researchers often refer to two “planes” in
networks. The data plane forwards packets based on the
packet header and local forwarding state in the router
(such as a FIB). The control plane is responsible for pro-
viding that forwarding state. By setting the forwarding
state appropriately, the control plane enables networks
to achieve connectivity (forwarding tables provide end-
to-end paths), route optimization (choosing shortest or
otherwise desirable paths), load distribution (links are
not overloaded), and other network control goals.

The data plane is typically implemented in hardware
and the control plane is typically implemented in soft-
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ware. However, the fundamental distinction between
the two planes is not how they are implemented but
instead lies in what state they use and what state they
change. The data plane only uses forwarding state lo-
cal to the router in making its decisions, and does not
change this state.! The control plane typically uses ex-
ternal state — obtained from a distributed algorithm
such as a routing protocol — to set the forwarding
state. As a result, the two planes operate at very differ-
ent speeds: for instance, on a 10gbps link, a 1500byte
packet is sent in 1.2usec while exchanging control plane
messages takes on the order of 50msec or more (accord-
ing to vendors we’'ve spoken with) and global conver-
gence of the dataplane can take many seconds.

In the naive version of this two-plane approach, the
network can recover from failure (i.e., restore connec-
tivity) only after the control plane has computed a new
set of paths and installed the associated state in all
routers. The disparity in timescales between packet
forwarding and control plane convergence means that
failures often lead to unacceptably long outages. To
alleviate this, the control plane is now often assigned
the task of precomputing failover paths; when a fail-
ure occurs, the dataplane utilizes this additional state
to guide the forwarding of the packet. This approach
works for a given failure scenario as long as an appro-
priate backup path has been established, but the de-
gree of resilience achievable with a reasonable number
of precomputed backup paths is quite limited (though
perhaps enough for most network requirements). More
recently, researchers have been developing methods for
computing multiple paths between each source and des-
tination; the end host chooses an alternate path when
the primary goes down. This approach suffers from
the same limited (but perhaps sufficient) degree of re-
silience, and also requires a downtime of roughly the
round-trip-time in the network, which (if the path has

We consider state that tells the router which of its con-
nected links are up to be local configuration state; it is not
derived from either the control plane or data plane, but can
be changed by local detection of the link.



any significant speed-of-light latency) is quite long com-
pared to data plane timescales.

This raises the question of whether there is any way
to extend the data plane so that one can achieve ideal
connectivity, where by ideal connectivity we mean that
packets are delivered as long as the network remains
connected. Through some simple counterexamples, we
have proven that the answer is no: if the forwarding
state remains constant (i.e., the control plane has not
yet had a chance to recompute the forwarding state)
one cannot always achieve ideal connectivity. We omit
the formal statement and proof for lack of space, but
the intuition is obvious: if you allow no state changes
in the router (other than knowing which local links are
up), and no rewriting of packet headers (as in [10, 9]),
then there is no way that local state could compensate
for any arbitrary set of connectivity-preserving failures.
Given that this impossibility result precludes achieving
ideal connectivity solely using the data plane, we must
then ask: can we find a way to achieve ideal connectivity
on a timescale much less than that of the control plane?

The timescale of the control plane is so large be-
cause it must deal with situations where changes far
from a router will have an impact on its state (e.g.,
it must check remote state to see if the shortest path
has changed). However, one can ask if there is a much
smaller class of forwarding state changes, ones that de-
pend only on nearby information, that could support
ideal connectivity. To this end, we propose the idea of
data-driven connectivity (DDC), which maintains con-
nectivity by allowing simple changes in forwarding state
predicated only on the destination address and incom-
ing port of an incoming packet. The DDC state changes
we allow are those that are simple enough to be easily
done at packet rates with revised hardware (and, in cur-
rent routers, can be done quickly in software).

The advantage of the DDC paradigm is that it leaves
the general control requirements which require globally
distributed algorithms (such as optimizing routes, de-
tecting disconnections, and distributing load) to be han-
dled by the control plane, and moves connectivity main-
tenance, which has simple semantics, to DDC. DDC
has, at worst, a much faster time scale than the control
plane, and with new hardware can keep up with the
data plane.

In this paper we apply this approach to the general
problem of intradomain routing (whether it be data-
center, WAN, or enterprise) at either layer 2 or layer
3. The only assumption we make is that all forwarding
decisions are made on exact-match lookups (whether
it be over MAC addresses or IP addresses/prefixes).?
In what follows, we will refer to addresses as the unit

2This assumption is not essential to the correctness of our
algorithm, but it removes the possibility that a change in
one address’ route causes a much larger rewriting of the

of exact match and nodes as the forwarding element
(whether it be a switch or a router). Because of the ex-
act match requirement, one can consider the forwarding
state for each address independently, so we typically
consider only how DDC updates the forwarding state
for a single address (because the state change is driven
by the arrival of a single packet, and it is that packet’s
destination address that determines which address’ for-
warding state will be updated).

In the next section (Section 2) we present the DDC
algorithm for maintaining connectivity and state the
theorem about its correctness. In Section 3 we describe
a control plane algorithm for achieving optimal routes,
load distribution, and disconnection detection. DDC
does not depend on this particular control plane al-
gorithm; to the contrary, the control plane algorithm
leverages properties of the DDC algorithm. We then
evaluate the performance of this combined system in
Section 4.

Before beginning the description of our algorithm, we
first say a few words about related work. We are not
aware of any work that adopts the DDC paradigm we
describe here (though we would be surprised if there
were not some earlier attempts at something similar),
but the algorithmic details of DDC borrow heavily from
the algorithm developed by Gafni and Bertsekas [5],
whose ideas influenced a series of subsequent designs
(e.g., [3, 12]) categorized as “link reversal routing”. The
control plane ideas we discuss are similar to those con-
sidered in [8, 13, 7, 11] in that they (and we) use Di-
rected Acyclic Graphs (DAGs) as a way to avoid loops
while increasing resilience. Also, as mentioned earlier,
there are proposals [10, 9] for achieving ideal connec-
tivity by having data packets carry control plane infor-
mation, but here the state update operations are not
simple, and cannot be done at data plane speeds.

2. DATA-DRIVEN CONNECTIVITY

DDC maintains connectivity via simple changes to lo-
cal forwarding state, predicated only on the destination
address and incoming port of an incoming packet. We
first give a brief overview of how DDC works, followed
by a more detailed description and a brief sketch of its
correctness.

2.1 Overview

Consider a network modeled as an undirected graph
G = (N,E), where N is the set of nodes, and F is
the set of links. In what follows, we only consider the
forwarding state associated with a unique destination
node v, and packets addressed to that destination. The
forwarding state at each node other than v (which is
initialized by the control plane) specifies which links

forwarding state (as can happen in LPM), which is a slow
process.



Figure 1: Illustration of DDC. (a) normal for-

warding. (b) DDC bounce back when failure
happens.

it should use to reach v. Directed edges in Figure 1(a)
illustrate the forwarding state in a simple example, e.g.,
node 3 forwards packets (destined to node v) to either
node 1 or node 2. If node ¢ forwards packets through
next-hop node j, we call link (¢, j) an outgoing link for
i, and an incoming link for j.3 Let I, and O,, be the
sets of incoming and outgoing links (respectively) at
node n. When node n’s outgoing link fails, that link is
immediately removed from n’s set of outgoing links O,,.
In Figure 1(a), Iy = {3,4} and Oz = {v}.

Intuitively, in DDC, a router should send out a re-
ceived packet along an outgoing link as long as such a
link exists, and “bounce back” the packet to the sending
neighbor otherwise. To wit, when a packet destined to v
arrives at node n, the following two steps are executed:

Update: If the packet arrived on an incoming link, no
updates are needed. If it arrived on an outgoing link,
remove that link from O,, and place it in I,,.
Forward: If O, is not empty, forward the packet along
one of the available outgoing links. If O, is empty,
forward packet back through the incoming link from
which it arrived.

Consider Figure 1(b). When node 2 loses its outgo-
ing link (2,v) due to link failure it immediately removes
the link from Os, which then becomes empty. When a
packet destined to v arrives at 2 from nodes 3 or 4, it
sends it back through the same incoming link (“bounc-
ing it back”). Once node 3 receives a packet from 2, it
removes the outgoing link (3,2) from Oz and send the
packet through its other outgoing link (3,1). Similarly,
once node 4 receives a packet from 2 it removes its out-
going link to 2 from O4 and send that packet through
its other outgoing link.

Note how node 2’s “bounce back mechanism” pre-
vents on-the-fly packets from being dropped, and that
after 3 and 4 remove (3,2) and (4,2) from their outgo-
ing link sets this bounce back is no longer needed. It
is also obvious DDC works without global communica-

3For convenience we assume that all links are either incom-
ing or outgoing (as opposed to unused), as it makes our later
state transition diagrams easier.
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tion. Instead, nodes’ actions under DDC are fast and
simple, and are based on local information only. How-
ever, what if multiple nodes need to bounce back? We
next extend the basic idea to a complete design.

2.2 Design Details

Because forwarding state is local, we choose to re-
fer to ports (which are local) rather than links (which
are shared between the two endpoints). We define four
types of ports: incoming ports (I-ports), outgoing ports
(O-ports), reversed incoming ports (RI-ports), and re-
versed outgoing ports (RO-ports).

Initially, all ports are either incoming ports (I-ports),
through which packets are received, or outgoing ports
(O-ports) through which packets are sent out. In the
example described in Figure 1, the port connecting node
3 to node 4 is an I-port whereas the port connecting
node 3 to node 1 is an O-port. Thus, I-ports and O-
ports capture “normal” behavior, and the network is
initialized in a state where all ports are in one of these
categories.

In the presence of failures, packets in DDC must occa-
sionally be “bounced back”; to do so, the corresponding
ports must be “reversed” so that packets can travel in
the opposite direction than dictated by their original



I-port or O-port designation. To handle such “rever-
sal” situations, we introduce the categories of reversed
incoming ports (RI-ports), and reversed outgoing ports
(RO-ports). At the DDC level, the following transi-
tions are allowed: I to RI, RI to I, O to RO, and RO
to O. The only way an I-port can become an O-port,
or vice-versa, is through actions of the control plane
(which we discuss in the next section). However, the
DDC transitions are sufficient to guarantee connectiv-
ity. We now describe these transitions in greater depth,
but forewarn the reader that space limitations preclude
a full explanation of why they are sufficient.

The O-RO and I-RI transitions are simple: RI-ports
are (originally) incoming ports along which the node
“bounces back” an incoming packet, and RO-ports are
(originally) outgoing ports along which the node re-
ceives an incoming packet. The transitions from RO
to O, and RI to I, are more complicated and the asso-
ciated state-diagrams are shown in Figures 2 and 3.

To illustrate these scenarios, consider a node i that
has a single port which is an RO-port. When a packet
arrives along this RO-port, ¢ has no choice but to bounce
it back through the same port, with the hope that the
receiving neighbor j is able to forward the packet to-
wards the destination. According to our rules (see Fig-
ure 2), ¢ must make its single port an O-port again,
hence the term “re-reverse”. Observe that as ¢ received
the packet from j through an RO-port it must be that
i’s packet will reach j through j’s RI-port. At this point
j should, if possible, send to another RI-port or O-port.
The transition is illustrated in Figure 3.

2.3 Ideal Connectivity

DDC achieves ideal connectivity, in the sense that so
long as a set of network failures does not disconnect a
node n from the destination v, packets from n are deliv-
ered to v. More specifically, we can prove the following:

THEOREM 1. Let G be a network graph obtained from
G wvia the removal of a subset of the links in E. For
every node n that has some route to the destination v
in G it holds that under DDC every packet sent from i
to v is guaranteed to reach v.

Observe that the fact that packets are never dropped
follows immediately from our DDC forwarding rules
(a packet is always either bounced back or forwarded
through another port). To establish Theorem 1, we are
left with proving that packets never enter endless loops,
and thus always reach v eventually. Our proof of this
claim is similar in spirit to the correctness proof for
the algorithm in [5], and is omitted due to space con-
straints. The key idea is showing inductively that the
claim holds for a gradually expanding set of nodes in
v’s connectivity component in G.

3. CONTROL PLANE

DDC adjusts the forwarding state to maintain con-
nectivity, but it does not ensure that the resulting paths
are shortest paths, nor does it try to distribute the load
or detect network disconnections. For these tasks we
use a control plane algorithm called “Routing Along
DAGs” (RAD). What we present here is just an exam-
ple of how the control plane can be simplified once con-
nectivity has been handled by DDC. The goal of RAD
is to compute shortest path routes that are resilient in
the sense that failures can often be repaired by merely
taking an alternate outgoing port.

Optimizing routes, detecting disconnection:

Our RAD design can be viewed as an enhanced Dis-
tance Vector protocol which, instead of computing a
routing tree, computes a Directed Acyclic Graph (DAG),
so that a node may have multiple outgoing links to the
destination. For every destination v, RAD simply com-
putes the shortest path distance between each node n
and v (given this metric) and sets n’s set of outgoing
links (along which traffic to v is forwarded) to be all
links that point from n to a neighbor node whose dis-
tance is smaller. There is some arbitrary ordering <
of the nodes in N. So when two neighboring nodes, i
and 7, have the same distance from v, then i forwards
traffic to j if ¢ < j (and vice versa). Observe that the re-
sulting forwarding configuration is indeed loop-free and
that every link in the network is used for forwarding
(in a single direction). Once RAD is run, all ports are
either I-ports or O-ports. RAD can be executed in a
more incremental fashion, where each node periodically
updates its distance estimate and adjusts the state of
its ports (in cooperation with the peer nodes).

To detect nodes that are disconnected from a desti-

nation, each destination v periodically sends out a mes-
sage with a monotonically increasing timestamp. All
other nodes keep track of the time the last message
they received from v was sent. In the event that the
time elapsed since the last received message exceeds a
certain threshold, the node will consider destination v
unreachable.
Load Distribution:* A link is considered congested
once its utilization level exceeds a certain threshold.
When a node n’s outgoing link becomes congested, n
diverts traffic to uncongested outgoing links, if such out-
going links exist (this applies to all flows traversing that
link and so the node has the freedom to decide for which
specific flows to divert traffic).

When all of a node n’s outgoing links for a certain
destination are congested, n sends a congestion signal
to one or more of its neighbors. Upon receipt of this

“Note that we do not attempt to minimize maximum uti-
lization (which is what we call load balancing) Our aim is
merely to avoid congestion (which is what we call load dis-
tribution).
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message, the neighbor will decrease its transmission rate
along the link to n by a certain predetermined amount,
and treat this link to n as congested.

4. EVALUATION

We now evaluate our design via simulation. We feel
that the DDC paradigm, and its rigorously established
connectivity properties, represent the bulk of our contri-
bution. The material presented here merely illustrates
some of the performance properties of DDC and the
control plane algorithm RAD.

For our simulations we used 6 ISP topologies and 3
datacenter topologies. The size of ISP topology varies
from small (AS1221, 83 nodes and 131 links) to large
(AS1239, 361 nodes and 1479 links). The three data-
center topologies — Cisco (a 3-tier hierarchical topology
recommended by Cisco [2]) FatTree [1] and VL2 [6] —
are highly symmetric. Due to our limited space, most of
our results are shown for only a subset of the topologies,
but the results on the other topologies are qualitatively
similar.

4.1 Evaluation of DDC
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changes on AS1755

Outdegree and local resilience The first question
we ask is: how often can a node recover locally from
a single link failure by simply using another outgoing
link?® Figure 4 shows, for each topology and averaged
over all DAGs (i.e., a separate DAG per destination),
the percentage of resilient nodes (outdegree bigger than
one), and “redundant” links (whose failure does not
cause a link reversal). In the two larger ISP topolo-
gies (AS1239 and AS7018), over 90% of the nodes are
resilient and over 95% of the links are redundant. In
the other four ISP topologies, the resilient node per-
centage is between 60% and 65%, while the redundant
link percentage is roughly 80%. The datacenter topolo-
gies Cisco and VL2 have over 97% resilient nodes and
redundant links. In contrast, FatTree has only about
70% resilient nodes, mainly because in any particular
FatTree pod all aggregation layer switches have outde-
gree one to each destination edge switch.

Scope of failure recovery. We now investigate the
impact of single failures in a different way; when a link
fails, how many nodes need to respond? For DDC we
look at the “reversals” (i.e., cases where an incoming
link had to become an outgoing link based on the data-
driven state changes described in Section 2); in partic-
ular, we count how many nodes had to reverse a link
(and call it a “node reversal”). To benchmark these re-
sults, we compare against shortest-path routing, where
we measure the number of nodes whose outgoing port
changed (we call this a change in the FIB).°

Distributions of failure recovery scope is shown in
Figure 5-6, where the link events are ordered in terms
of the percentage of responding nodes. On the large
ISP 1239, most events created very few node reversals,

°In answering this question, we ignore the nodes that are
physically connected by a single link, because there is no
way routing can help them. We know that there must be
some occasions when a single failure disconnects a node (and
forces it to initiate a reversal) because for each DAG there
is at least one node with outdegree one.

SWe also tested up to 10 concurrent link failures, in which
DDC retained its smaller scope.
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but the tail of the distribution had over 30% of the
nodes responding. In contrast, shortest path routing
had a high fraction of FIB changes for all events. For
the smaller ISP 1755, the distribution of node reversals
increases more gradually, and is smaller than shortest
path in 75% of failures.

We also investigated the stretch of the path that re-
sults after DDC has restored connectivity but before
the control plane has optimized the path. For AS1755
the stretch is distributed between 1 and 1.4, with an
average of 1.15. Note that the path stretch of DDC
is only temporary, because when the control plane up-
dates forwarding entries, the new shortest path will be
made available.

4.2 Load Distribution.

We evaluate RAD’s ability to distribute load by com-
paring it to the optimal load balancing algorithm in a
linear programming model from the traffic engineering
literature (e.g., [4]). This model assigns a penalty for
various usage levels on each link, with the penalties ris-
ing steeply as the link becomes overloaded; links are
allowed to carry more than 100% of their capacity (but
at a heavy penalty). The goal is to minimize the total
penalty.

Note that RAD was designed merely to distribute
load when links get overloaded and is not trying to opti-
mize any given utility function; for instance, RAD does
not try to balance the load on two outgoing links as long
as neither is overloaded. Nonetheless, we ran several ex-
periments to measure how close to optimal RAD’s load
distributions are. Figure 7 shows the results on two ISP
topologies. On the AS1239 topology, RAD tracks the
optimal solution quite well. It similarly does well on the
AS1755 topology, although under high loads (when over
8% of the links are over 90% utilized) the gap becomes
significant.
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