
USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 113

Ensuring Connectivity via Data Plane Mechanisms

Junda Liu‡, Aurojit Panda�, Ankit Singla†, Brighten Godfrey†, Michael Schapira�, Scott Shenker�♠
‡Google Inc., �UC Berkeley, †UIUC, �Hebrew U., ♠ICSI

Abstract
We typically think of network architectures as having two
basic components: a data plane responsible for forward-
ing packets at line-speed, and a control plane that instan-
tiates the forwarding state the data plane needs. With
this separation of concerns, ensuring connectivity is the
responsibility of the control plane. However, the control
plane typically operates at timescales several orders of
magnitude slower than the data plane, which means that
failure recovery will always be slow compared to data
plane forwarding rates.

In this paper we propose moving the responsibility for
connectivity to the data plane. Our design, called Data-
Driven Connectivity (DDC) ensures routing connectivity
via data plane mechanisms. We believe this new separa-
tion of concerns — basic connectivity on the data plane,
optimal paths on the control plane — will allow networks
to provide a much higher degree of availability, while still
providing flexible routing control.

1 Introduction
In networking, we typically make a clear distinction be-
tween the data plane and the control plane. The data
plane forwards packets based on local state (e.g., a router’s
FIB). The control plane establishes this forwarding state,
either through distributed algorithms (e.g., routing) or
manual configuration (e.g., ACLs for access control). In
the naive version of this two-plane approach, the network
can recover from failure only after the control plane has
computed a new set of paths and installed the associated
state in all routers. The disparity in timescales between
packet forwarding (which can be less than a microsecond)
and control plane convergence (which can be as high as
hundreds of milliseconds) means that failures often lead
to unacceptably long outages.

To alleviate this, the control plane is often assigned
the task of precomputing failover paths; when a failure
occurs, the data plane utilizes this additional state to for-
ward packets. For instance, many datacenters use ECMP,
a data plane algorithm that provides automatic failover
to another shortest path. Similarly, many WAN networks
use MPLS’s Fast Reroute to deal with failures on the data
plane. These “failover” techniques set up additional, but
static, forwarding state that allows the datapath to deal
with one, or a few, failures. However, these methods re-
quire careful configuration, and lack guarantees. Such
configuration is tricky, requiring operators to account for

complex factors like multiple link failures, and correlated
failures. Despite the use of tools like shared-risk link
groups to account for these issues, a variety of recent out-
ages [21, 29, 34, 35] have been attributed to link failures.
While planned backup paths are perhaps enough for most
customer requirements, they are still insufficient when
stringent network resilience is required.

This raises a question: can the failover approach be
extended to more general failure scenarios? We say that a
data plane scheme provides ideal forwarding-connectivity
if, for any failure scenario where the network remains
physically connected, its forwarding choices would guide
packets to their intended destinations.1 Our question can
then be restated as: can any approach using static for-
warding state provide ideal forwarding-connectivity? We
have shown (see [9] for a precise statement and proof
of this result) that without modifying packet headers (as
in [16, 18]) the answer is no: one cannot achieve ideal
forwarding-connectivity with static forwarding state.

Given that this impossibility result precludes ideal
forwarding-connectivity using static forwarding infor-
mation, the question is whether we can achieve ideal
forwarding-connectivity using state change operations
that can be executed at data plane timescales. To this
end, we propose the idea of data-driven connectivity
(DDC), which maintains forwarding-connectivity via sim-
ple changes in forwarding state predicated only on the des-
tination address and incoming port of an arriving packet.
DDC relies on state changes which are simple enough to
be done at packet rates with revised hardware (and, in cur-
rent routers, can be done quickly in software). Thus, DDC
can be seen as moving the responsibility for connectivity
to the data plane.

The advantage of the DDC paradigm is that it leaves
the network functions which require global knowledge
(such as optimizing routes, detecting disconnections, and
distributing load) to be handled by the control plane, and
moves connectivity maintenance, which has simple yet
crucial semantics, to the data plane. DDC can react, at
worst, at a much faster time scale than the control plane,
and with new hardware can keep up with the data plane.

DDC’s goal is simple: ideal connectivity with data
plane mechanisms. It does not bound latency, guarantee
in-order packet delivery, or address concerns of routing

1Note that ideal forwarding-connectivity does not guarantee packet
delivery, because such a guarantee would require dealing with packet
losses due to congestion and link corruption.

1

114 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

policy; leaving all of these issues to be addressed at higher
layers where greater control can be exercised at slower
timescales. Our addition of a slower, background control
plane which can install arbitrary routes safely even as
DDC handles data plane operations, addresses the latency
and routing policy concerns over the long term.

We are unaware of any prior work towards the DDC
paradigm (see discussion of related work in §5). DDC’s
algorithmic foundations lie in link reversal routing (Gafni
and Bertsekas [10], and subsequent enhancements [8, 26,
32]). However, traditional link reversal algorithms are not
suited to the data plane. For example, they involve gener-
ating special control packets and do not handle message
loss (e.g., due to physical layer corruption). In addition,
our work extends an earlier workshop paper [17], but the
algorithm presented here is quite different in detail, is
provably correct, can handle arbitrary delays and losses,
and applies to modern chassis switch designs (where intra-
switch messaging between linecards may exhibit millisec-
ond delays).

2 DDC Algorithm
2.1 System Model
We model the network as a graph. The assumptions we
make on the behavior of the system are as follows.

Per-destination serialization of events at each node.
Each node in the graph executes our packet forwarding
(and state-update) algorithm serially for packets destined
to a particular destination; there is only one such pro-
cessing operation active at any time. For small switches,
representing the entire switch as a single node in our graph
model may satisfy this assumption. However, a single
serialized node is a very unrealistic model of a large high-
speed switch with several linecards, where each linecard
maintains a FIB in its ASIC and processes packets inde-
pendently. For such a large switch, our abstract graph
model has one node for each linecard, running our node
algorithm in parallel with other linecards, with links be-
tween all pairs of linecard-nodes within the same switch
chassis. We thus only assume each linecard’s ASIC ex-
ecutes packets with the same destination serially, which
we believe is an accurate model of real switches.

Simple operations on packet time scales. Reading
and writing a handful of FIB bits associated with a desti-
nation and executing a simple state machine can be per-
formed in times comparable to several packet processing
cycles. Our algorithm works with arbitrary FIB update
times, but the performance during updates is sub-optimal,
so we focus on the case where this period is comparable
to the transmission time for a small number of packets.

In-order packet delivery along each link. This as-
sumption is easily satisfied when switches are connected
physically. For switches that are separated by other net-
work elements, GRE (or other tunneling technologies)

with sequence numbers will enforce this property. Hard-
ware support for GRE or similar tunneling is becoming
more common in modern switch hardware.

Unambiguous forwarding equivalence classes.
DDC can be applied to intradomain routing at either
layer 2 or layer 3. However, we assume that there is an
unambiguous mapping from the “address” in the packet
header to the key used in the routing table. This is true
for routing on MAC addresses and MPLS labels, and
even for prefix-based routing (LPM) as long as every
router uses the same set of prefixes, but fails when
aggregation is nonuniform (some routers aggregate
two prefixes, while others do not). This latter case is
problematic because a given packet will be associated
with different routing keys (and thus different routing
entries). MPLS allows this kind of aggregation, but
makes explicit when the packet is being routed inside a
larger Forwarding Equivalence Class. Thus, DDC is not
universally applicable to all current deployments, but can
be used by domains which are willing to either (a) use a
uniform set of prefixes or (b) use MPLS to implement
their aggregation rather than using nonuniform prefixes.

For convenience we refer to the keys indexing into
the routing table as destinations. Since DDC’s routing
state is maintained and modified independently across
destinations, our algorithms and proofs are presented with
respect to one destination.

Arbitrary loss, delay, failures, recovery. Packets
sent along a link may be delayed or lost arbitrarily (e.g.,
due to link-layer corruption). Links and nodes may fail ar-
bitrarily. A link or node is not considered recovered until
it undergoes a control-plane recovery (an AEO operation;
§3). This is consistent with typical router implementa-
tions which do not activate a data plane link until the
control plane connection is established.

2.2 Link Reversal Background
DDC builds on the classic Gafni-Bertsekas (GB) [10]
link reversal algorithms. These algorithms operate on an
abstract directed graph which is at all times a directed
acyclic graph (DAG). The goal of the algorithm is to
modify the graph incrementally through link reversal
operations in order to produce a “destination-oriented”
DAG, in which the destination is the only node with no
outgoing edges (i.e., a sink). As a result, all paths through
the DAG successfully lead to the destination.

The GB algorithm proceeds as follows: Initially, the
graph is set to be an arbitrary DAG. We model link direc-
tions by associating with each node a variable direction
which maps that node’s links to the data flow direction (In
or Out) for that link. Throughout this section we describe
our algorithms with respect to a particular destination.
Sinks other than the destination are activated at arbitrary
times; a node v, when activated, executes the following
algorithm:

2

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 115

GB_activate(v)

if for all links L, direction[L] = In

reverse all links

Despite its simplicity, the GB algorithm converges to a
destination-oriented DAG in finite time, regardless of the
pattern of link failures and the initial link directions, as
long as the graph is connected [10]. Briefly, the intuition
for the algorithm’s correctness is as follows. Suppose,
after a period of link failures, the physical network is
static. A node is stable at some point in time if it is done
reversing. If any node is unstable, then there must exist
a node u which is unstable but has a stable neighbor w.
(The destination is always stable.) Since u is unstable,
eventually it reverses its links. But at that point, since w
is already stable, the link u → w will never be reversed,
and hence u will always have an outgoing link and thus
become stable. This increases the number of stable nodes,
and implies that all nodes will eventually stabilize. In
a stable network, since no nodes need to reverse links,
the destination must be the only sink, so the DAG is
destination-oriented as desired. For an illustrated example
of GB algorithm execution, we refer the reader to Gafni-
Bertsekas’ seminal paper [10].

Gafni-Bertsekas also present (and prove correct) a par-
tial reversal variant of the algorithm: Instead of reversing
all links, node v keeps track of the set S of links that were
reversed by its neighbors since v’s last reversal. When
activated, if v is a sink, it does two things: (1) It reverses
N(v) \ S—unless all its links are in S, in which case it
reverses all its links. (2) It empties S.

However, GB is infeasible as a data plane algorithm: To
carry out a reversal, a node needs to generate and send spe-
cial messages along each reversed link; the proofs assume
these messages are delivered reliably and immediately.
Such production and processing of special packets, poten-
tially sent to a large number of neighbors, is too expensive
to carry out at packet-forwarding timescales. Moreover,
packets along a link may be delayed or dropped; loss
of a single link reversal notification in GB can cause a
permanent loop in the network.

2.3 Algorithm
DDC’s goal is to implement a link reversal algorithm
which is suited to the data plane. Specifically, all events
are triggered by an arriving data packet, employ only
simple bit manipulation operations, and result only in the
forwarding of that single packet (rather than duplication
or production of new packets). Moreover, the algorithm
can handle arbitrary packet delays and losses.

The DDC algorithm provides, in effect, an emulation of
GB using only those simple data plane operations. Some-
what surprisingly, we show this can be accomplished
without special signaling, using only a single bit piggy-

backed in each data packet header—or equivalently, zero
bits, with two virtual links per physical link. Virtual links
can be implemented as GRE tunnels.

The DDC algorithm follows. Our presentation and
implementation of DDC use the partial reversal variant
of GB, which generally results in fewer reversals [4].
However, the design and proofs work for either variant.
State at each node:
• to reverse: List containing a subset of the node’s

links, initialized to the node’s incoming links in the
given graph G.

Each node also keeps for each link L:
• direction[L]: In or Out; initialized to the direc-

tion according to the given graph G. Per name, this
variable indicates this node’s view of the direction
of the link L.

• local seq[L]: One-bit unsigned integer; initial-
ized to 0. This variable is akin to a version or se-
quence number associated with this node’s view of
link L’s direction.

• remote seq[L]: One-bit unsigned integer; initial-
ized to 0. This variable attempts to keep track of the
version or sequence number at the neighbor at the
other end of link L.

All three of these variables can be modeled as booleans,
with increments resulting in a bit-flip.
State in packets: We will use the following notation for
our one bit of information in each packet:
• packet.seq: one-bit unsigned integer.
A comparison of an arriving packet’s sequence number

with remote seq[L] provides information on whether
the node’s view of the link direction is accurate, or the
link has been reversed. We note that packet.seq can be
implemented as a bit in the packet header, or equivalently,
by sending/receiving the packet on one of two virtual
links. The latter method ensures that DDC requires no
packet header modification.
Response to packet events: The following two routines
handle received and locally generated packets.

packet p generated locally:

update_FIB_on_departure()

send_on_outlink(any outlink, p)

packet p received on link L:

update_FIB_on_arrival(p, L)

update_FIB_on_departure()

if (direction[L] = Out)

if (p.seq != remote_seq[L])

send_on_outlink(L, p)

send_on_outlink(any outlink, p)

send_on_outlink(link L, packet p)

p.seq = local_seq[L]

send p on L

3

116 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

These algorithms are quite simple: In general, after
updating the FIB (as specified below), the packet can be
sent on any outlink. There is one special case which will
allow us to guarantee convergence (see proof of Thm. 2.1):
if a packet was received on an outlink without a new
sequence number, indicating that the neighbor has stale
information about the direction of this link, it is “bounced
back” to that neighbor.

FIB update: The following methods perform local link
reversals when necessary.

reverse_in_to_out(L)

direction[L] = Out

local_seq[L]++

reverse_out_to_in(L)

direction[L] = In

remote_seq[L]++

update_FIB_on_arrival(packet p, link L)

if (direction[L] = In)

assert(p.seq == remote_seq[L])

else if (p.seq != remote_seq[L])

reverse_out_to_in(L)

update_FIB_on_departure()

if there are no Out links

if to_reverse is empty

// ‘partial’ reversal impossible

to_reverse = all links

for all links L in to_reverse

reverse_in_to_out(L)

// Reset reversible links

to_reverse = {L: direction[L] = In}

The above algorithms determine when news of a neigh-
bor’s link reversal has been received, and when we must
locally reverse links via a partial reversal. For the partial
reversal, to reverse tracks what links were incoming at
the last reversal (or at initialization). If a partial reversal
is not possible (i.e., to reverse is empty), all links are
reversed from incoming to outgoing.

To understand how our algorithms work, note that
the only exchange of state between neighbors happens
through packet.seq, which is set to local seq[L]

when dispatching a packet on link L. Every time a
node reverses an incoming link to an outgoing one, it
flips local seq[L]. The same operation happens to
remote seq[L] when an outgoing link is reversed.

The crucial step of detecting when a neighbor has re-
versed what a node sees as an outgoing link, is performed
as the check: packet.seq ?

= remote seq[L]. If, in the
stream of packets being received from a particular neigh-
bor, the sequence number changes, then the link has been
reversed to an incoming link.

It is possible for a node v to receive a packet on an
outgoing link for which the sequence number has not
changed. This indicates that v must have previously re-
versed the link to outgoing from incoming, but the neigh-
bor hasn’t realized this yet (because packets are in flight,
or no packets have been sent on the link since that rever-
sal, or packets were lost on the wire). In this case, no
new reversals are needed; the neighbor will eventually re-
ceive news of the reversal due to the previously-discussed
special case of “bouncing back” the packet.
Response to link and node events: Links to neighbors
that fail are simply removed from a node’s forwarding
table. A node or link that recovers is not incorporated
by our data plane algorithm. This recovery occurs in the
control plane, either locally at a node or as a part of the
periodic global control plane process; both use the AEO
operation we introduce later (§3).
FIB update delay: For simplicity our exposition has
assumed that the FIB can be modified as each packet is
processed. While the updates are quite simple, on some
hardware it may be more convenient to decouple packet
forwarding from FIB modifications.

Fortunately, DDC can allow the two update FIB func-
tions to be called after some delay, or even skipped
for some packets (though the calls should still be or-
dered for packets from the same neighbor). From
the perspective of FIB state maintenance, delaying
or skipping update FIB on arrival() is equivalent
to the received packet being delayed or lost, which
our model and proofs allow. Delaying or skipping
update FIB on departure() has the problem that
there might be no outlinks. In this case, the packet can be
sent out an inlink. Since reverse out to in() is not
called, the packet’s sequence number is not incremented,
and the neighbor will not interpret it as a link reversal.

Of course, delaying FIB updates delays data plane con-
vergence, and during this period packets may temporarily
loop or travel on less optimal paths. However, FIB update
delay is a performance, rather than a correctness, issue;
and our experiments have not shown significant problems
with reasonable FIB update delays.

2.4 Correctness and Complexity
Our main results (proofs in Appendix A) show that DDC
(a) provides ideal forwarding-connectivity; and (b) con-
verges, i.e., the number of reversal operations is bounded.
Theorem 2.1. DDC guides2 every packet to the destina-
tion, assuming the graph remains connected during an
arbitrary sequence of failures.

Theorem 2.2. If after time t, the network has no failures
and is connected, then regardless of the (possibly infinite)

2By guide we mean that following the instructions of the forwarding
state would deliver the packet to the destination, assuming no packet
losses or corruption along the way.

4

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 117

sequence of packets transmitted after t, DDC incurs O(n2)
reversal operations for a network with n nodes.

We note one step in proving the above results that may
be of independent interest. Our results build on the tradi-
tional Gafni-Bertsekas (GB) link reversal algorithm, but
GB is traditionally analyzed in a model in which reversal
notifications are immediately delivered to all of a node’s
neighbors, so the DAG is always in a globally-consistent
state.3 However, we note that these requirements can be
relaxed, without changing the GB algorithm.
Lemma 2.3. Suppose a node’s reversal notifications are
eventually delivered to each neighbor, but after arbitrary
delay, which may be different for each neighbor. Then
beginning with a weakly connected DAG (i.e., a DAG
where not all nodes have a path to the destination) with
destination d, the GB algorithm converges in finite time
to a DAG with d the only sink.

2.5 Proactive Signaling
The data plane algorithm uses packets as reversal noti-
fications. This implies that if node A reverses the link
connecting it to B, B learns of the reversal only when a
packet traverses the link. In some cases this can result in
a packet traversing the same link twice, increasing path
stretch. One could try to overcome this problem by having
A proactively send a packet with TTL set to 1, thus noti-
fying B of this change. This packet looks like a regular
data packet, that gets dropped at the next hop router.

Note that proactive signaling is an entirely optional
optimization. However, such signaling does not address
the general problem of the data plane deviating from
optimal paths to maintain connectivity. The following
section addresses this problem.

3 Control Plane

While DDC’s data plane guarantees ideal connectivity, we
continue to rely on the control plane for path optimality.
However, we must ensure that control plane actions are
compatible with DDC’s data plane. In this section, we
present an algorithm to guide the data plane to use paths
desired by the operator (e.g., least-cost paths). The algo-
rithm described does not operate at packet timescales, and
relies on explicit signaling by the control plane. We start
by showing how our algorithm can guide the data plane
to use shortest paths. In §3.3, we show that our method is
general, and can accommodate any DAG.

We assume that each node is assigned a distance from
the destination. These could be produced, for instance,
by a standard shortest path protocol or by a central co-
ordinator. We will use the distances to define a target

3For example, [19] notes that the GB algorithm’s correctness proof
“requires tight synchronization between neighbors, to make sure the link
reversal happens atomically at both ends ... There is some work required
to implement this atomicity.”

DAG on the graph by directing edges from higher- to
lower-distance nodes, breaking ties arbitrarily but consis-
tently (perhaps by comparing node IDs). Note that this
target DAG may not be destination-oriented — for in-
stance the shortest path protocol may not have converged,
so distances are inconsistent with the topology. Given
these assigned distances, our algorithm guarantees the
following properties:
• Safety: Control plane actions must not break the

data plane guarantees, even with arbitrary simultane-
ous dynamics in both data and control planes.

• Routing Efficiency: After the physical network and
control plane distance assignments are static, if the
target DAG is destination-oriented, then the data
plane DAG will match it.

These guarantees are not trivial to provide. Intuitively,
if the control plane modifies link directions while the
data plane is independently making its own changes, it is
easy for violations of safety to arise. The most obvious
approach would be for a node to unilaterally reverse its
edges to match the target DAG, perhaps after waiting for
nodes closer to the destination to do the same. But dynam-
ics (e.g., link failures) during this process can quickly lead
to loops, so packets will loop indefinitely, violating safety.
We are attempting to repair a running engine; our expe-
rience shows that even seemingly innocuous operations
can lead to subtle algorithmic bugs.

3.1 Control Plane Algorithm
Algorithm idea: We decompose our goals of safety
and efficiency into two modules. First, we design an all-
edges-outward (AEO) operation which modifies all of a
single node’s edges to point outward, and is guaranteed
not to violate safety regardless of when and how AEOs are
performed. For example, a node which fails and recovers,
or has a link which recovers, can unilaterally decide to
execute an AEO in order to rejoin the network.

Second, we use AEO as a subroutine to incrementally
guide the network towards shortest paths. Let v1, . . . ,vn
be the (non-destination) nodes sorted in order of distance
from the destination, i.e., a topological sort of the target
DAG. Suppose we iterate through each node i from 1 to
n, performing an AEO operation on each vi. The result
will be the desired DAG, because for any undirected edge
(u,v) such that u is closer to the destination, v will direct
the edge v → u after u directed it u → v.
Implementation overview: The destination initiates a
heartbeat, which propagates through the network serving
as a trigger for each node to perform an AEO. Nodes
ensure that in applying the trigger, they do not precede
neighbors who occur before them in the topological sort
order. Note that if the target DAG is not destination-
oriented, nodes may be triggered in arbitrary order. How-
ever, this does not affect safety; further, if the target DAG

5

118 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

is destination-oriented, the data plane will converge to it,
thus meeting the routing efficiency property.

We next present our algorithm’s two modules: the
all-edges-outward (AEO) operation (§3.1.1), and Trig-
ger heartbeats (§3.1.2). We will assume throughout that
all signals are sent through reliable protocols and yield
acks/nacks. We also do not reinvent sequence numbers
for heartbeats ignoring the related details.

3.1.1 All edges outward (AEO) operations
A node setting all its edges to point outward in a DAG
cannot cause loops4. However, the data plane dynamics
necessitate that we use caution with this operation—there
might be packets in flight that attempt to reverse some of
the edges inwards as we attempt to point the rest outwards,
potentially causing loops. One could use distributed locks
to pause reversals during AEO operations, but we cannot
block the data plane operations as this would violate the
ideal-connectivity guarantee provided by DDC.

Below is an algorithm to perform an AEO operation
at a node v safely and without pausing the data plane,
using virtual nodes (vnodes). We use virtual nodes as a
convenient means of versioning a node’s state, to ensure
that the DAG along which a packet is forwarded remains
consistent. The strategy is to connect a new vnode vn
to neighbors with all of vn’s edges outgoing, and then
delete the old vnode. If any reversals are detected during
this process, we treat the process as failed, delete vn, and
continue using the old vnode at v. Bear in mind that this
is all with respect to a specific destination; v has other,
independent vnodes for other destinations. Additionally,
although the algorithm is easiest to understand in terms
of virtual nodes, it can be implemented simply with a few
extra bits per link for each destination5.

We require that neighboring nodes not perform con-
trol plane reversals simultaneously. This is enforced by
a simple lock acquisition protocol between neighbors be-
fore performing other actions in AEO. However, note that
these locks only pause other control-plane AEO opera-
tions; all data plane operations remain active.

AEO algorithm:

Get locks from {neighbors, self} in

increasing ID order

Create virtual node vn

run(thread_watch_for_packets)

run(thread_connect_virtual_node)

thread_watch_for_packets:

if a data packet arrives at vn

kill thread_connect_virtual_node

delete vn

exit thread_watch_for_packets

4This is why we designed the algorithm as a sequence of AEOs.
5Routers implement ECMP similarly: In a k-port router, k-way

ECMP [7] stores state items per (destination, output-port) pair.

thread_connect_virtual_node:

For each neighbor u of v

Link vn, u with virtual link

Signal(LinkDone?) to u

After all neighbors ack(LinkDone):

For each neighbor u of v

Signal(Dir: vn->u?) to u

After all neighbors ack(Dir: vn->u):

kill thread_watch_for_packets

delete old virtual nodes at v

exit thread_connect_virtual_node

When all threads complete:

release all locks

The algorithm uses two threads, one to watch for data
packets directed to the destination (which would mean
the neighbor has reversed the link), and the other to es-
tablish links with the neighbors directed towards them,
using signal-ack mechanisms. The second set of signals
and acks might appear curious at first, but it merely con-
firms that no reversals were performed before all acks
for the first set had been received at vn. There may have
been reversals since any of the second set of acks were
dispatched from the corresponding neighbor, but they are
inconsequential (as our proof will show).

3.1.2 Trigger heartbeats
We make use of periodic heartbeats issued by the destina-
tion to trigger AEO operations. To order these operations,
a node uses heartbeat H as a trigger after making sure
all of its neighbors with lower distances have already re-
sponded to the H. More specifically, a node, v, responds
to heartbeat H from neighbor w as follows:

If (last_heartbeat_processed >= H)

Exit

rcvd[H,w] = true

If (rcvd[H,u] = true for all nbrs u with

lower distance)

If (direction[u] = In for any nbr with

lower distance)

AEO(v)

Send H to all neighbors

last_heartbeat_processed = H

With regard to the correctness of this algorithm, we
prove the following theorem in Appendix B:

Theorem 3.1. The control plane algorithm satisfies the
safety and routing efficiency properties.

3.2 Physical Implementation
A vnode is merely an abstraction containing the state
described in §2.3, and allowing this state to be modi-
fied in the ways described previously. One can therefore

6

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 119

represent a vnode as additional state in a switch, and inter-
actions with other switches can be realized using virtual
links. As stated previously, the virtual links themselves
may be implemented using GRE tunnels, or by the inclu-
sion of additional bits in the packet header.

3.3 Control Plane Generality
It is easy to show that the resulting DAG from the AEO
algorithm is entirely determined by the order in which
AEO operations are carried out. While trigger heartbeats
as described in §3.1.2 order these AEO operations by
distance, any destination-oriented DAG could in fact be
used. It is also easy to see that given a DAG, one can
calculate at least one order of AEO operations resulting
in the DAG.

Given these observations, the control plane described
above is entirely general allowing for the installation of
an arbitrary DAG, by which we imply that given another
control plane algorithm, for which the resultant routes
form a DAG, there exists a modified trigger heartbeat
function that would provide the same functionality as the
given control plane algorithm. DDC therefore does not
preclude the use of other control plane algorithms that
might optimize for metrics other than path length.

3.4 Disconnection
Detecting disconnection is particularly important for link-
reversal algorithms. If our data plane algorithm fails to
detect that a destination is unreachable, packets for that
destination might keep cycling in the connected compo-
nent of the network. Packets generated for the destination
may continue to be added, while none of these packets are
being removed from the system. This increases conges-
tion, and can interfere with packets for other destinations.

Since DDC can be implemented at both the network
and link-layer we cannot rely on existing TTL/hop-count
fields, since they are absent from most extant link-layer
protocols. Furthermore, failures might result in paths
that are longer than would be allowed by the network
protocol, and thus TTL-related packet drops cannot be
used to determine network connectivity.

Conveniently, we can use heartbeats to detect discon-
nection. Any node that does not receive a heartbeat from
the destination within a fixed time period can assume that
the destination is unreachable. The timeout period can be
set to many times the heartbeat interval, so that the loss
of a few heartbeats is not interpreted as disconnection.

3.5 Edge Priorities
The algorithm as specified allows for the use of an arbi-
trary output link (i.e., packets can be sent out any output
link). One can exploit this choice to achieve greater ef-
ficiency, in particular the choice of output links can be
driven by a control plane specified priority. Priorities can
be chosen to optimize for various objective functions, for

instance traffic engineering. Such priorities can also be
used to achieve faster convergence, and lower stretches,
especially when few links have failed.

Edge priorities are not required for the correct func-
tioning of DDC, and are only useful as a mechanism to
increase efficiency, and as a tool for traffic engineering.
Priorities can be set by the control plane with no syn-
chronization (since they do not affect DDC’s correctness),
and can either be set periodically based on some global
computation, or manually based on operator preference.

4 Evaluation

We evaluated DDC using a variety of microbenchmarks,
and an NS-3 [23] based macrobenchmark.

4.1 Experimental Setup

We implemented DDC as a routing algorithm in NS-3.
(The code is available on request.) Our implementation
includes the basic data plane operations described in §2,
and support for assigning priorities to ports (i.e., links,
which appear as ports for individual switches), allowing
the data plane to discriminate between several available
output ports. We currently set these priorities to minimize
path lengths. We also implemented the control plane al-
gorithm (§3), and use it to initialize routing tables. While
our control plane supports the use of arbitrary DAGs, we
evaluated only shortest-path DAGs.

We evaluated DDC on 11 topologies: 8 AS topolo-
gies from RocketFuel [30] varying in size from 83 nodes
and 272 links (AS1221), to 453 nodes and 1999 links
(AS2914); and 3 datacenter topologies—a 3-tier hierar-
chical topology recommended by Cisco [3], a Fat-Tree [1],
and a VL2 [12] topology. However, we present only a
representative sample of results here.

Most of our experiments use a link capacity of 10 Gbps.
Nodes use output queuing, with drop-tail queues with
a 150 KB capacity. We test both TCP (NS-3’s TCP-
NewReno implementation) and UDP traffic sources.

4.2 Microbenchmarks

4.2.1 Path Stretch
Stretch is defined as the ratio between the length of the
path a packet takes through the network, and the shortest
path between the packet’s source and destination in the
current network state, i.e., after accounting for failures.

Stretch is affected by the topology, the number of failed
links, and the choice of source and destination. To mea-
sure stretch, we selected a random source and destination
pair, and failed a link on the connecting path. We then
sent out a series of packets, one at a time (i.e., making
sure there is no more than one packet in the network at
any time) to avoid any congestion drops, and observed the

7

120 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

 1
 3
 5
 7
 9

 11
 13

 2 4 6 8 10 12 14

St
re

tc
h

Packet

99th Percentile (10 Failures)
99th Percentile (1 Failure)

Median (10 Failures)
Median (1 Failures)

Figure 1: Median and 99th percentile stretch
for AS1239.

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14

St
re

tc
h

Packet

99th Percentile (10 Failures)
99th Percentile (1 Failure)

Median (10 Failures)
Median (1 Failures)

Figure 2: Median and 99th percentile stretch
for a FatTree

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
D

F
ov

er
 S

ou
rc

e-
D

es
tin

at
io

n
Pa

ir

Stretch

DDC
MPLS

Figure 3: CDF of steady state stretch for
MPLS FRR and DDC in AS2914.

length of the path the packet takes. Subsequent packets
use different paths as DDC routed around the failures.

Figures 1 and 2 show stretch for a series of such packets,
either with 1 or 10 links failed. We tested a wider range
of link failures, but these graphs are representative of the
results. As expected, the initial stretch is dependent on
the number of links failed, for instance the 99th percentile
stretch for AS1239 with 10 link failures is 14. However,
paths used rapidly converge to near-optimal.

We compare DDC’s steady-state stretch with that of
MPLS link protection [25]. Link protection, as commonly
deployed in wide-area networks, assigns a backup path
around a single link, oblivious of the destination6. We
use the stretch-optimal strategy for link protection: the
backup path for a link is the shortest path connecting its
two ends. Figure 3 shows this comparison for AS2914.
Clearly, path elongation is lower for DDC. We also note
that link protection does not support multiple failures.

4.2.2 Packet Latency
In addition to path lengths, DDC may also impact packet
latency by increasing queuing at certain links as it moves
packets away from failures. While end-to-end congestion
control will eventually relieve such queuing, we measure
the temporary effect by comparing the time taken to de-
liver a packet before and after a failure.

To measure packet latencies, we used 10 random source
nodes sending 1GB of data each to a set of randomly
chosen destinations. The flows were rate limited (since
we were using UDP) to ensure that no link was used at
anything higher than 50% of its capacity, with the majority
of links being utilized at a much lower capacity. For
experiments with AS topologies, we set the propagation
delay to 10ms, to match the order of magnitude for a
wide area network, while for datacenter topologies, we
adjusted propagation delay such that RTTs were ∼250µs,
in line with previously reported measurements [5, 36].

For each source destination pair we measure baseline
latency as an average over 100 packets. We then measure

6Protecting links in this manner is the standard method used in wide-
area networks, for instance [6], states “High Scalability Solution—The
Fast Reroute feature uses the highest degree of scalability by supporting
the mapping of all primary tunnels that traverse a link onto a single
backup tunnel. This capability bounds the growth of backup tunnels
to the number of links in the backbone rather than the number of TE
tunnels that run across the backbone.”

the latency after failing a set of links. Figure 4 shows
the results for AS2914, and indicates that over 80% of
packets encounter no increase in latency, and independent
of the number of failures, over 96% of packets encounter
only a modest increase in latency. Similarly, Figure 5
shows the same result for a Fat Tree topology, and shows
that over 95% of the packets see no increased latency. In
the 2 failure case, over 99% of packets are unaffected.

4.2.3 TCP Throughput and FIB Update Delay
Ideally, switches would execute DDC’s small state up-
dates at line rate. However, this may not always be fea-
sible, so we measure the effects of delayed state updates.
Specifically, we measure the effect of additional delay in
FIB updates on TCP throughput in wide-area networks.

We simulated a set of WAN topologies with 1 Gbps
links (for ease of simulation). For each test we picked
a set of 10 source-destination pairs, and started 10 GB
flows between them. Half-a-second into the TCP transfer,
we failed between 1 and 5 links (the half-a-second dura-
tion was picked so as to allow TCP congestion windows
to converge to their steady state), and measured overall
TCP throughput. Our results are shown in Figure 6, and
indicate that FIB delay has no impact on TCP throughput.

4.3 Macrobenchmarks
We also simulated DDC’s operation in a datacenter, us-
ing a fat-tree topology with 8-port switches. To model
failures, we used data on the time it takes for datacen-
ter networks to react to link failures from Gill et al [11].
Since most existing datacenters do not use any link protec-
tion scheme, relying instead on ECMP and the plurality
of paths available, we use a similar multipath routing
algorithm as our baseline.

For our workload, we used partition-aggregate as pre-
viously described in DCTCP [2]. This workload consists
of a set of background flows, whose size and interarrival
frequencies we get from the original paper, and a set of
smaller, latency sensitive, request queries. The request
queries proceed by having a single machine send a set of
8 machines a single small request packet, and then receiv-
ing a 2 KB response in return. This pattern commonly
occurs in front-end datacenters, and a set of such requests
are used to assemble a single page. We generated a set
of such requests, and focused on the percentage of these

8

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 121

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 400 800 1200 1600

C
D

F
ov

er
 P

ac
ke

ts

Percentage Increase in Latency

Packet Latency (2 failure)
Packet Latency (10 failure)

Figure 4: Packet latencies in AS2914 with
link failures.

 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 200 400 600 800

C
D

F
ov

er
 P

ac
ke

ts

Percentage Increase in Latency

Packet Latency (2 failure)
Packet Latency (10 failure)

Figure 5: Packet latencies in a datacenter
with a Fat-Tree topology with link failures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

m
ul

at
iv

e
Pr

ob
ab

ili
ty

Throughput (Gbps)

Delay = 0.0 ms
Delay = 1.0 ms

Figure 6: Distribution of TCP throughputs
for varying FIB update delays.

that were satisfied during a “failure event”, i.e., a period
of time where one or more links had failed, but before
the network had reacted. On average, we generated 10
requests per second, spread evenly across 128 hosts. The
hosts involved in processing a request were also picked
at random. We looked at a variety of failure scenarios,
where we failed between 1 and 5 links. Here, we present
results from two scenarios, one where a single link was
failed, and one where 5 links were failed. The links were
chosen at random from a total of 384 links.

Figure 7 shows the percentage of requests served in
every 10 second interval (i.e., percent of request packets
resulting in a response) in a case with 5 link failures. The
red vertical line at x = 50 seconds indicates the point at
which the links failed. While this is a rare failure scenario,
we observe that, without DDC, in the worst case about
14% of requests cannot be fulfilled. We also look at a
more common case in Figure 8 where a single link is
failed, and observe a similar response rate. The response
rate itself is a function of both the set of links failed, and
random requests issued.

For many datacenter applications, response latency is
important. Figure 9 shows the distribution of response
latencies for the 5 link failure case described previously.
About 4% of the requests see no responses when DDC
is not used. When DDC is used, all requests result in
responses and fewer than 1% see higher latency than the
common case without DDC. For these 1% (which would
otherwise be dropped), the latency is at most 1.5× higher.
Therefore, in this environment, DDC not only delivers all
requests, it delivers them relatively quickly.

5 Related Work
Link-Reversal Algorithms: There is a substantial literature
on link-reversal algorithms [10, 8, 26, 32]. We borrow the
basic idea of link reversal algorithms, but have extended
them in ways as described in §2.2.

DAG-based Multipath: More recently there has been
a mini-surge in DAG-based research [15, 28, 27, 14, 24].
All these proposals shared the general goal of maximiz-
ing robustness while guaranteeing loop-freeness. In most
cases, the optimization boils down to a careful ordering
of the nodes to produce an appropriate DAG. Some of
this research also looked at load distribution. Our ap-
proach differs in that we don’t optimize the DAG itself

but instead construct a DAG that performs adequately
well under normal conditions and rely on the rapid link
reversal process to restore connectivity when needed.

Other Resilience Mechanisms: We have already men-
tioned several current practices that provide some degree
of data plane resilience: ECMP and MPLS Fast Reroute.
We note that the ability to install an arbitrary DAG pro-
vides strictly more flexibility than is provided by ECMP.

MPLS Fast Reroute, as commonly deployed, is used to
protect individual links by providing a backup path that
can route traffic around a specific link failure. Planned
backups are inherently hard to configure, especially for
multiple link failures, which as past outages indicate, may
occur due to physical proximity of affected links, or other
reasons [20]. While this correlation is often accounted for
(e.g., using shared risk link groups), such accounting is
inherently imprecise. This is evidenced by the Internet
outage in Pakistan in 2011 [21] which was caused by a
failure in both a link and its backup, and other similar
incidents [29, 35, 34] which have continued to plague
providers. Even if ideal connectivity isn’t an explicit goal,
using DDC frees operators from the difficulties of careful
backup configuration. However, if operators do have
preferred backup configurations, DDC makes it possible
to achieve the best of both worlds: Operators can install a
MPLS/GRE tunnel (i.e., a virtual link) for each desired
backup path, and run DDC over the physical and virtual
links. In such a deployment, DDC would only handle
failures beyond the planned backups.

End-to-End Multipath: There is also a growing litera-
ture on end-to-end multipath routing algorithms (see [31]
and [22] for two such examples). Such approaches require
end-to-end path failure detection (rather than hop-by-hop
link failure detection as in DDC), and thus the recovery
time is quite long compared to packet transmission times.
In addition, these approaches do not provide ideal failure
recovery, in that they only compute a limited number of
alternate paths, and if they all fail then they rely on the
control plane for recovery.

Other Approaches: Packet Recycling [18] is perhaps
the work closest in spirit to DDC (but quite different in
approach), where connectivity is ensured by a packet for-
warding algorithm which involves updating a logarithmic
number of bits in the packet header. While this approach
is a theoretical tour-de-force, it requires solving an NP-

9

122 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

 84
 86
 88
 90
 92
 94
 96
 98

 100

 0 100 200 300 400 500 600

R
eq

ue
st

s
Se

rv
ed

 (
%

)

Time (S)

With DDC
Without DDC

Figure 7: Percentage of requests satisfied per
10 second interval with 5 failed links.

 86
 88
 90
 92
 94
 96
 98

 100

 0 50 100 150 200 250 300 350

R
eq

ue
st

s
Se

rv
ed

 (
%

)

Time (S)

With DDC
Without DDC

Figure 8: Percentage of requests satisfied per
10 second interval with 1 failed link

��

����

����

����

����

��

�� ���� �� ���� ��

�
��
�
��
��
��
��
��
��
��
���
��

���������

��������
�����������

Figure 9: Request latency for the 5-link fail-
ure case in Figure 7.

hard problem to create the original forwarding state. In
contract, DDC requires little in the way of precomputa-
tion, and uses only two bits in the packet header. Failure-
Carrying Packets (FCP) [16] also achieves ideal connec-
tivity, but data packets carry explicit control information
(the location of failures) and routing tables are recom-
puted upon a packet’s arrival (which may take far longer
than a single packet arrival). Furthermore, FCP packet
headers can be arbitrarily large, since packets potentially
need to carry an unbounded amount of information about
failures encountered along the path traversed.

6 Conclusion
In this paper we have presented DDC, a dataplane algo-
rithm guaranteeing ideal connectivity. We have both pre-
sented proofs for our guarantees, and have demonstrated
the benefits of DDC using a set of simulations. We have
also implemented the DDC dataplane in OpenVSwitch7,
and have tested our implementation using Mininet [13].
We are also working towards implementing DDC on phys-
ical switches.

7 Acknowledgments
We are grateful to Shivaram Venkatraman, various review-
ers, and our shepherd Dejan Kostic for their comments
and suggestions. This research was supported in part by
NSF CNS 1117161 and NSF CNS 1017069. Michael
Schapira is supported by a grant from the Israel Science
Foundation (ISF) and by the Marie Curie Career Integra-
tion Grant (CIG).

A DDC Algorithm Correctness
Compared with traditional link reversal algorithms, DDC
has two challenges. First, notifications of link reversals
might be delayed arbitrarily. Second, the mechanism
with which we provide notifications is extremely limited—
piggybacking on individual data packets which may them-
selves be delayed and lost arbitrarily. We deal with these
two challenges one at a time.

A.1 Link reversal with delayed notification
Before analyzing our core algorithm, we prove a useful
lemma: the classic GB algorithms (§2.2) work correctly
even when reversal notifications are delayed arbitrarily.

7Available at https://bitbucket.org/apanda/ovs-ddc

The subtlety in this analysis is that if notifications are
not delivered instantaneously, then nodes have inconsis-
tent views of the link directions. What we will show is that
when it matters—when a node is reversing its links—the
node’s view is consistent with a certain canonical global
state that we define.

We can reason about this conveniently by defining a
global notion of the graph at time t as follows: In Gt the
direction of an edge (u,v) is:
• u → v if u has reversed more recently than v;
• v → u if v has reversed more recently than u;
• otherwise, whatever it is in the original graph G0.
It is useful to keep in mind several things about this

definition. First, reversing is now a local operation at a
node. Once a node decides to reverse, it is “officially”
reversed—regardless of when control messages are de-
livered to its neighbors. Second, the definition doesn’t
explicitly handle the case where there is a tie in the times
that u and v have reversed. But this case will never occur;
it is easy to see that regardless of notifications begin de-
layed, two neighbors will never reverse simultaneously
because at least one will believe it has an outgoing edge.

Often, nodes’ view of their link directions will be incon-
sistent with the canonical graph Gt because they haven’t
yet received reversal notifications. The following lemma
shows this inconsistency is benign.
Lemma A.1. Consider the GB algorithm with arbitrarily
delayed reversal notifications, but no lost notifications. If
v reverses at t, then v’s local view of its neighboring edge
directions is consistent with Gt .
Proof. The lemma clearly holds for t = 0 due to the algo-
rithm’s initialization. Consider any reversal at t ≥ 0. By
induction, at the time of v’s previous reversal (or at t = 0
if it had none), v’s view was consistent with G. The only
events between then and time t are edge reversals making
v’s edges incoming. Before v receives all reversal notifi-
cations, it believes it has an outgoing edge, and therefore
will not reverse. Once it receives all notifications (and
may reverse), its view is consistent with G.

It should be clear given the above lemma that nodes
only take action when they have a “correct” view of their
edge directions, and therefore delay does not alter GB’s
effective behavior. To formalize this, we define a trace of
an algorithm as a chronological record of its link rever-
sals. An algorithm may have many possible traces, due to

10

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 123

non-determinism in when nodes are activated and when
they send and receive messages (and due to the unknown
data packet inputs and adversarial packet loss, which we
disallow here but will introduce later).
Lemma A.2. Any trace of GB with arbitrarily delayed
notification is also a trace of GB with instant notification.
Proof. Consider any trace T produced by GB with delay.
Create a trace T ′ of GB with instantaneous notification, in
which nodes are initialized to the same DAG as in T and
nodes are activated at the moments in which those nodes
reverse edges in T . We claim T and T ′ are identical. This
is clearly true at t = 0. Consider by induction any t > 0 at
which v reverses in T . In the GB algorithm, notice that v’s
reversal action (i.e., which subset of edges v reverses) is a
function only of its neighboring edge-states at time t and
at the previous moment that v reversed. By Lemma A.1,
local knowledge of these edge-states are identical to Gt ,
which is in turn identical at each step in both T and T ′

(by induction).
LEMMA 2.3. Suppose a node’s reversal notifications

are eventually delivered to each neighbor, but after ar-
bitrary delay, which may be different for each neighbor.
Then beginning with a weakly connected DAG with desti-
nation d, the GB algorithm converges in finite time to a
DAG with d the only sink.
Proof. Lemmas A.1, A.2 imply that if reversal notifica-
tions are eventually delivered, both versions of the algo-
rithm (with arbitrary delay and with instant notifications)
reverse edges identically. Convergence of the algorithm
with arbitrary delay to a destination-oriented DAG thus
follows from the original GB algorithm’s proof.

A.2 DDC
Having shown that GB handles reversal message delay,
we now show that DDC, even with its packet-triggered,
lossy, delayed messages, effectively emulates GB.
Lemma A.3. Any trace of DDC, assuming arbitrary loss
and delay but in-order delivery, is a prefix of a trace of
GB with instantaneous reliable notification.
Proof. Consider any neighboring nodes v,w and any time
t0 such that:

1. v and w agree on the link direction;
2. v’s local seq for the link is equal to w’s

remote seq, and vice versa; and
3. any in-flight packet p has p.seq set to the same value

as its sender’s current local seq.
Suppose w.l.o.g v reverses first, at some time t1. No
packet outstanding at time t0 or sent during [t0, t1) can
be interpreted as a reversal on delivery, since until that
time, the last two properties and the in-order delivery
assumption imply that such an arriving packet will have
its p.seq equal to the receiving node’s remote seq. Now
we have two cases. In the first case, no packets sent v → w
after time t1 are ever delivered; in this case, w clearly
never believes it has received a link reversal. In the second

case, some such packet is delivered to w at some time t2.
The first such packet p will be interpreted as a reversal
because it will have p.seq �= w.remote seq. Note that
neither node reverses the link during (t0, t2) since both
believe they have an outlink and, like GB, DDC will only
reverse a node with no outlinks.

Note that the above three properties are satisfied at time
t0 = 0 by initialization; and the same properties are again
true at time t2. Therefore we can iterate the argument
across the entire run of the algorithm. The discussion
above implies that for any a,b such that v reverses at
time a and does not reverse during [a,b], w will receive
either zero or one reversal notifications during [a,b]. This
is exactly equivalent to the notification behavior of GB
with arbitrary delay, except that some notifications may
never be delivered. Combined with the fact that DDC
makes identical reversal decisions as GB when presented
with the same link state information, this implies that a
trace of DDC over some time interval [0,T] is a prefix
of a valid trace for GB with arbitrary delay, in which the
unsent notifications are delayed until after T . Since by
Lemma 2.3 any trace of GB with delay is a valid trace of
GB without delay, this proves the lemma.

While it looks promising, the lemma above speaks only
of (data plane) control events, leaving open the possibility
that data packets might loop forever. Moreover, since the
DDC trace is only a prefix of a GB trace, the network
might never converge. Indeed, if no data packets are ever
sent, nothing happens, and even if some are sent, some
parts of the network might never converge. What we need
to show is that from the perspective of any data packets,
the network operates correctly. We now prove the main
theorems stated previously in §2.4.

THEOREM 2.1. DDC guides every packet to the desti-
nation, assuming the graph remains connected during an
arbitrary sequence of failures.
Proof. Consider a packet p which is not dropped due
to physical layer loss or congestion. At each node p is
forwarded to some next node by DDC, so it must either
eventually reach the destination, or travel an infinite num-
ber of hops. We will suppose it travels an infinite number
of hops, and arrive at a contradiction.

If p travels an infinite number of hops then there is
some node v which p visits an infinite number of times.
Between each visit, p travels in a loop. We want to show
that during each loop, at least one control event—either
a reversal or a reversal notification delivery—happens
somewhere in the network.

We show this by contradiction. If there are no control
events, the global abstract graph representing the network
(§A.1) is constant; call this graph Gt . By Lemma A.3,
Gt must match some graph produced by GB (in the in-
stantaneous reliable notification setting), which never has
loops. Thus Gt does not have loops, so there must exist

11

124 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

some edge (w,u) in the packet’s loop which w believes
is outgoing, but which is incoming according to Gt . If
this occurs, then DDC specifies that u will bounce it back
to w. Therefore, by the time the packet returns to w, by
the in-order delivery assumption, w will have received a
reversal notification. Therefore the assumption that there
are no control events must be false: some control event
must happen during each loop.

Therefore, there are an infinite number of control
events. Therefore, DDC has an infinitely long trace of
control events, which by Lemma A.3 means it is also an
infinitely-long valid prefix of a trace for GB, which con-
tradicts the fact [10] that GB converges in a finite number
of steps. Thus, the assumption that the packet is not de-
livered must be false, and all packets not dropped due to
physical layer loss or congestion are delivered.

THEOREM 2.2. If after time t, the network has no
failures and is connected, then regardless of the (possibly
infinite) sequence of packets transmitted after t, DDC
incurs O(n2) reversal operations for a network with n
nodes.
Proof. Following the same argument as above, since any
DDC-trace is a prefix of a GB-trace, and the GB algorithm
incurs Θ(n2) reversals [33], DDC can not incur more
reversals.

B Control Plane Correctness

In this appendix, we prove Theorem 3.1.

Lemma B.1. If the AEO algorithm at node v terminates
with the addition of a virtual node vn, then at the time of
addition of the last edge between vn and a neighbor, all
other edges at vn are directed outward.

Proof. If thread watch for packets did not delete
vn, it saw no incoming packets for the destination at any
of vn’s links until each neighbor had acknowledged the di-
rection of the link as outward from vn. Such packets may
be in flight and some link may have been reversed after
dispatching the ack. However, these acks are requested
only after each neighbor has acknowledged that its link
with vn is functional. Thus, between the addition of the
last edge between vn and a neighbor’s dispatching the ack
for the link, all edges were directed outward.

Lemma B.2. Given a DAG G, an AEO operation at node
v leaves it a DAG with the same physical connectivity.

Proof. First, we note that AEO operations include obtain-
ing a lock from all neighbors, so no two neighbors can
perform an AEO operation concurrently.

AEO either terminates with the addition of vnode vn
and deletion of the old vnode at v, or it terminates leaving
the old vnode’s physical connectivity unchanged. In the

latter case, vn has not sent any packets on its links, nor has
it received any packets until the first reversal that reaches
it – thus, its behavior so far is identical to absence. Further,
vn is immediately killed on receipt of a data packet, in
behavior identical to a link failing after a reversal was
dispatched on it. Neither scenario can leave the rest of the
graph with a loop. On the other hand, if vn was added to
the graph successfully, then by Lemma B.1, it is added as
a node with all edges directed outward, again resulting in
no loops. Further, in either scenario, the graph’s physical
connectivity remains the same – in one case, vn copies
the old vnode’s physical connectivity, while in the other,
the old vnode retains connectivity as is. Thus the graph
remains a DAG with the same physical connectivity.

Given that the algorithm only performs a sequence of
AEO operations, Lemma B.2 suffices to prove safety. We
next show routing efficiency, which completes the proof
of Theorem 3.1.

Lemma B.3. Assume that after some point in time there
are no further failures, stable distances are assigned to
the nodes such that they induce a destination-oriented
target DAG, and control plane messages are eventually
delivered. Then the data plane DAG eventually matches
the target DAG induced by the distances.

Proof. Call a node v compliant when every edge outgoing
from v in the target DAG is also outgoing from v in the
data plane DAG. We will construct a set D of nodes which
are (1) compliant, and (2) form a destination-oriented sub-
graph of the data plane DAG. Specifically, we will prove
by induction that eventually D expands to include all
nodes. Note that the definition of D immediately implies
that these nodes will never reverse their links in the data
plane, or execute an AEO in the control plane: they are
done.

In the base case, D simply includes the destination. In
the general case, suppose not all nodes are in D. Since the
subgraph D complies with the target DAG, it also forms
a destination-oriented subgraph of the target DAG. Com-
bined with the fact that the target DAG is itself destination-
oriented, this means D forms a “sink region” into which
all paths in the target DAG must flow. Then if not all
nodes are in D, there must exist some node v �∈ D which is
non-compliant, but whose neighbors with lower distances
are all in D. Let L be that subset of v’s neighbors. Eventu-
ally, every node in L will send a heartbeat to v, and v will
execute an AEO (if its edges are not already pointing out-
ward to L). At this point, (1) v is compliant, and (2) all v’s
links to nodes in the destination-oriented subgraph D are
outgoing, so that D∪{v} is itself a destination-oriented
subgraph of the data plane DAG. Hence, v satisfies the
two conditions for inclusion into D and the set D expands.
Iterating this argument, D eventually includes all nodes,
which implies the lemma.

12

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 125

References

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In SIGCOMM, 2008.

[2] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data center tcp (dctcp). ACM SIGCOMM Com-
puter Communication Review, 40(4):63–74, 2010.

[3] M. Arregoces and M. Portolani. Data center funda-
mentals. Cisco Press, 2003.

[4] B. Charron-Bost, J. Welch, and J. Widder. Link re-
versal: How to play better to work less. In S. Dolev,
editor, Algorithmic Aspects of Wireless Sensor Net-
works, volume 5804 of Lecture Notes in Computer
Science, pages 88–101. Springer Berlin / Heidelberg,
2009.

[5] Y. Chen, R. Griffith, J. Liu, R. Katz, and A. Joseph.
Understanding tcp incast throughput collapse in dat-
acenter networks. In Proceedings of the 1st ACM
workshop on Research on enterprise networking,
pages 73–82. ACM, 2009.

[6] Cisco. Mpls traffic engineering fast reroute – link
protection. http://www.cisco.com/en/US/

docs/ios/12_0st/12_0st10/feature/guide/

fastrout.html.

[7] I. Cisco Systems. Cisco Nexus 3064-X and 3064-
T Switches. Datasheet: http://goo.gl/E3Wqm,
2012.

[8] M. S. Corson and A. Ephremides. A distributed rout-
ing algorithm for mobile wireless networks. Wire-
less Networks, 1(1):61–81, 1995.

[9] J. Feigenbaum, P. B. Godfrey, A. Panda,
M. Schapira, S. Shenker, and A. Singla. On the
resilience of routing tables. In Brief announcement,
31st Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), July
2012.

[10] E. M. Gafni and D. P. Bertsekas. Distributed algo-
rithms for generating loop-free routes in networks
with frequently changing topology. IEEE Transac-
tions on Communications, 1981.

[11] P. Gill, N. Jain, and N. Nagappan. Understand-
ing network failures in data centers: measurement,
analysis, and implications. In ACM SIGCOMM
Computer Communication Review, pages 350–361.
ACM, 2011.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sen-
gupta. VL2: A Scalable and Flexible Data Center
Network. In SIGCOMM, 2009.

[13] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container based emulation. Proc. CoNEXT (to
appear), 2012.

[14] A. Kvalbein, A. Hansen, T. Cicic, S. Gjessing, and
O. Lysne. Fast IP network recovery using multiple
routing configurations. In INFOCOM 2006, pages
1–11. IEEE, 2007.

[15] K. Kwong, L. Gao, R. Guérin, and Z. Zhang. On
the feasibility and efficacy of protection routing in
IP networks. In INFOCOM, 2010, pages 1–9. IEEE,
2010.

[16] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica. Achiev-
ing convergence-free routing using failure-carrying
packets. In SIGCOMM, 2007.

[17] J. Liu, B. Yang, S. Shenker, and M. Schapira. Data-
driven network connectivity. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks,
HotNets ’11, pages 8:1–8:6, New York, NY, USA,
2011. ACM.

[18] S. Lor, R. Landa, and M. Rio. Packet re-cycling:
eliminating packet losses due to network failures. In
HotNets IX, page 2. ACM, 2010.

[19] N. Lynch. Link-reversal algorithms. In
MIT 6.895 lecture notes, April 2006.
http://courses.csail.mit.edu/6.885/

spring06/notes/lect14a.pdf.

[20] D. Madory. The 10 Most Bizarre and Annoying
Causes of Fiber Cuts. Retrieved September 18, 2012:
http://goo.gl/tIATg, 2011.

[21] D. Madory. Renesys blog: Large Out-
age in Pakistan. Retrieved September 18,
2012: http://www.renesys.com/blog/2011/

10/large-outage-in-pakistan.shtml, 2011.

[22] J. Mudigonda, P. Yalagandula, M. Al-Fares, and
J. C. Mogul. SPAIN: COTS data-center ethernet for
multipathing over arbitrary topologies. In Proc. Net-
worked Systems Design and Implementation, Apr.
2010.

[23] ns-3. http://www.nsnam.org/.

13

126 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

[24] Y. Ohara, S. Imahori, and R. V. Meter. Mara: Maxi-
mum alternative routing algorithm. In INFOCOM,
pages 298–306. IEEE, 2009.

[25] P. Pan, G. Swallow, and A. Atlas. RFC 4090 Fast
Reroute Extensions to RSVP-TE for LSP Tunnels,
May 2005.

[26] V. Park and M. Corson. A Highly Adaptive Dis-
tributed Routing Algorithm for Mobile Wireless
Networks. In INFOCOM, 1997.

[27] S. Ray, R. Guérin, K. Kwong, and R. Sofia. Always
acyclic distributed path computation. IEEE/ACM
Transactions on Networking (ToN), 18(1):307–319,
2010.

[28] C. Reichert, Y. Glickmann, and T. Magedanz. Two
routing algorithms for failure protection in IP net-
works. In Computers and Communications, 2005.
ISCC 2005. Proceedings. 10th IEEE Symposium on,
pages 97–102. IEEE, 2005.

[29] R. Singel. Threat Level: Fiber Optic Cable Cuts Iso-
late Millions From Internet. Retrieved September 18,
2012: http://www.wired.com/threatlevel/

2008/01/fiber-optic-cab/, 2008.

[30] N. Spring, R. Mahajan, and D. Wetherall. Measuring
isp topologies with rocketfuel. In In Proc. ACM
SIGCOMM, pages 133–145, 2002.

[31] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and
J. Rexford. Network architecture for joint failure
recovery and traffic engineering. In Proc. ACM
SIGMETRICS, June 2011.

[32] J. Welch and J. Walter. Link reversal algorithms.
Synthesis Lectures on Distributed Computing The-
ory, 2(3):1–103, 2011.

[33] J. L. Welch and J. E. Walter. Link reversal algo-
rithms. Synthesis Lectures on Distributed Comput-
ing Theory, 2(3):1–103, 2012/01/27 2011.

[34] Wikitech: Site issue Aug 6 2012. Retrieved Septem-
ber 18, 2012: http://wikitech.wikimedia.

org/view/Site_issue_Aug_6_2012, 2012.

[35] C. Wilson. ’Dual’ fiber cut causes Sprint out-
age. Retrieved September 18, 2012: http:

//connectedplanetonline.com/access/

news/Sprint_service_outage_011006/,
2006.

[36] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. SIGCOMM-Computer
Communication Review, 41(4):50, 2011.

14

