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ABSTRACT
For many years, scalable routing for wireless communication sys-
tems was a compelling but elusive goal. Recently, several routing
algorithms that exploit geographic information (e.g., GPSR) have
been proposed to achieve this goal. These algorithms refer to nodes
by their location, not address, and use those coordinates to route
greedily, when possible, towards the destination. However, there
are many situations where location information is not available at
the nodes, and so geographic methods cannot be used. In this paper
we define a scalable coordinate-based routing algorithm that does
not rely on location information, and thus can be used in a wide
variety of ad hoc and sensornet environments.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design
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1. INTRODUCTION
The increasing size and use of wireless communication systems

strengthens the need for scalable wireless routing algorithms. Stan-
dard Internet routing achieves scalability through address aggrega-
tion, in which each route announcement describes route informa-
tion for many nodes simultaneously. This approach to scalability
is not applicable to many wireless environments, such as ad hoc
networks or sensornets, where the node identifiers of topologically
and/or geographically close nodes may not be similar (e.g., by shar-
ing high-order bits). For these cases, two main scalable routing
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techniques have been proposed: on-demand routing and geographic
routing.1

In its simplest incarnation, on-demand routing involves no peri-
odic exchanges of route information but instead establishes routes
when needed by flooding a route request to the network. This ap-
proach was first presented in [14], and a series of refinements and
variations have been proposed [12, 13, 23]. These techniques work
well for small and moderate sized systems, and for large systems
with relatively stable routes and limited communication patterns
with significant destination locality.2 However, for large systems
with bursty any-to-any communication patterns, the overhead (and
latency) of route discovery can be significant [16].

Geographic routing uses nodes’ locations as their addresses, and
forwards packets (when possible) in a greedy manner towards the
destination. The most widely known proposal is GFG/GPSR [27,
17], but several other geographic routing schemes have been pro-
posed [1, 2, 3, 6, 7, 9, 19, 20].3 One of the key challenges in geo-
graphic routing is how to deal with dead-ends, where greedy rout-
ing fails because a node has no neighbor closer to the destination; a
variety of methods (such as perimeter routing in GPSR/GFG) have
been proposed for this. More recently, GOAFR+[26] proposes a
method for routing around voids that is both asymptotically worst
case optimal as well as average case efficient. Geographic rout-
ing is scalable, as nodes only keep state for their neighbors, and
supports a fully general any-to-any communication pattern without
explicit route establishment. However, geographic routing requires
that nodes know their location. While this is a natural assumption
in some settings (e.g., sensornet nodes with GPS devices), there are
many settings where such location information isn’t available.

In this paper we address how to retain the benefits of geographic
routing in the absence of location information. This problem has
been partially addressed in [5], but there they consider the case
where some nodes don’t have geographic information; here we fo-
cus mainly on the case where no (or only the perimeter) nodes have
location information. Our approach involves assigning virtual co-

1An additional technique, distance vector routing, has been applied
to ad hoc networks (see [15]), but each node must maintain rout-
ing state proportional to the number of nodes in the system. Since
our focus is on scalable techniques (i.e., those that can apply to
extremely large systems), we do not consider distance vector tech-
niques here.
2By destination locality we mean that nearby nodes are often send-
ing to the same destination. This allows the overhead of route es-
tablishment to be shared among the many sources seeking to send
to a particular destination.
3Some of these algorithms don’t strictly use geographic coordi-
nates, but instead use hop-count information [2]; there are other
algorithms not listed here, such as [18], that use location informa-
tion but not in the packet-forwarding process.
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ordinates to each node and then applying standard geographic rout-
ing over these coordinates. These virtual coordinates need not be
accurate representations of the underlying geography but, in order
to serve as a basis of routing, they must reflect the underlying con-
nectivity. Thus, we construct these virtual coordinates using only
local connectivity information. Since local connectivity informa-
tion is always available (nodes always know their neighbors), this
technique can be applied in most settings. Moreover, as our simu-
lation results show, there are scenarios, such as in the presence of
obstacles, where greedy routing performs better using virtual coor-
dinates than using true geographic coordinates.

The paper is organized as follows. Section 2 discusses related
work. We deal with some technical preliminaries in Section 3. The
key contribution of our paper, the construction of virtual coordi-
nates, is presented in Section 4. The performance of the algorithm
is evaluated in Section 5 and we conclude with a few remarks in
Section 6.

2. CONTEXT AND RELATED WORK
Before turning to our technical content, we first put our work in

context. The vast literature on ad hoc routing contains many valu-
able proposals, each with their own niche of applicability. It is not
our intent to compare them here, or to study under which conditions
each is most appropriate.4 Instead, we narrow our focus to environ-
ments with the following characteristics: a very large number of
nodes with a relatively high density, a very general communication
pattern with many host pairs communicating, and a need for low-
latency first-packet delivery. These characteristics require a rout-
ing algorithm that only keeps per-neighbor state (not per-node or
per-route) and does not involve a route establishment phase. To our
knowledge, only geographic routing algorithms meet these require-
ments. We don’t claim to know exactly how large or how dense the
system, or how general the communication pattern, or how tight the
latency requirements, must be in order for geographic routing to be
the most appropriate choice; that analysis will have to await further
study.

Moreover, geographic routing is known to have serious limita-
tions, particularly with how to route around dead-ends and ob-
stacles and how to function at very low densities. Dealing with
voids is a fairly well-understood problem5 with algorithms such as
GFG/GPSR, are more recently GOAFR+ [26], which is shown to
be both average case efficient and worst case optimal. Fixing those
problems is not our focus here. Instead, our goal here is simply to
explore whether one can apply the geographic routing paradigm,
with both its strengths and its weaknesses, to situations where no,
or only a very few, nodes have location information.

Our work is closely related to graph embedding[28]. A majority
of this literature is about centralized algorithms for visualization or
planar embedding of graphs. Our work proposes a light-weight dis-
tributed algorithm and in fact, derives from some work in this area
[21]. In [29], the authors address the problem of determining true
positions of nodes in an sensor network using only topology infor-
mation. They propose a centralized algorithm of cost O(n3) which
is shown to work well for small networks. Our algorithm is targeted
at much larger networks and does not try to obtain approximations
of true positions for nodes.

4See [4, 11] for performance comparisons on relatively small sys-
tems.
5at least in the case of unit-graphs

3. PRELIMINARIES
The core of this paper describes an algorithm for assigning vir-

tual coordinates to nodes. For these coordinates to be useful, we
must address two other issues: (1) routing in this virtual coordi-
nate space, and (2) how routing in this space can be used in both
traditional ad-hoc routing environments and data centric networks
such as sensornets. While these pieces are not part of our research
contribution, we present their designs here for completeness.

3.1 Routing Algorithm
There have been many geographic routing algorithms, such as [3,

6, 7, 9, 17, 19, 20] and others. Our purpose here is not to improve
these algorithms, merely to provide a set of virtual coordinates over
which they can operate. For the purposes of evaluation, we use a
very simple routing algorithm. We assume that all nodes know
their own coordinates, those of their neighbors, and those of their
neighbor’s neighbors; we call this set the routing table. This infor-
mation is easily obtained by having neighboring nodes periodically
exchange their coordinates, and their neighbor’s coordinates.

Destinations in packets are virtual coordinates. Packets are
routed according to three rules:

• Greedy: The packet is forwarded to the node in the routing
table closest (in virtual coordinates) to the destination, if (and
only if) that node is closer to the destination than the current
node.

• Stop: If the node is closer to the destination than any other
node in its routing table, and higher layers determine that the
packet is indeed bound for this node, then the packet is con-
sidered to have arrived at its destination. For example, if the
payload is an IP packet, the receiving node can check if its IP
address matches that of the packet. In many environments,
one can determine if the packet has arrived at the appropriate
destination.6

• Dead-end: When a packet is not able to make greedy
progress, nor has reached a stopping point, we say it has
reached a dead-end. In this case, the node where the dead-
end was reached performs an expanding ring search until
a closer node is found (or a maximum TTL has been ex-
ceeded).7

3.2 Distributed Hash Table
Above we described how packets are routed over (real or vir-

tual) coordinates. However, routing by itself is not sufficient to use
the system. To make this point clear, we consider our two target
environments, ad hoc networks and sensornets, separately.

Ad Hoc Networks: The goal here is to reach an specific host (as
specified by an address or other identifier). However, because geo-
graphic routing is based on the coordinates, not the identifier, one
can’t directly reach the intended target without knowing where that
intended target is. Thus, geographic routing must be augmented
with a service that can translate identifiers into locations. The GLS
system [19] provides a scalable and elegant solution to this prob-
lem. Our approach is very similar in spirit, though differing in
details. As described below, we implement a distributed hash table
(DHT) on top of the routing system. In a DHT, each node uses the
put operation to store its location using its identifier as the key.
6What we’ve presented here is a very primitive stopping condition;
one can design much more sophisticated stopping conditions, but
we do not do so here.
7Expanding ring searches are also used in [6, 30] for similar rea-
sons.
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Communicating with a particular node requires using the get op-
eration, with the identifier as key, to retrieve its current location.

Sensornets: In sensornets, there is little reason to attempt to
communicate with specific nodes based on their identifiers. In-
stead, one wants to describe the desired data directly. Such data-
centric approaches are now seen as fundamental to sensornets [10,
8, 22]. Many of these approaches don’t require any underlying
routing functionality besides flooding. However, a recently devel-
oped extension of these ideas, data-centric storage, does require
substantial routing support. Data-centric storage involves imple-
menting a DHT in the sensornet and then storing notable events
and data by name; for example, at a simplistic level, sightings of
animals would be stored in the DHT using the animal name as the
key. The initial incarnations of data-centric storage, such as [25]
and [24], used geographic routing as the underlying routing algo-
rithm. However, one could implement the hash table functionality
directly on top of our routing algorithm, even though the coordi-
nates are not related to the real geographic locations.

Thus, both environments require a hash-table-like functionality.
This can be easily implemented on top of our routing algorithm as
follows. Whenever a put or get command is issued with a given
key, that key is hashed into a coordinate and the packet is routed
towards that coordinate. When the packet is stopped (i.e., it has
arrived at the node closest to its destination), it then either puts or
gets the data, as required. There are many algorithmic extensions
to achieve higher reliability (using several different hash functions,
replicating data locally, etc.); some of these are described in [25].

We described these two pieces, routing and distributed hash-
table, because they are necessary for the overall system. Our key
contribution is the definition of virtual coordinates; we borrow from
the literature for the routing and DHT components. Therefore, in
our evaluations we want to evaluate the quality of these coordi-
nates, not the quality of the various algorithmic extensions (such
as our DHT construction) implemented on top of them. Conse-
quently, we have chosen to focus mainly on how well one can
route greedily over these coordinates, and to compare that with how
well one could route greedily over the true geographic coordinates.
There are many algorithms for dealing with dead-ends (i.e., cases
where greedy routing fails) for both the delivery of packets and for
the construction of DHTs (see, e.g., [17, 25]). We don’t want the
defects of our coordinate construction algorithm to be masked by
these techniques, so we report on how often purely greedy routing
reaches its intended destination. If our results are roughly compara-
ble to the case where location information is known, then we have
extended geographic routing to the realm where location informa-
tion is not available.

4. COORDINATE CONSTRUCTION
This section describes the main contribution of our paper: a

method for constructing virtual coordinates without location infor-
mation. To more clearly present the various pieces of our con-
struction, we consider three scenarios with decreasing degrees of
location information. These scenarios differ in how much infor-
mation perimeter nodes know about their location; all other nodes
are assumed to have no location information.8 In what follows,
we always consider the nodes to be lying in the plane; however,
our techniques generalize in a straight forward manner to higher
dimensions (though we don’t discuss that generalization here).

8Perimeter nodes are those nodes lying on the outer boundary of
the system.
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Figure 1: A network with 3200 nodes. Perimeter nodes are
represented by black squares. The radio range of each node is
8 units.

For ease of exposition, we present our algorithm in three stages.
As shown below, to start with we make some assumptions and then
get rid of these assumptions as we proceed.

• Perimeter nodes know their location

• Perimeter nodes know that they are perimeter nodes, but
don’t know their location

• Nodes know neither their location, nor whether they are on
perimeter

We present construction techniques for each of these scenarios;
as the location information decreases the construction algorithm
becomes increasingly complex.

To illustrate these algorithms we use a network consisting of
3200 nodes uniformly spread throughout a square area of 200×200
units (see Figure 1). There are 64 perimeter nodes (15 on each side
and 4 in the corners). Each node has a radio range of 8 units, so
nodes have on average around 16 neighbors. In all simulation re-
sults presented in this section we ignore packet losses and signal
attenuation (aside from assigning a fixed radio range; i.e., packets
are received if and only if they originate from within the radio range
of a node, there is no probabilistic degradation of packet reception
as we move away from a node). More details about our simula-
tor, as well as more complex and realistic simulation scenarios are
presented in Section 5.

4.1 Perimeter Nodes Know Location
We first consider the scenario where all perimeter nodes know

their exact geographic coordinates. We describe a way in which
all non-perimeter nodes can determine their coordinates through an
iterative relaxation procedure. The analogy, borrowed from the the-
ory of graph embeddings, is that each link – each neighbor relation
– is represented by a force that pulls the neighbors together [21].
We assume that the force in the x-direction is proportional to the
difference in the x-coordinates (similarly for the y-coordinates).
If we hold its neighbors fixed, then a node’s equilibrium posi-
tion (the one where the sum of the forces is zero) is where the its
x-coordinate is the average of its neighbors’ x-coordinates (and,
again, the same for y-coordinate). We use these facts to motivate
an iterative procedure where each non-perimeter node periodically
updates its virtual coordinates as follows:
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xi =

�
k∈neighbor set(i) xk

size of(neighbor set(i))

yi =

�
k∈neighbor set(i) yk

size of(neighbor set(i))

Consider the network in Figure 1. Figure 2 illustrates how the re-
laxation algorithm works when all non-perimeter nodes start with
the same initial coordinates, in this case (100, 100). The relax-
ation equations imply that non-perimeter nodes that have a perime-
ter node among its neighbors will “move” towards that perimeter
node. As the iterations progress, nodes tend to move towards the
perimeter nodes that are closest to them in terms of the number of
hops. As shown in Figure 2(c), the algorithm eventually converges
to a state in which the nodes are spread throughout the region, al-
though the distribution has more “holes” than the set of true posi-
tions (compare Figure 1 with Figure 2(c).

We now evaluate how well one can route over these virtual coor-
dinates by measuring two key metrics:

• Success Rate: This is the fraction of times packets reach their
intended destination using purely greedy routing. This mea-
sure, as we explained in Section 1, is designed to evaluate the
performance of the coordinate construction algorithm with-
out interference from the various dead-end avoidance tech-
niques that can be applied to both real and virtual coordinate
routing algorithms.

• Average Path Length: This is the average number of hops
taken along the path.

We pick node pairs at random and send a packet from one to
the other; in the simulations discussed here we chose 32000 such
random pairs. We compare the results of routing over virtual coor-
dinates to routing over the true geographic coordinates. For greedy
routing with true geographic coordinates in the scenario described
above, the success rate is 0.989 and the average path length is
16.8. In contrast, with virtual coordinates, the routing success rate
is 0.993 (better than when using true coordinates!) and the aver-
age path length is 17.1 (only slightly worse than using true coordi-
nates).

While this performance is quite satisfactory, one concern is that
it might take too many iterations to converge (e.g., 1000 iteration
in this example). In Section 4.2 we address this problem, by pre-
senting a simple method of picking the the initial coordinates of the
non-parameter nodes which reduces the convergence time to a few
(just one in this test case) iterations.

The relaxation algorithm does not require all perimeter nodes to
know their location. For example, Figure 3(a) shows the virtual
coordinates of the nodes when only 8 perimeter nodes (out of 64)
know their true coordinates. While the distribution of the virtual
coordinates looks skewed in this case, the greedy routing perfor-
mance is still very good: the success rate is 0.981, and the average
path length is 17.3.

In addition, so long as the relative ordering of perimeter nodes
is preserved, their locations need not be exact. For example, Fig-
ure 3(b) shows the virtual coordinates of nodes when the perime-
ter nodes are evenly spaced along a circle (preserving the order in
which they appear on the real perimeter). In this cases, the routing
success rate is 0.99, while the average path length is 17.1. As we
will see in the next sections, the limited requirements imposed by
this simple relaxation algorithm and its robustness to imperfect po-
sitioning information allow us to altogether eliminate the need for
knowledge of the geographic coordinates of perimeter nodes.

4.2 Perimeter Nodes are Known
We now retain our assumption that perimeter nodes know that

they are indeed on the perimeter but eliminate the assumption that
these perimeter nodes know their exact geographic location. To
do so, we preface the previous relaxation method with a phase
where perimeter nodes compute their own approximate virtual co-
ordinates. Briefly, in this phase, perimeter nodes flood the network
to discover the distances (in hops) between all perimeter nodes and
then use a triangulation algorithm that computes perimeter posi-
tions from this inter-perimeter distance matrix.

Our perimeter coordinate algorithm consists of three stages.

Stage 1: Each perimeter node broadcasts a HELLO message to
the entire network. This allows perimeter nodes to discover their
distance (in hops) to all other perimeter nodes.9 We call this vector
of distances a node’s perimeter vector.

Stage 2: Each perimeter node broadcasts its perimeter vector to
the entire network. At the end of this stage, every perimeter node
knows the distances between every pair of perimeter nodes.

Stage 3: Every perimeter node uses a triangulation algorithm to
compute the coordinates of all other perimeter nodes (including its
own coordinates). The coordinates are chosen such as to minimize

�

i,j∈perimeter set

(measured dist(i, j) − dist(i, j))2, (1)

where measured dist(i, j) denotes the distance between nodes i and
j measured in Stage 1, and dist(i, j) represents the Euclidean dis-
tance between the virtual coordinates of nodes i and j. This can be
seen as minimizing the potential energy when each perimeter node
is a ball and they are attached to every other perimeter node by a
spring whose length is proportional to the hop count distance.

At the end of Stage 3, each perimeter node knows its own (vir-
tual) coordinates, and non-perimeter nodes can now use the relax-
ation algorithm described in Section 4.1 to compute their own vir-
tual coordinates. This completes the preparatory phase.

Note that because perimeter beacons are flooded over the entire
network, non-perimeter nodes also learn of the inter-perimeter dis-
tances and can hence run the same triangulation algorithm to com-
pute reasonable initial coordinates rather than starting at the center
of the virtual coordinate space.

Figure 4 shows the virtual coordinates of the network studied in
Section 4.1, where nodes (both perimeter and non-perimeter) use
triangulation to compute their coordinates. We see that the triangu-
lation algorithm performs very well: the routing success rate and
the average number of hops suffer virtually no degradation when
compared to the case when perimeter nodes know their coordinates.
Further, the initial conditions drastically reduce the convergence
time for the relaxation algorithm. After only one iteration the rout-
ing success rate is as high as 0.992, while the average path length is
17.2. After ten iterations the success rate increases slightly to 0.994
while the average path length remains unchanged. For comparison,
when all non-perimeter nodes start with the same initial coordi-
nates, it takes 1000 iterations to obtain a success rate of 0.995.

In our description so far, in the above 3-stage algorithm each
perimeter node uses complete knowledge of the inter-perimeter dis-
tances to independently compute its coordinates using triangula-
tion. In practice, message loss and node failure can cause perime-

9This distance is computed by maintaining a distance counter in
the HELLO message that is incremented at every hop. A node’s
distance to a flooding node is then merely the minimum counter
value over all the messages it receives from it.
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Figure 2: The virtual coordinates of the non-perimeter nodes after (a) 10, (b) 100, and (c) 1000 iterations, respectively. The initial
virtual coordinates of non-perimeter nodes are set to (100, 100).
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Figure 3: The virtual coordinates of the non-perimeter nodes when (a) only 8 nodes on the perimeter know their geographic coor-
dinates, and (b) when the perimeter nodes use coordinates projected on to a circle while preserving the order of the nodes on the
perimeter.
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Figure 4: The virtual coordinates of a network with 3200 nodes
and with 64 perimeter nodes. The perimeter nodes use triangu-
lation to compute their coordinates, while non-perimeter nodes
use the relaxation algorithm to compute their coordinates.

ter nodes to have incomplete (and inconsistent) knowledge of the
inter-perimeter distances in which case the above triangulation al-
gorithm would cause different perimeter nodes to compute incon-
sistent coordinates. This is because any set of coordinates that
satisfies the minimization condition can be rotated, translated, and
flipped while still satisfying the minimization condition. Thus, we
need to canonicalize the computation so that all nodes performing
it independently will arrive at the same solution. To address this
problem we use the following technique.

Bootstrapping beacons Two designated bootstrap beacons10

flood the network with HELLO messages. Perimeter nodes then
include these bootstrap beacons in their regular triangulation com-
putation and compute the coordinates of all the perimeter and boot-
strap nodes. Every node that computes the center of gravity (CG)
of all these positions. The CG together with the positions of the two
bootstrap nodes define a new coordinate axes – the CG forms the
origin, the first bootstrap node defines the positive x axis and the
second bootstrap node defines the positive y. All computed coordi-
nates are then normalized with respect to these new axes. Note that
CG is resilient to incomplete information. If a node lacks informa-
tion about one of the bootstrap nodes it can afford not to act as a
perimeter node since the relaxation does not require all perimeter
nodes to be detected.

4.3 No Location Information
In the final scenarios, we relax the assumption that perimeter

nodes know they are on the perimeter. We add to the algorithms
described before another preparatory stage where a subset of nodes
identify themselves as perimeter nodes. To achieve this we leverage
one of the bootstrap beacon nodes described in the previous section.
Recall that these bootstrap nodes broadcast HELLO messages to
the entire network; hence, every node discovers its distance to these
bootstrap nodes. Nodes use the following criteria, called perimeter
node criterion, to decide if they are perimeter nodes: if a node is
the farthest away, among all its two-hop neighbors from the first
bootstrap node, then the node decides that it is on the perimeter.

Figure 5 shows the virtual coordinates of all nodes when nodes
use their distance to the designated beacon to determine whether

10These two beacons nodes could be picked in a number of ways:
for example, simply pre-configuring two specific node identifiers
to act as beacons or relying on more complex probabilistic beacon
election algorithms.
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Figure 5: The virtual coordinates of a network with 3200 nodes
where no node knows its coordinates or whether it is on the
perimeter.

they are on the perimeter or not. We make two observations. First,
there are two nodes that wrongly decide that they are on the perime-
ter, when they are not. However, these decisions have little effect
on the virtual coordinates of the other nodes, since the triangula-
tion algorithm correctly positions these nodes inside the network
perimeter. Second, the routing success rate and the average path
length remain excellent at 0.996 and 17.3, respectively, after only
10 iterations.

Finally, we add one additional mechanism that allows us to main-
tain a consistent well-known virtual coordinate space even in the
face of node mobility and failures.
Coordinate projection on circle: Once perimeter nodes compute
their coordinates using triangulation they project these coordinates
on a circle with origin at the center of gravity of the perimeter nodes
and radius equal to the average distance of perimeter nodes from the
center of gravity. There are two reasons for doing this. First, this
gives us a well-defined area for implementing a distributed hash
table (DHT).11 Second, this virtual circle makes it easier to support
mobility. To correctly maintain perimeter nodes under mobility, the
first bootstrap node periodically rebroadcasts and nodes determine
afresh whether they are perimeter nodes or not. When a new node
concludes that it is on the perimeter that node will simply compute
the projection of its current coordinates on the circle and assume
these coordinates to be fixed. In turn, a node that is no longer on
the perimeter “un-fixes” itself and starts to update its coordinates
using the relaxation algorithm.

This completes our description of the algorithm. We now briefly
recap our algorithm before moving on to its evaluation in Section 5.

4.4 Summary
Our coordinate assignment algorithm consists of the following

key steps:

1. Two designated bootstrap beacon nodes broadcast to the en-
tire network. Nodes use their distances to one of these boot-
strap nodes to determine whether they are perimeter nodes.

2. Every perimeter node sends a broadcast message to the entire
network to enable every other node to compute its perime-
ter vector, i.e., the distances from that node to all perimeter
nodes.

11Recall that in defining the DHT we needed a hash function to map
keys onto the set of coordinates; knowing that the perimeter nodes
are arranged in a circle makes the choice of hash function simpler.
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3. Perimeter and bootstrap nodes broadcast their perimeter vec-
tors to the entire network

4. Each node uses these inter-perimeter distances to compute
normalized coordinates for both itself and the perimeter
nodes. Perimeter nodes project their coordinates onto the
outer circle.

5. Perimeter nodes stay fixed while all other nodes run a relax-
ation algorithm.

6. To accomodate mobility, a designated bootstrap node pe-
riodically broadcasts by which nodes periodically re-asses
whether they lie on the perimeter or not.

Note that steps 1-4 are only required to bootstrap the coordinate
assignment when the network is first initialized and only steps 5
and 6 constitute normal operation.

5. PERFORMANCE EVALUATION
In the previous section we defined a complete algorithm for con-

structing virtual coordinates with no location information. We now
evaluate this algorithm through a series of simulations; the algo-
rithm we simulate includes all of the techniques we described, in-
cluding bootstrapping beacons and projecting the coordinates onto
a circle. As before, we consider two metrics: success rate of greedy
routing and path length (in hops). These metrics allow us to eval-
uate the effectiveness of our virtual coordinate construction algo-
rithm; in real usage, the success rate will be higher because various
techniques for dealing with dead-ends could be employed.

5.1 Experiment Design
To study the behavior of our solution for large scale networks, we

have implemented a packet level simulator that is able to scale to
tens of thousands of nodes. However, this scalability doesn’t come
for free: our simulator does not model all the details of a realistic
MAC protocol. In particular, we consider (unless specified other-
wise) a simplified MAC layer that models neither packet loss nor
signal propagation. Radios have a precise (circular) radio range,
and nodes can send packets only to nodes within this range. This
simple model allows us to abstract away the impact of message
loss and signal attenuation on routing performance, which would
apply regardless of whether we have location information, and lets
us concentrate on how well our algorithm constructs virtual coor-
dinates. Also, we try not to use metrics that are specific to any one
particular MAC or physical layer technology in our evaluation.

In addition, to get a better idea of how our algorithm would work
in a real environment, we present simulations in which we model:

• losses - nodes drop incoming packets with a given probabil-
ity p. Since we do not model a specific MAC layer, radio
technology or data-traffic pattern, we resort to a uniform loss
model. While this may not be a realistic loss model, it does
provide some insight into the robustness of the algorithm in
the presence of loss.

• mobility - to simulate mobility, we use the random waypoint
model [4].

• obstacles - we model obstacles by using straight walls that
are parallel to the x or the y-axis. Nodes cannot communicate
with each other if the line connecting them intersects with a
wall. To stress our algorithm, we consider scenarios with up
to 50 walls.
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Figure 6: The success rate of the greedy routing with virtual
positions for two network sizes versus the number of iterations.
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Figure 7: The path length in hops using greedy routing with
virtual positions. Note that x axis uses logarithmic scale

• irregular shapes and voids - we create networks with voids,
i.e., regions inside the network that do not contain any nodes,
and we simulate networks of various shapes, including con-
cave shapes.

Most of our simulations involve the same basic scenario de-
scribed in Section 4: we use a 3200 node network, where nodes
are uniformly distributed in an area of 200 × 200 square units (see
Figure 1). The radio range is 8 units, and on average nodes have 16
neighbors.

Each node broadcasts heartbeats within its radio range every t
sec, where t is uniformly distributed between 1 and 3 sec. Every
heartbeat message contains a list of the sender’s one-hop neighbors.
This information is used by the receiver to learn its two-hop neigh-
borhood. If a node does not hear for three heartbeat intervals from a
neighbor n, it assumes that n is no longer its neighbor. In addition,
there is a beacon node that periodically floods the network. Nodes
use these floods to determine whether they are on the perimeter
(see Section 4.3). The beacon floods the network every 50 sec.
While the choice of values for these timers is somewhat arbitrary,
we found that these timers are able to accommodate mobility up to
speeds of 0.64 units per second while keeping the traffic overhead
reasonably low for static networks. Ideally, we would like to have
algorithms that adaptively tune these timers based on the dynamic-
ity of the network, but this is beyond the scope of this paper.
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Figure 8: The CDF of the routing load on the nodes of the net-
work when using true and virtual-coordinates
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5.2 Scalability
In this section we study the scaling of our algorithm. We measure

the success rate and the path length for greedy routing, and the
overhead of the bootstrapping phase, as a function of the network
size and node density.

Number of nodes Number of flooding nodes
50 5.22
200 6.5
800 9.25
3200 14.75
12800 30.8

Table 1: The number of flooding nodes during the bootstrap
phase as the network size varies.

Network Size: Figure 6 shows the success rate of the greedy
routing with virtual coordinates for both our baseline network with
3200 nodes, and for a network with 12800 nodes. Each point is
the result of ten independent runs. In both cases non-perimeter
nodes compute their initial coordinates based on the distances to
the perimeter nodes as discussed in Section 4.2.

We make several observations. First, the algorithm converges
very fast. After only 10 iterations the success rate is already greater
than 0.9. An iteration corresponds to heartbeat period, which in
our case is 2 sec on average. After 100 iterations, the success rate
reaches 0.97 for the 3200 node network, and 0.95 for the 12800
node network.12 Second, these success rates are very close to the
success rates for greedy routing with true positions (0.99 for 3200
nodes, and 0.98 for 12800 nodes). Third, the success rates are
very consistent across the runs, and the variation decreases with the
number of iterations: the difference between the maximum and the
minimum success rates for 1000 iterations is no larger than 0.02.
Fourth, the success rate decreases very little (from 0.97 to 0.95) as
the network quadruples in size. This suggests that our algorithm is
quite robust as the network size increases.

Figure 7 shows the path length (in hops) using greedy routing
as the network size increases from 50 to 12800 nodes. The results
show that using virtual coordinates for routing has virtually no im-
pact on the path length: the path length is almost identical to the
case when using true coordinates. Figure 8 shows the CDF of the
routing load on a node when using virtual and true-coordinates. We
count the number of times a node is on the forwarding path when
we choose 32000 random end-to-end paths. This result shows that
routing with virtual coordinates does not introduce any hot spots
and that the distribution of routing load is very similar to that when
using true coordinates.

Density: Figure 9 plots the success rate of greedy routing for
two different node densities: one node per 12.5 square units (this
is the same density as in our baseline network, i.e., 3200 nodes
uniformly distributed in a 200 × 200 grid), and a lower density of
approximately one node per 19.5 square distance units (i.e., 3200
nodes in a 250×250 grid). The success rate of greedy routing with
virtual positions closely tracks the success rate with true positions.
As expected, the success rate decreases as the density decreases.
Finally, the path length when using virtual coordinates is within
0.2 hops from the path length when using true positions.

The density of nodes also affects the number of perimeter nodes
that flood during the bootstrap phase. This is because small voids
in the layout of nodes are more likely to occur at a low density

12The main reason the success rate for the 3200 node network is
slightly lower (by 0.02) than in Section 4.3 is because here the
perimeter nodes are projected on the outer circle.
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Figure 10: The success rate of greedy routing when only using
the one-hop neighborhood

thus causing more nodes to conclude that they are on the perime-
ter.13 For example, for the 3200 node case above, we found that the
number of floods increased from approximately 14 at high density
to about 30 at low density.

Overhead: The most expensive operation of our algorithm is the
bootstrap phase which requires perimeter nodes to compute and
exchange the distances to each other. This essentially requires a
certain fraction of such nodes to flood the network. In our simu-
lations, a perimeter nodes suppresses its flood on hearing a flood
from another perimeter node less than 5 hops away. Table I shows
the increase in the number of such bootstrap floods as the network
size increases. As expected, the number of bootstrap floods grows
proportionally to the square root of the network size. We believe
this growth is reasonable particularly since the cost of flooding is
incurred only when the network is initialized.

After bootstrapping is completed, the overhead consists of (1)
one beacon periodically flooding the entire network, and (2) each
node periodically broadcasting within its radio range its neighbor-
hood information. As a result, the overhead (in terms of number
of messages and packet sizes) per node does not depend on the
network size. However, since we require each node to maintain
a fairly up to date view of its two-hop neighborhood, the steady
state overhead will depend on mobility and dynamicity of the net-
work. But, we do not make an attempt to quantify this overhead
through simulations, mainly for two reasons. First, our simulator
does not simulate any application traffic, hence it is very unlikely
that control packets will collide and be lost. Simulating application
traffic severely limits the scalability of the simulator. Second, we
believe that it is possible to reduce the overhead by a large factor
by implementing a few other simple optimizations such a adap-
tive timers and differential encoding.14 These optimizations are
beyond the scope of this paper; we are currently mainly interested
in gauging how “good” our coordinates are for geographic routing.
Also, we would like to note that these optimizations are not spe-
cific to our scheme and will be useful for other geographic routing
schemes (including those using real locations) such as GFG/GPSR
and GOAFR+.

If the mobility is high enough or if the power requirements man-
13Recall that a node decides that it is on perimeter if it is the farthest
node to a designated beacon among all its two-hop neighborhood
(see Section 4.3).

14Currently we send the entire list of neighbors in every heartbeat
packet. This is wasteful and can be made significantly better with
difference encoding.
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Figure 11: The success rate of greedy routing versus the max-
imum pause time. The error bars represent the minimum and
maximum values.

date that maintaining the two-hop neighborhood is very expensive,
one possible trade-off is to use only the one-hop neighbors for rout-
ing. Figure 10 shows that routing using only the one-hop neighbors
will lead to more ‘voids’ where greedy routing will fail (e.g., it
drops form 9.97 to 0.95 for a 3200 node network after 1000 itera-
tions). The rubber band iterations do not require information about
two-hop neighbors, but we still require the two-hop neighbors for
perimeter detection.15 But since perimeter detection is a much less
frequent operation we still gain significantly in terms of overhead.

5.3 Mobility
In this section, we model node mobility by using the random

waypoint model [4]. Each node picks a destination at random
within the 200 × 200 square grid and moves towards the destina-
tion with a speed uniformly distributed in the range [0, 0.64]. The
average speed is thus 0.32 which is equivalent to the average speed
used in Broch et al. [4]. When a node reaches the destination point,
the node remains stationary for a time interval called pause time,
then selects another destination, and repeats.

Let T be the time interval between two consecutive broadcasts
initiated by the beacon node (see Section 4.2). Recall that these
broadcast messages are used by nodes to detect whether they are on
the perimeter or not. Once a node decides that it is on the perimeter
it projects its current virtual position on the circle. After this the
node stops updating its coordinates until it decides again that it is
no longer on the perimeter.

Figure 11 shows the success rate of greedy routing function of
maximum pause time for T = 10, and T = 50 sec, respectively.
For comparison a node needs less than 8/0.32 = 25 sec on average
to move out of the radio range of a fixed node. As expected, the
success rate of greedy routing decreases as T increases. When T =
50 sec, the success rate is as low as 0.5. This is because a node can
cross several radio ranges before it can detect whether it is on the
perimeter. In contrast, the success rate for T = 10 sec is at least
0.97. Finally, note that as the maximum pause time increases the
success rate increases. This is to be expected since a larger pause
time decreases the level of mobility.

5.4 Losses and Collisions
In this section, we study the robustness of our algorithm in the

presence of losses. We model losses by randomly dropping control
15We found that perimeter detection using only the one-hop neigh-
borhood leads to too many false positives.
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Figure 12: The success rate of greedy routing as a function of
loss rate.

packets with a given probability p. To factor out the routing failures
due to data packet losses we do not drop any data packets. While
arguably this is not a realistic loss model, it allows us to study the
robustness of our algorithm when using incomplete information.

Figure 12 shows the success rate of greedy routing when the loss
rate p increases from 0 to 30%. As expected the success rate drops
as the loss rate increases. However, this drop is not severe. For 30%
loss rate, the average success rate of greedy routing is still greater
than 0.77. These results suggest that our algorithm is robust in the
presence of packet losses. Intuitively, this is because the operations
used to exchange control information, i.e., broadcasts and periodic
heart-beats, are highly robust. The success rate is greater than the
probability of hop-by-hop packet delivery because we ignore losses
on the data path.

5.5 Obstacles
In this section we study how our algorithm works in the presence

of obstacles. We model the obstacles as walls with lengths of up to
50 units. For comparison, recall that the radio range of a node is 8
units, and a node knows only its two-hop neighborhood. Thus, for
large obstacles it is not always possible for nodes to get around the
obstacles by just using greedy routing.

Figure 13 plots the success rate for greedy routing in our 3200
node network for different obstacle lengths, and for different num-
ber of obstacles. As expected, the success rate decreases as the
number of obstacles and/or their length increases. Arguably, the
most surprising result is that the success rate of greedy routing per-
forms better with virtual coordinates than with geographic coordi-
nates. For example, for 50 obstacles with length of 20 units, the
success rate is as low as 0.64%. This compares with a success rate
of 0.81% for virtual positions. Intuitively, this is because virtual
positions better reflect network connectivity than the real positions.
Two nodes that are on each side of a wall can be very close in the
geographic space although they can’t communicate. In contrast, in
the virtual space the same two nodes will be quite far apart.

We do not plot results with 50 obstacles when the length of the
obstacles is higher than 20 units because the network become dis-
connected.

5.6 Irregular Shapes
In this section we explore networks where the nodes are dis-

tributed in areas of irregular shapes. Figure 14(a) presents the true
positions of a network with 3200 nodes which contains a large void
in the center. Figure 14(b) shows the virtual positions of the same
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Figure 13: The success rate of greedy routing with true geo-
graphic positions and virtual positions for different number of
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Number of Iterations Success Rate Path Length
0 0.72 9.2
1 0.88 9.2
10 0.97 9.1
100 0.982 9.3
1000 0.978 9.3

Table 2: Success rate and path length with increasing numbers
of iterations in a 3-dimensional space.

network nodes. The virtual shape is rounded because our algo-
rithm projects the perimeter nodes on a circle (see Section 4.3).
The center of the circle coincides to the center of gravity of the
perimeter nodes, and the radius is equal to the average distance of
the perimeter nodes to the center of gravity, as computed by the tri-
angulation algorithm. As expected the virtual shape preserves the
void. The success rate of the greedy routing with virtual coordi-
nates is 0.97, which is higher than the success rate with true posi-
tions, 0.93. This is consistent with our results in the presence of
obstacles, which showed that greedy routing with virtual positions
outperforms greedy routing with true positions. The average path
length is 18.48 for virtual positions versus 17.8 for true positions.

Similarly, Figure 14(c) shows the true positions of the nodes in a
network with a concave shape, while Figure 14(d) shows the virtual
positions of the nodes in the same network. The success rate of
greedy routing with true positions is 1.0, while the success in the
case of the virtual positions is 0.99. The average path length is 13.9
for true positions versus 14.3 for virtual positions.

In summary, our algorithms works well in the case of network
with irregular shapes including networks with large voids. In ad-
dition, our algorithm preserves the general shape of the network in
the geographic space.

5.7 3-D Space
So far we have assumed that nodes lie in a 2-dimensional space.

In this section we consider a 3-dimensional network with 3200
nodes uniformly distributed in a cube of side 75. Each node has
14 neighbors on average. Table II shows the success rate and the
path length as the number of iteration increases. After 10 itera-
tions the success rate reaches 0.97, and it exceeds 0.98 after 100
iterations. These results suggests that our algorithm works well in
higher dimensional spaces too.
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Figure 14: (a) True positions and (b) virtual positions of a network with a large void in the center. (a) True positions and (b) virtual
positions of a concave network.
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Figure 15: Cumulative distribution of the number of hops re-
quired to reach the node closest to the destination from the node
at which greedy routing stops.

5.8 Distributed Hash Tables
To implement a Distributed Hash Table (DHT), we associate

with each item in the DHT a two-dimensional key (x, y) that maps
within the perimeter circle. An item with key (x, y) is stored at the
node closest to (x, y) in the virtual space.

To route to the node responsible for a key (x, y) we augment
the greedy routing protocol with a simple expanding ring search
scheme. When a packet is not able to make greedy progress, and
the current node doesn’t store the requested data item, the node
performs an expanding ring search until a closer node is found or a
TTL has been exceeded.

Figure 15 plots the CDF of the distance in hops from the node at
which greedy routing fails to the node closest to the destination in
the virtual space. Greedy routing terminates at the correct node in
over 97.5% of cases. Only for a very small fraction (approximately,

Max. TTL messages (6400 queries) success rate
no expanding 1.049×105 0.985
ring search

3 1.111×105 0.995
4 1.140×105 0.998

unlimited 1.152×105 1.0

Table 3: The effect of expanding ring search on the success rate
and overhead of DHT lookups

0.2%) of lookups, the destination node is quite far (i.e., farther than
8 hops) from the node at which greedy routing fails.

Table III shows the impact of the maximum time-to leave (TTL)
of the expanding ring search on the success rate and the message
overhead. The results represent averages over 6400 queries. As the
maximum TTL increases, both the success rate and the overhead
increase. In all cases the overhead increases by less than 4% which
we believe is a small price to pay to achieve an 100% success rate.

5.9 Summary of Results
In summary, our algorithm consistently matches the performance

of greedy routing with true positions over a range of simulation
scenarios. In fact, our algorithm outperforms greedy routing with
true positions when the network connectivity is inconsistent with
network geography. As shown in Section 5.5, in the presence of a
large number of obstacles, the success rate of greedy routing with
virtual coordinates exceeds by up to 20% the success rate when
true positions are used.

In addition, our algorithm is scalable. For example, in the case
of a 12800 node network we require a total of only 30 nodes to
flood the network in the bootstrap phase. After the bootstrap phase
the overhead in terms of number of messages and message sizes is
independent of network size. In particular, our algorithm only re-
quires each node to periodically send heartbeats, and a single bea-
con node to periodically flood the network.
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6. CONCLUSIONS AND FUTURE WORK
In this paper we present an algorithm for assigning coordinates

to nodes in a wireless network (to be used for geographic routing)
that does not require nodes to know their location. Our key contri-
bution is a relaxation algorithm that associates virtual coordinates
to each node. These virtual coordinates are then used to perform
geographic routing. Simulation results show that the success rate of
greedy routing with virtual coordinates is very close to the success
rate of greedy routing using true coordinates. Furthermore, in some
cases such as in the presence of obstacles, greedy routing with vir-
tual coordinates significantly outperforms greedy routing with true
coordinates. Intuitively, this is because virtual coordinates reflect
the network connectivity instead of the nodes’ true positions which
are less relevant in the presence of obstacles.

We plan to extend this work in four directions. First, we intend
to continue the study of our algorithm by simulation using more
realistic link layer models and network topologies. Second, we
plan to study better heuristics to increase the success rate of DHT
operations using greedy routing. One possibility would be to use
waypoint routing i.e., when a source fails to reach a destination,
the source can pick a waypoint and ask it to perform routing on
its behalf. Such a simple optimization has the potential to avoid
voids and obstacles without the need for expanding ring searches.
Third, we plan to explore the behavior of DHTs in networks with
large voids. In such cases all items whose keys map within the void
will be stored at nodes along the perimeter of the void. This can
create storage and communication imbalance. Finally, we plan to
implement our algorithm on sensor motes, and study it in real world
scenarios.
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