
Intelligent Design Enables Architectural Evolution

Ali Ghodsi
KTH / UC Berkeley

Teemu Koponen
Nicira Networks

Barath Raghavan
ICSI

Scott Shenker
ICSI / UC Berkeley

Ankit Singla
UIUC

James Wilcox
Williams College

ABSTRACT
What does it take for an Internet architecture to be evolvable?
Despite our ongoing frustration with today’s rigid IP-based
architecture and the research community’s extensive research
on clean-slate designs, it remains unclear how to best design
for architectural evolvability. We argue here that evolvability
is far from mysterious. In fact, we claim that only a few

“intelligent” design changes are needed to support evolvability.
While these changes are definitely nonincremental (i.e.,
cannot be deployed in an incremental fashion starting with
today’s architecture), they follow directly from the well-
known engineering principles of indirection, modularity, and
extensibility.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Economics, Management

Keywords
Internet Architecture, Evolution, Innovation, Diversity

1 Introduction
The current Internet is architecturally rigid, in that there
are core aspects (such as IP) that are particularly hard to
change. This rigidity has prevented us from addressing
several important problems in the current Internet. Blocked
from making practical progress, some members of the
research community sought to make intellectual progress
by focusing on clean slate designs. The clean-slate approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

enables the research community to investigate how to address
these problems architecturally, even if the changes themselves
cannot be incrementally deployed.

These clean slate efforts have increased our intellectual
understanding of Internet architecture — particularly in
the areas of security, reliability, route selection, and mo-
bility/multihoming — and there are now many clean-slate
proposals that offer significantly better functionality than
our current Internet. However, in recent years these clean
slate efforts moved beyond adding functionality and have
begun addressing the reason we had to turn to clean slate
design in the first place: architectural rigidity. That is, the
research community is now devoting significant attention
to the design of architectures that can support architectural
evolution, so that future architectural changes could be made
incrementally rather than through a series of clean-slate
designs. For instance, two of the recent NSF FIA proposals
(Nebula [3] and XIA [1]) have identified evolvability as an
important aspect of their design. And even more recently, we
introduced a new “framework” approach to evolution called
FII [12].

However, this emerging literature on evolvability is rel-
atively immature and certainly incomplete. We, as a
community, are only beginning to understand what makes an
architecture evolvable. In this paper we hope to advance
the dialog on this topic by reviewing current barriers to
evolution and then observing that relatively simple, but
“intelligent” (and definitely nonincremental), changes would
vastly improve the Internet’s evolvability. These changes
are similar to those outlined in [12] for FII. While the
two designs are not identical (in particular, our thoughts
about interdomain routing and other services, as well as
our security story, have changed significantly since [12]),
the more fundamental difference between [12] and our
discussion here is that in [12] the design was motivated
by high-level architectural arguments about architectural
”anchors” and other general principles; here we arrive at
similar design decisions by applying straightforward and well-
known principles from systems design: layers of indirection,
system modularity, and interface extensibility. We are
encouraged (and somewhat relieved!) that we have arrived
at similar conclusions about evolvability from both a top-

1

down architectural analysis and a bottom-up systems design
approach.

We begin this paper (Section 2) by discussing what
we mean by architectural evolvability, which is ongoing
and pervasive architectural change rather than episodic
and/or narrow changes. We then (Section 3) discuss several
examples of architectural evolution, outlining why it is hard
in today’s architecture and how we could alter the current
architecture (in rather straightforward ways) to accommodate
each particular form of architectural evolution. These
examples lead us to a design that meets our definition of
an evolvable Internet; we call this design OPAE (for Ongoing
and Pervasive Architectural Evolution).1 We identify the
basic design principles underlying this design in Section
4 and contrast this with other approaches to architectural
evolvability in Section 5, paying particular attention to the
XIA proposal because articulating the differences between
OPAE and XIA helps illuminate the underlying assumptions
and ambitions of both.

2 Comments on Architectural Evolution
Before addressing architectural evolution, we first address
its opposite: architectural rigidity. For all the talk in
our introduction, and in many other papers (perhaps the
most extreme articulation is in [4]), about architectural
rigidity, it is important to state the obvious: the Internet
is wonderfully dynamic, with change constantly occurring in
many areas. For instance, we easily deploy new services at the
application level (e.g., Akamai, Facebook); with somewhat
less ease, we introduce new host protocols (e.g., HTTP, SIP,
and BitTorrent); and after a lengthy standards process we
introduce new technologies below the IP layer (from wireless
to optical to new L2 technologies and protocols). No one
could claim that the Internet is ossified in these respects.

However, there are core aspects of the Internet architecture
that are indeed hard to change in any fundamental way.
Changing the basic nature of IP, TCP, DNS, or the Sockets
API (rather than merely extending them, as in DNSSEC)
is quite difficult, and this rigidity has made it harder to
address many of the Internet’s longstanding problems (such
as security and reliability). But even for these core protocols,
one could imagine managing a transition given sufficient
time and effort; the (perhaps!) forthcoming IPv4 to IPv6
transition is an example of this, where it has taken massive
governmental exhortation and commercial investment to
have gotten this far. But such transitions will be infrequent,
because of the extreme degree of effort involved.

When we use the term architectural evolvability, we are
referring to the ability to make fundamental changes in the

1Opae is Hawaiian for shrimp, which is fitting because OPAE is
a minimal design, standardizing very few aspects of the Internet
architecture. As noted before, this is almost the same as the FII
design in [12]; we use a different name here to avoid confusion
because the two designs differ in their treatment of Interdomain
routing and security.

entire architecture, not just the aspects that are easy to change
today. That is, we want evolution to pervade the architecture,
not be narrowly confined to its edges. Moreover, we want
these changes to be relatively easy and frequent rather than
extremely difficult and rare. In short, we want an Internet
where architectural innovation is ongoing and pervasive.

There are many actors involved in adopting an architec-
tural change, ranging from domain operators (e.g., ISPs),
router/switch vendors, OS vendors, application writers (e.g.,
Microsoft, Adobe), and application service providers (e.g.,
Facebook, CDNs, and search). Application service providers
will perhaps be the most nimble of these actors, deploying
new systems frequently and independently, so we assume that
they are not a barrier to evolution. We further assume that all
major OS vendors and most (but not all) application writers
will adopt new protocols relatively quickly (e.g., dual-stack
support has been available in OSes for many years), but we
also assume that there will always be legacy systems and
applications that have not been upgraded and will continue to
use older versions. Note that when we say “adopt” we mean
that they will add support for these newer protocols, but will
retain the ability to use the older protocols (and will probably
keep these older protocols as the default for quite a while).

The same willingness (with somewhat less nimbleness) to
adopt additional software features applies to router/switch
vendors. Hardware changes are slower in coming (but
not impossible: hardware support for IPv6 is widespread),
and we will discuss the role of hardware in architectural
evolution in Section 5. Lastly, the domain operators are
probably the most conservative actors in this list, as the
penalties for malfunctions are higher than the rewards for
new functionality.

Finally, any change that requires adoption by all domains
faces a daunting deployment barrier. We also assume that
requiring widespread deployment of middleboxes that can
translate between architectures is a significant barrier to
architectural change. Thus, in what follows we assume that
supporting ongoing and pervasive evolution must not require
universal adoption or an extensive transition infrastructure.

3 Overcoming Barriers to Evolution
In this section we consider various kinds of architectural
changes that are hard to effect today2; this list is not meant
to be exhaustive, but comprehensive enough to illustrate
most aspects of architectural evolution. Moreover, this is
a list of changes to individual components (such as naming
or routing); most architectural proposals involve changes
to a set of these components, but for clarity we focus on
these components individually. For each of these categories

2That is, we ignore deployment of new applications, new
application-level services, new host protocols, and new L2 (and
lower) technologies and protocols. Note that deployment of new
designs inside a domain may require support from router/switch
vendors and OS vendors. What it does not require is universal
agreement among domains.

2

of changes, we first describe what prevents incremental
adoption of these changes now and then discuss how the
overall architecture might be modified in order to enable such
evolutionary changes in the future. This will lead us to the
OPAE design.

We hasten to note that all of these necessary modifications
are known in the literature (at least in some form)3, many of
them are obvious, and some are even partially implemented
today. We do not contend that the solution we propose here is
novel; quite the opposite, our claim is that almost no novelty
is needed to support architectural evolution.

But just because they are not novel does not mean they are
easy to deploy. OPAE is most definitely a radical departure,
in that it would require changes in several crucial places in
the current architecture, but there is nothing conceptually
interesting in these changes; they are both clean-slate and
boring.

We divide these changes into four categories: easy, hard,
complicated, and security.

3.1 Easy Architectural Changes

We start with the easiest case, changing the network API
(hereafter, netAPI) offered by the host OS to applications.
The netAPI is hard to change because it is embedded in
applications; any nonbackwards-compatible change would
immediately render all legacy applications unusable. This
can be avoided by merely providing a layer of indirection
— essentially a netAPI identifier — so that all calls to the
netAPI first specify which version or flavor of the netAPI
they want. This is no different, in spirit, from IP’s use of a
version number at the beginning of the packet header; netAPI
calls start with a netAPI identifier with the following bits
obeying the syntax of that particular netAPI (which could be
publish/subscribe, Sockets, a streaming interface, or anything
else). In fact, some netAPIs already support more limited
forms of this indirection (e.g., protocol families). It is easy
for OS vendors to support multiple netAPIs, and the set of
netAPIs on one host need not be identical with those on
another, so little coordination is needed to deploy a new
netAPI with this layer of indirection.4

Changing the naming system offers a similar challenge,
and yields to a similar solution. Currently DNS names are
embedded in applications, so any fundamental naming change
would require the modification of many applications. This
could be avoided by having applications (as some do now)
treat names as semantic free bags-of-bits and only handle
them via naming operations implemented in the network
stack (such as gethostbyname). However, the stack must
also change to adopt to these new names. To do so, one
can take an approach similar to the netAPI, with all names
taking a standard form of a namespace identifier followed by

3We do not cite each of these precursors because there are so many
of them, but we want to make clear that these are not our ideas.
4Note that two communicating hosts can use different netAPIs, as
long as the implementing protocols they use are compatible.

the bits representing the name. When a new namespace is
introduced OS vendors can start including network stack
support for these names (which can be recognized by
the namespace identifier); the stack can support multiple
namespaces simultaneously, so as with the netAPI one can
add additional namespaces without revoking old ones.

However, such names must be resolved, so that requires the
introduction of new name resolution mechanisms, which can
be used to support a new namespace, or augment (or replace)
the name resolution mechanism for an existing namespace.
This requires OS stacks to support new resolution protocols,
but also involves some coordination with domains, in that the
domain must provide a way for a host’s stack to reach the
various name resolution systems. This could be in the form
of a resource directory, or be bootstrapped by having hosts
use an old name resolution system to reach a well-known
service (e.g., Google), and this well-known service could
have a directory of the name resolvers for this new name
resolution system.

3.2 Hard Architectural Changes

Perhaps the hardest architectural change is to modify IP.
Currently, L3 provides both a universal exchange format
and a universal addressing scheme. As we have seen with
IPv6, keeping this dual use for L3 but replacing IP with a
new version requires (among many other changes) changing
applications (so they can deal with these new addresses),
achieving universal agreement on the new protocol, and
deploying an overlay infrastructure (so that IPv6 networks
can talk directly with other IPv6 networks). These are
significant barriers, so we must find another approach.

First, and most obviously, we require that all netAPIs
pass names, not addresses, so applications are shielded from
changes at L3. Second, we separate intradomain addressing
from interdomain addressing. Interdomain addresses could
just be domain identifiers, or could be at a smaller granularity,
but the important factor is that they do not identify a particular
host, only a region within which a host resides. A full
destination address consists of an interdomain part and
an intradomain part, so the intradomain part need not be
understood by any domain other than the destination domain
(see [2]). This is nothing more than making intradomain
addressing look like L2 (which today need not be coordinated
across domains).

Third, we note that once there is an interdomain addressing
structure that is independent of a universal exchange format,
interdomain addresses can be embedded in many forms of
packet delivery. This frees two domains to peer with a
variety of technologies and layers (such as optical, MPLS, or
Ethernet); different domains can choose to peer in different
ways, and a single domain might employ many different
peering technologies simultaneously. Thus, this separation of
interdomain and intradomain addressing, by enabling general
forms of peering, not only makes changing the L3 protocol
easy, it does away with the concept of a universal networking

3

layer altogether. What will hold the Internet together is
not a universal exchange format but the universal form of
interdomain addressing and, as we discuss below, a way to
route based on these interdomain addresses.

3.3 Complicated Architectural Changes

The most complicated aspect of an architecture to change is
interdomain routing. It not only requires global agreement
and adoption among the domains (similar to changing IP)
but it also involves the extra complication of a globally
distributed algorithm (whereas IP can be executed locally)
with sophisticated semantics (BGP policies are far more
complicated than basic IP forwarding). Achieving global
agreement on an ongoing series of complicated changes to
BGP is infeasible, so we need to find another way to evolve
interdomain routing. We propose doing so on two timescales,
each with its own mechanism: we use a tag to specify the
routing protocol used, so that interdomain routing can evolve,
and we make routing more extensible so that this form of
evolution need not happen often.

Routing Extensibility. On short timescales, we advocate
extremely extensible routing designs. In particular, routing
systems should support arbitrary (and possibly external)
route computations, a flexible policy model, innovations
in the kinds of services offered along paths (such as QoS,
middlebox services, monitoring), multipath routing, and
accommodate various peering technologies (i.e., not require
a universal protocol is used to connect domains). This degree
of extensibility would relieve pressure on developing entirely
new interdomain routing systems by allowing much of the
desired functionality to be achieved within the current design.

Another desirable feature of interdomain routing schemes
is path visibility and choice. With traditional interdomain
routing, hosts are only offered the default path; if that path
is not acceptable, there is no recourse. With routing systems
that allow hosts (or some route computation agent) to choose
the path (as long as it is policy-compliant), there only needs
to exist one acceptable path. Giving the hosts visibility into
the properties of paths and choice among them significantly
decreases the deployment hurdle for new path properties,
changing the requirement from altering the default path to
merely providing one acceptable path.

There are policy-compliant source routing designs that
satisfy these extensibility and choice goals; we won’t describe
them here, but see [9,12] for a description of one such routing
scheme.

Routing Evolution. On a longer timescale, we should en-
able partial deployment of new interdomain routing systems,
running along side the current one. Such an incremental
deployment can be achieved by having (i) packets carry a
label that indicates which routing system computed the route,
with the rest of the header understandable only by routers that
participate in that routing system, and (ii) the routing systems
expose which domains are reachable via that routing system

(as BGP does today). In this way, whomever is choosing
the route (end host, domain, external route computation
agent, etc.) can inspect the various routing systems with
their partial deployments and choose a route from the desired
routing system. Deploying new routing systems with any
reasonable degree of coverage is hard, so we expect this form
of evolution to be relatively slow.

More General Services. So far, our discussion of interdo-
main routing has focused on designs that maintain the current
Internet service model of sending and receiving packets to
destinations (which themselves might be unicast, multicast,
or anycast). However, once we insert this level of indirection
(through the label in the packet), the service offered by a new
“routing” system need not resemble traditional routing; for
instance, such a mechanism might offer a pub/sub interface
(as in DONA [11], CCN [10], and other Information-Centric
designs). Thus, OPAE’s general approach enables the
incremental introduction of new interdomain service models.

3.4 Security
We, and many others, have argued elsewhere (see [2, 12, 15])
that, except for denial-of-service, all aspects of network
security can be implemented at the end hosts. We adopt
that view here as a fundamental architectural fact-of-life, and
limit our discussion to dealing with denial of service. We
require that every new service (whether routing for traditional
destination based packet delivery, or new service models like
pub/sub) provide an interface that ensures protection against
denial of service. For traditional packet delivery, this interface
could enable delivery (for capability-like approaches to
DoS, such as in [16]) or prevent delivery (for filter-based
approaches to DoS, such as in [5, 12]). Thus, for a domain to
support a new routing service (or new service model), it must
support both the delivery and DoS interfaces.

4 Design Principles
We have described the changes needed to enable ongoing
evolution of the network API, naming and name resolution,
the internetworking layer, interdomain routing, new service
models, and security (DoS). This is in addition to the kinds
of evolution that are relatively easy today: applications,
application-level services, host protocols, and L2 (and
lower) technologies and protocols. This qualifies, we
think, as pervasive evolution.5 However, our discussion
of architectural barriers and their potential solutions was
somewhat ad hoc. To provide a more coherent picture, we
now review the OPAE’s design in terms of three basic design
principles.

Layer of Indirection for Flexibility. For three aspects of
the architecture which are currently hard to change, we
merely inserted a simple layer of indirection that can be seen
as little more than a version number which precedes (and
5See [12] for a discussion of how to evolve congestion control,
which we did not have space to describe.

4

dictates the structure of) all the content to follow. For the
netAPI, new API syntax and/or semantics can be introduced
by merely defining a new “version”. When implemented by
the relevant OS vendors, updated applications can use this
new netAPI, while old applications can continue to invoke
older versions without disruption.

Names adopt a similar structure, a namespace identifier
followed by the content of the name, so new naming systems
can be introduced by defining a new namespace which
must be supported by the stacks of the relevant OS vendors
and have a deployed name resolution infrastructure. New
namespaces need not be understood by applications, nor by
any network-level entities, just the OS networking stacks and
the resolution infrastructure.

Interdomain routing adopts a layer of indirection in a
somewhat more complicated way. When the host networking
stack sends a packet (a similar story holds for connection
oriented services like optical), the packet must contain a
“routing” identifier which indicates which interdomain routing
system is responsible for routing this packet. That routing
system will direct the packet to routers which understand the
rest of the header.

Modularity to Minimize Scope Changes. Key to easing
evolution is enforcing a tight modularity so that changes only
have a limited scope of impact. For instance, the separation of
intradomain and interdomain addressing (which was, in fact,
part of the original IP addressing scheme!) allows domains
to change their addressing schemes independently of each
other. Using clean netAPIs (which pass names, not addresses)
enables changes in domain and interdomain addresses with-
out changing applications; and having applications rely on
network stacks to process names means that applications need
not understand the namespaces they are dealing with.

Extensibility to Accommodate New Functionality. Rather
than rely on heavyweight replacement of interdomain routing
in order to achieve new functionality, we advocated building
an extreme degree of extensibility into the interdomain
routing system itself. That is, while evolution is possible,
extending extensible protocols is far easier and should be the
adoption path of choice when possible.

We did not give a complete description of OPAE; there
are many smaller issues to deal with (such as bootstrapping
and negotiation); see [12] for more details. However, the
remarkable aspect of OPAE is that it involves no novel design
or deep architectural insight. If the Internet were any other
computer system, we would have considered these design
choices to be obvious (and long overdue).

As mentioned earlier, the OPAE design is similar to the
FII design in [12], the main difference being the far more
general approach to interdomain routing and security in
OPAE. More fundamentally, the line of reasoning pursued
here is quite different from that in [12]. The discussion
in [12] is very much top-down, pontificating about grand
architectural themes; here, our focus was bottom-up, looking

at individual barriers to evolution and engineering ways to
overcome them. The fact that both the top-down and bottom-
up approaches arrived at very similar results is an encouraging
sign.

5 Comparison with Other Approaches
This is by no means the first paper to discuss architectural
evolution. Overlays are often mentioned as one way to
achieve architectural evolution (e.g., see [13]). However,
while overlays make it easy to deploy a new architecture
on top of an old one, they do nothing to make it easier
for two architectures to interact. That is, one can deploy
new architectures — say, AIP — using an overlay, but this
only allows AIP hosts to talk to other AIP hosts; the overlay
does not enable an AIP host to exchange packets with an
IPv4 host. Thus, while overlays are useful for experimental
deployments (particularly virtualized overlays like GENI [8])
and to achieve a wholesale replacement of one architecture
by another (a grindingly slow process), they do not enable
pervasive and ongoing change.

Active networks [14] enables certain forms of architectural
evolution, particularly on the datapath, but it does not
address architectural aspects such as naming and interdomain
routing. However, a flexible datapath is extremely important
for enabling architectural evolution without requiring new
hardware. Whether active networks, or the more feasible but
less flexible Software-Defined Networking, or some other
approach is adopted, a flexible datapath is necessary for
making architectural evolution (of the datapath) economically
feasible.

Nebula [3] offers a great deal of extensibility in network
paths and services, which is an important dimension of
evolvability. However, the core of the architecture (i.e., the
datapath) is universal within and across domains; it is not
clear how independently domains can evolve internally.

Plutarch [6] represents an entirely different approach to
evolvability, stitching together architectural contexts, which
are sets of network elements that share the same architecture
in terms of naming, addressing, packet formats and transport
protocols (IPNL [7] had a similar approach for mapping
between addressing realms, but assumed that the realms
were otherwise similar). This inter-context stitching is done
by interstitial functions, which map between the different
architectures. To some extent Plutarch focuses more on
supporting static heterogeneity, while our goal is dynamic
evolution. Needing to design and deploy interstitial functions
between all pairs of architectures, while reasonable for a
fairly static collection of architectures, would not qualify as
supporting ongoing change.

The XIA proposal [1] is the most recent entry into the
evolutionary sweepstakes. It is hard to briefly summarize
such a comprehensive proposal, but we hope to capture the
flavor of its design here because it provides an instructive
contrast to OPAE. XIA enables the introduction of new
services through the definition of principals. To cope with

5

partially deployed services, XIA relies on a directed acyclic
graph in the packet header that allows the packet to “fall back”
to other services that will (when composed) provide the same
service. For instance, a DAG could have paths for CCN [10]
and a source route over IP addresses, with edges permitting
intermediate routers to pick either means of reaching the data.

Thus, XIA’s main approach to partial deployment (which
is a key step in enabling evolution) is to allow transitions
between architectures at network elements that understand
both (i.e., an element that understands CCN and source-
routed IP could take a request sent on one architecture
and pass it to the other). The emphasis on building and
using bridges between architectures according to a DAG-like
structure applies on all levels, from low-level routes (take this
next-hop or that one) to high-level services (use CCN [10] or
use DONA [11]).

In contrast, OPAE attempts to make low-level packet
delivery seamless (i.e., domains using different architecture
can directly exchange packets). This allows domains to
deploy different architectures without any disruption in
service. Once low-level packet delivery is established,
all higher-level services (such as a pub/sub service) are
globally reachable. OPAE makes no attempt to bridge or
otherwise smooth over differences in high-level services (i.e.,
it does not require any network element to understand both).
Instead, OPAE relies on the Internet’s record of success in
evolving high-level services through parallel deployment
and concentrates on making sure they are globally reachable
(because parallel deployment only works as an evolutionary
strategy if they are globally reachable).

6 Discussion
As noted earlier, our proposal for an evolvable architecture,
OPAE, follows three basic design principles that are familiar
to any systems designer: layers of indirection for flexibility,
modularity to limit the impact of changes, and extensibility
to reduce the pressure on architectural change. The only
surprising thing about OPAE is that there is nothing surprising
in it. If we have made architectural evolution boring, then
we have succeeded in our quest. Our central point is that
for the Internet, intelligent design and evolution are not only
compatible, they are synonymous.

But lurking beneath the topic of evolution is a deeper
contradiction. What does it mean to design something that
can change? What, exactly, are you defining, when what
you are defining is not static? We believe that to have
any serious discussion of architectural evolution, one must
first identify the component of the architecture that will not
change. In [12] this was called the architectural framework
and we adopt that terminology here. The framework is the
oasis of constancy that enables the rest of the architecture to
evolve. Without this solid architectural ground on which to
stand, one cannot hope to make systematic statements about
architectural evolvability; i.e., statements about the limits and
prospects for architectural evolution only make sense once

one has defined what will not change. We believe that one
of the deepest questions facing the research community is:
what is the minimal set of design components that must be
held fixed so as to foster ongoing and pervasive architectural
evolution?

Our investigation of alternative approaches to evolution
revealed that there are at least two different schools of
thought. The XIA design (and Plutarch before that, at a more
primitive level) attempt to build and leverage bridges between
architectures (network elements that understand more than
one architecture). OPAE makes a clean distinction between
low-level bit transport, which it seeks to make seamless,
and higher-level services (such as content retrieval) which
it assumes will evolve using the more traditional method of
parallel deployment. It is far too early to tell which is the
better choice, but at least now we have realized that there is
more than one way to evolve.

7 References

[1] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machadoy, W. Wu,
A. Akella, D. Andersen, J. Byersy, S. Seshan, and P. Steenkiste. XIA:
An Architecture for an Evolvable and Trustworthy Internet. Technical
Report CMU-CS-11-100, CMU, February 2011.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. of
SIGCOMM, 2008.

[3] T. Anderson et al. NEBULA - A Future Internet That Supports
Trustworthy Cloud Computing.
http://nebula.cis.upenn.edu/NEBULA-WP.pdf.

[4] T. E. Anderson, L. L. Peterson, S. Shenker, and J. S. Turner.
Overcoming the Internet Impasse through Virtualization. IEEE
Computer, 38(4):34–41, 2005.

[5] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss
and Delay Accountability for the Internet. In Proc. IEEE ICNP, 2007.

[6] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield.
Plutarch: An Argument for Network Pluralism. In Proc. of SIGCOMM
FDNA, 2003.

[7] P. Francis and R. Gummadi. IPNL: a NAT-extended Internet
Architecture. In Proc. of SIGCOMM, 2001.

[8] GENI: Global Environment for Network Innovation.
http://www.geni.net/.

[9] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet Routing.
In Proc. of SIGCOMM, 2009.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking Named Content. In Proc. of CoNEXT,
2009.

[11] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A Data-Oriented (and Beyond) Network
Architecture. In Proc. of SIGCOMM, 2007.

[12] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev,
A. Ghodsi, P. B. Godfrey, N. McKeown, G. Parulkar, B. Raghavan,
J. Rexford, S. Arianfar, and D. Kuptsov. Architecting for Innovation.
ACM SIGCOMM Computer Communications Review, 41(3), 2011.

[13] S. Ratnasamy, S. Shenker, and S. McCanne. Towards an Evolvable
Internet Architecture. In Proc. of SIGCOMM, 2005.

[14] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden. A Survey of Active Network Research. IEEE
Communications Magazine, 35(1), January 1997.

[15] D. Wendlandt, I. Avramopoulos, D. Andersen, and J. Rexford. Don’t
Secure Routing Protocols, Secure Data Delivery. In Proc. HotNets,
2006.

[16] X. Yang, D. Wetherall, and T. Anderson. A DoS-Limiting Network
Architecture. In Proc. SIGCOMM, 2005.

6

http://nebula.cis.upenn.edu/NEBULA-WP.pdf
http://www.geni.net/

	Introduction
	Comments on Architectural Evolution
	Overcoming Barriers to Evolution
	Easy Architectural Changes
	Hard Architectural Changes
	Complicated Architectural Changes
	Security

	Design Principles
	Comparison with Other Approaches
	Discussion
	References

