
Naming in Content-Oriented Architectures

Ali Ghodsi
UC Berkeley

alig@eecs.berkeley.edu

Teemu Koponen
Nicira Networks

koponen@nicira.com

Jarno Rajahalme
Nokia Siemens Networks

jarno.rajahalme@nsn.com

Pasi Sarolahti
Aalto University

pasi.sarolahti@iki.fi

Scott Shenker
UC Berkeley & ICSI

shenker@icsi.berkeley.edu

ABSTRACT
There have been several recent proposals for content-oriented net-
work architectures whose underlying mechanisms are surprisingly
similar in spirit, but which differ in many details. In this paper
we step back from the mechanistic details and focus only on the
area where the these approaches have a fundamental difference:
naming. In particular, some designs adopt a hierarchical, human-
readable names, whereas others use self-certifying names. When
discussing a network architecture, three of the most important
requirements are security, scalability, and flexibility. In this paper
we examine the two different naming approaches in terms of these
three basic goals.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Documentation, Security

Keywords
content, naming, scalability, and security.

1. INTRODUCTION
There have been several recent proposals for content-oriented

network architectures1 whose underlying protocols are surprisingly
similar in spirit, but which differ in many details. In this paper we
step back from the minor mechanistic differences and focus only on
the one area where these proposals have a fundamental difference:
naming. In particular, some designs adopt hierarchical, human-
readable names, whereas others use flat, self-certifying names.
There is an ongoing debate in the community (see [10]) about
which approach is most appropriate, but this debate has produced
more heat than light. To help clarify the issues around naming, and

1See [1, 2, 4–6, 8, 13] for a small sampling of the recent literature,
which is too large to provide a comprehensive overview of here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM ICN’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0801-4/11/08 ...$10.00.

thereby move this debate forward, in this paper we examine the two
different naming approaches in terms of three basic architectural
goals: security, scalability, and flexibility.

Content-oriented architectures differ from today’s architecture in
several fundamental ways, and it is useful to review the relevant
differences before plunging into the main content of this paper.
Data retrieval in today’s architecture is typically done through
HTTP, which uses URLs as names for content; to fetch data a client
sends a request to the host associated with the URL. The requester
is assured the data is valid by using protocols that ensure that they
are talking to the host named in the URL. Scalability follows from
the hierarchical structure of DNS names (and, at the IP layer, the
aggregation of prefixes). The design is flexible in that the data path
makes no assumptions about the naming model.

In content-oriented architectures, content is named directly,
placed in the network by “publishers”, replicated in caches by
the network, and requested by name through a find or fetch
primitive. Finding a copy of the desired data object is accomplished
through the equivalent of a name-based anycast distribution of
the request, and the object can be returned from any host (or
network element) holding a copy. The validity of the object
must therefore be ascertained directly, not by verifying which host
supplied the object. This need for direct object verification was
the original motivation for using self-certifying names in content-
oriented architectures.2 By “self-certifying name” we mean a name
that (together with some signed metadata) allows direct verification
of the binding between the name and an associated object, as will
be described in more detail in Section 2.

However, the use of self-certifying names has been recently
criticized on two grounds in particular (see [10] for a critique of
this approach and [12] for a response). These objections can be
roughly summarized as follows:

• Scalability: because these names are not hierarchical, they
cannot handle the necessary scales.

• Security: self-certifying names require another service to
translate between human-friendly and self-certifying names,
so any security benefits are nullified by weaknesses in such a
translation service.

In this paper we respond to these objections. We argue that,
in fact, self-certifying names (i) have better security properties
than human-readable names because they can deal with denial of
service without greatly limiting the nature of trust mechanisms
and (ii) can have better scalability properties than hierarchical
names by allowing more flexible aggregation. Thus, based on the

2See [14] for an early discussion of self-certification in “named
data”.

1

architectural goals of security, scalability, and flexibility, we believe
that self-certifying names are the correct choice. However, we
also observe that the two naming schemes are not as different as
commonly believed, and can be combined quite easily.

This paper is structured as follows. We discuss the relationship
between naming and security in Section 2, and analyze scalability
in Section 3. We review approaches to trust management in
Section 4 and we conclude in Section 5.

2. NAMING AND SECURITY
Network security is often broken down into four components:

integrity, confidentiality, provenance, and availability. That is,
the security measures in the network infrastructure and end-host
network stacks must ensure that data is delivered reliably (avail-
ability), comes from the appropriate original source (provenance),
and has not been tampered with (integrity) or read by others
(confidentiality).

The latter three of these can be handled on an end-to-end basis
using basic cryptography, once cryptographic keys are properly
bound to the appropriate entities (as discussed below). In contrast,
availability is the responsibility of the network itself and must be
addressed on two different levels. First, the underlying network
infrastructure must reliably deliver bits, which requires that its
components cannot be easily compromised and data delivery can-
not be overwhelmed by denial-of-service attacks; this is completely
independent of the naming system, so we do not consider it
further here. Second, the infrastructure must provide protection
against content-level denial-of-service attacks; i.e., even if bits are
delivered reliably, the network must ensure that the delivered object
has the correct name and provenance, or else requesters could be
denied the object they desire. Naming does play a critical role here,
and our subsequent discussion of availability will focus only on this
aspect of denial of service.

2.1 The Basic Bindings
As in the SDSI/SPKI framework [3, 9], in content-oriented

networks each piece of mutable data is associated with a “principal”
who is responsible for its content (either because the principal
created it, verified it, or merely because the principal vouches
for it). When we talk about the provenance of an object, we
are referring to this principal.3 To effectively use cryptography
to achieve our security goals, for each object we must establish
bindings between three different entities:

• Real-World Identity (RWI): This is the real-world entity who
is the principal for the data. For example, a real-world
identity may refer to a person or organization.

• Name: This is the name handed to the network in the fetch-
by-name primitive, and must be sufficient to identify the
object within the network. Principals are responsible for
naming their content.

• Public Key: Each principal is associated with a public-private
key pair. This is the cryptographic key that can be used by the
receiver to verify that the RWI did indeed sign the content.4

3Immutable data can be checked against a cryptographic hash of
the content, and is therefore easier to deal with, so we ignore it in
the following discussion.
4We do not consider the particular cryptographic algorithms used,
how agreement on them is reached, or how they can be changed
over time; suffice it to say here that these are not insurmountable
barriers, but do require careful thought.

All the three potential bindings between the above entities
(RWI–name, RWI–public key, and public key–name) have an
essential role in verifying the provenance of data.5 If the public key
is not bound (directly or indirectly, as we discuss below) with the
corresponding RWI, then anyone could claim to be the principal
associated with the data; that is, principals with keys k1 and k2
could both claim to be CNN, and without a key–RWI binding a user
cannot know which claim to believe. If the name is not bound to
the RWI, then it is impossible to identify the principal of the object;
if someone claims that fetching foobar will return CNN headlines,
but there is no cryptographic connection between foobar and CNN,
then there is no way to validate that assertion. Finally, if the name is
not bound to the public key, then the receiver doesn’t know which
public key to use to verify the provenance of the data: that is, if
a user fetches the object named foobar, but the name foobar is
not bound to any cryptographic key, then the user has no way of
cryptographically verifying anything about the returned object (in
particular, the user cannot verify that the object is indeed named
foobar).

Because bindings are transitive, one does not need to directly
ensure all three bindings: providing any two of them implies the
third. The question, then, is how are these two basic bindings
established, and it turns out that the two naming schemes we have
discussed establish the bindings in rather different ways.

2.2 Binding in Naming Schemes
With human-readable, hierarchical naming (as used in e.g., [5]),

the entire name is specified as free-form hierarchy and the name
(much like DNS names) is a sequence of human-readable strings.
The purpose of human-readability is to establish an intrinsic bind-
ing between the name and the RWI. The second binding (between
the name and key) can be established using an external authority
such as a Certificate Authority (CA). In other words, in our example
above, the string “CNN” in the name would be sufficient for the
user to determine that the RWI associated with the name is CNN,
and a CA will verify that a key belongs to the name containing
CNN.

For convenience, we will assume that self-certifying names for
mutable data consist of a cryptographic hash of a public key
(principal identifier) and a globally unique label determined by the
RWI, and both are of fixed size.6 That is, names have the form
P:L, where P is a cryptographic hash of the principal’s public key
and L is the label. The use of cryptographic hash function for
computing P provides the binding between the name and the key, by
enabling the receiver to check that the key indeed hashed to P. That
is, if someone claims that a key is associated with a name P , then
simply taking the hash confirms it; the existence of a binding does
not mean that knowing P is enough to derive the key, it is merely
enough to verify a key.7 However, the use of such hash functions
renders the name unreadable to humans, so the binding between the
RWI and key must be established by an external authority.

Note that in both naming approaches, one binding is intrinsic
to the naming system, while the other must be supplied by an

5The other two properties, integrity and confidentiality, do not
require all three, so we do not discuss these properties further.
6There are other ways to construct self-certifying names, but they
are logically equivalent. Also, note again how the naming of
immutable data may simply rely on cryptographic content hashes.
7Each object consists of the following: <data, public key, L,
metadata, signature>. This is enough information to verify the
name-object binding, so the receiver can know that a delivered
object does indeed have the appropriate name. By omitting the
label L inside the signature, the text in [6] is in error on this point.

2

outside authority. See Figure 1 for a depiction of the bindings.
Because these externally provided bindings are similar in spirit
(whether they be for RWI–key, for self-certifying names, or name–
key for human-readable names), the need for, and the nature of,
these external mechanisms is not a deciding factor between these
two naming systems. We will call systems that bind keys to RWIs
or names trust mechanisms. These mechanisms don’t mean you
actually trust the entity or person to be honest, only that you trust
that they are who they say they are.

There are obvious and well-known drawbacks with both naming
schemes. Self-certifying names pose a challenge to usability, since
humans cannot understand or remember them.8 In addition, any
move to such names would require significant reworking of the
architecture (which, because this is a clean-slate discussion, is not
seen as disqualifying them, but it is a serious drawback).9 Finally,
cryptographic algorithm upgrades will result in name changes,
and careful engineering is required to manage their usability
implications.

In contrast, human-readable, hierarchical names are more us-
able, more backwards-compatible, and remain unchanged while
cryptographic algorithms evolve, but they provide a much weaker
intrinsic binding. While the intrinsic name-key binding is cryp-
tographically tight in self-certifying names, the intrinsic binding
between name and RWI in human-readable names is far from
perfect because it relies on the name being well-understood and
unambiguous. This clearly does not always hold; as an example
of a potentially ambiguous name, “ICSI” simultaneously refers
to the Institute for Clinical Systems Improvement, the Institute
of Company Secretaries in India, and the International Computer
Science Institute. There is no way for a reader encountering this
acronym in an object name to make this distinction without some
external guidance. Even worse, phishing attacks try to confuse
users with names similar to real ones; users frequently make
mistakes in separating misspelled or names in different character
sets from real names. Moreover, tiny URLs completely obliterate
the name–RWI binding. In addition, human-readability creates
contention in the namespace; when names are meaningful to users,
some names become more desirable than the others.

Thus, both systems have serious disadvantages, but none of
these flaws are fatal. However, the two naming systems have very
different ways of dealing with denial of service, and this represents
a more fundamental difference between the two.

Denial of Service
If the network cannot determine which objects are legitimately
associated with a given name, then attackers can launch a denial of
service attack by having many hosts claim to have data associated
with that name. Thus, to protect the receiver from receiving10

(possibly large amounts of) false content, the network needs to
know the binding between the name and the key so it can verify
that a given object is associated with a given name. However,
the network does not need to know the RWI; all the network
needs to do is reliably map names into objects associated with that
name, while the receiver is left with a responsibility to use a name
that corresponds to the RWI it finds trustworthy (and not trust to

8However, see [14] for a discussion of usability.
9The DOI project is an interesting experiment in incremental
deployment of a flat naming structure.

10Here we assume that the receiver can tell that the delivered object
is false, but our concern is that the network never delivers the
correct data because it has responded to the request with a false
object; this can be used as a denial of service attack.

2.

1.
Human-readable

names

Self-certifying names
Name Public

Key

RWI

Figure 1: A depiction of the three entities and the different
bindings between them. Two naming schemes provide different
intrinsic bindings (solid lines) but require both an external
authority to provide one additional binding (dashed line): with
self-certifying names it’s the binding (1), whereas with human-
readable names it’s the binding (2).

content referals from questionable sources). We’ll return to the
trustworthiness in Section 4.

In self-certifying names, the binding between the name and
key is intrinsic and strong: given a key, one can reliably (within
the certainty of modern cryptography) determine if a name is
associated with that key. On the other hand, in human-readable
names, the binding between the key and name is not inherent in
the name itself, so the network must obtain that binding somehow.
How this occurs depends on when in the retrieval process the
validation occurs; there are two possibilities.

First, the data can be validated when it is first published.11 With
self-certifying names, the network has the necessary verification
tools to do this; it can require any publisher of data to provide
the necessary signatures that associate the object with the name,
as the key and name are intrinsically bound. For human-readable
names, the network needs to use an external mechanism to bind
the name to a key (which can then be used to check the signatures
provided by publishers). For this, the network needs to know about
and understand the external trust mechanisms relevant for that
particular principal. This greatly limits the nature of the external
trust mechanisms that can be employed. In practice, we argue this
translates to a requirement of deploying a global PKI, which has its
known issues that range between practical management challenges
to almost Orwellian concerns [11].

Second, the data can be validated at fetch time, with the key
provided within the request itself; that is, the binding between name
and key is provided by the requester (who presumably could know
about and understand the relevant trust mechanisms). In this case,
the requester supplies the key (or its hash) along with the name
in her request (and can sign them, so that this binding can’t be
tampered with). For this to work, content-oriented routing must
be done on a name-key basis, not just on the name, in order for
routing requests to reach objects associated with the appropriate
key. This makes the key an essential part of the name (because
it is used for routing); the name is no longer a pure human-
readable string but includes a cryptographic part. The name has
now become self-certifying, taking the form of P:L, with P being
(as before) the hash of the public key and the label L being the
hierarchical, human-readable name. The debate, then, is not about

11A host can “publish” content by telling the network that it is
willing to provide copies of an object with a certain name. The
question we are discussing here is what kinds of cryptographic
checks are used to verify that the object is indeed associated with
that name.

3

A B C D
P4:L4 P3:L3 P2:L2 P1:L1

Figure 2: In deepest match, an exact match for each part of the
name is looked for. The matching begins from the end of the
name (above D) and proceeds a part by part to the beginning
(A), until a match or there’s nothing to look for.

human readable versus self-certifying, it is about what kinds of
self-certifying names should be used. This hybrid choice merely
requires that the labels in the P:L format for self-certifying names
be human readable and hierarchical.

It is worthwhile to note that delaying the validation of the data
until after the data is delivered is not an option: validation after
fetching results in denial of service, as the requester may never
receive a valid copy.

This completes our discussion of the security concerns, which
we feel drives us towards self-certifying names. We now must
confront two remaining issues: scalability and flexibility. We do
so in the next two sections.

3. NAMING AND SCALABILITY
In this section, we examine the scalability of naming.

3.1 Explicit Aggregation
Hierarchical names help scalability by reducing the size and

update-rate of the routing tables. While this is well-known, it is
instructive to walk through the semantics of hierarchical routing
in more detail. Consider a name of the form com.CNN.headlines.
In terms of routing semantics, this name means that if you follow
routing entries to com, you are guaranteed to find an entry for
com.CNN somewhere along your path, and similarly if you follow
routing entries to com.CNN you will eventually find an entry for
com.CNN.headlines. These semantics, not any other details about
hierarchies, are what enable scaling.

In terms of global uniqueness, each entry in the hierarchy is not
guaranteed to be unique, but each prefix is (i.e., com, com.CNN,
and com.CNN.headlines are all globally unique). Because of
this, one cannot route to arbitrary fragments (i.e., headlines, or
CNN.headlines) but must look for prefixes to be assured you are
routing towards the right entity. It is the lack of global uniqueness
of fragments, not the need for aggregation, that drives the use of
longest-prefix-match.

The common assumption is that aggregation is impossible with
flat naming.12 It is true that names do not build in hierarchy, so
aggregation does not simply fall out of the naming structure itself,
but it turns out that this lack of inherent hierarchy provides greater
flexibility in aggregation.

Given a set of globally unique names (say, A, B, C, etc., each
of the form P:L), one can construct “explicit aggregation” by
using concatenations of the form A.B.C.13 The semantics of such
concatenations are that when following routing entries for A, you

12Simple scaling estimates in [6] suggest that routing on flat names
without aggregation is easily within reach of today’s technologies,
so the entire question of aggregation may be moot. However, for
the purposes of this paper we will assume aggregation is necessary.

13There is nothing special in self-certifying names that allows this to
happen; explicit aggregation can be applied to any naming system.
Our only point is that explicit aggregation is more flexible than
inherent aggregation.

will eventually find one for B; and that when following routing
entries for B, you will eventually find an entry for C. We will call
this the aggregation invariant. There are two questions to address:

How do you route using concatenations? The routing table
consists of individual names A, B, etc., and when confronted
with concatenated name A.B.C.D, the router searches for the
deepest match (as depicted in Figure 2) and forwards the message
accordingly. There are two advantages over longest-prefix match:
the algorithm has the potential to be simpler to implement, and the
aggregation does not affect the structure of the routing table (which
is just a set of flat names and their associated outgoing port).14

Instead, all of the aggregation occurs on the naming side, not on
the routing side.15

How do you know when you can use a concatenation? When
naming an object, one thinks about two things: the identifier
(which is the name itself) and one or more fetch-terms which
we can use to retrieve the object (which, in our case, consist of
various concatenated names). These fetch-terms can be included in
metadata associated with the name (and signed by the principal of
the object) and when asking for the object the request can use these
fetch-terms (rather than just the name); the fetch-terms enable the
routing system to more easily find the object. It is the responsibility
of the principal of an object to not sign any concatenation unless
the aggregation invariant holds. This invariant might hold because
of administrative relationships (as in DNS names), because of
economic relationships (contracts with a CDN), or the organization
of a particular piece of content (such as chunks of a large file). This
form of aggregation is far more flexible than a strict hierarchy, and
several forms of aggregation involving the same object can coexist
simultaneously.

This last point is important. Note that in in hierarchies, the object
com.CNN.headlines can only fall under the aggregates com and
com.CNN. In contrast, with explicit aggregation an object A can
fall under an arbitrarily large number of concatenations, say C.B.A
and D.F.A.

3.2 Building on Deepest Match
We now discuss several use cases for deepest match.

Structured Content
Consider the concatenation A.B.C, where A represents an aggre-
gate for all of the principal’s content, B is the name of a large file
belonging to A, and C is an individual chunk in that file. Then,
while the network elements will try to forward the fetch towards
the chunk (C) if there’s a known route, they will fall back to routing
towards the aggregate of chunks (B) and eventually to forwarding
towards the principal (A), if no more specific routes are known.

In addition, nothing prevents the chunk C to be part of two
aggregates B1 and B2, in which case the chunk could be fetched
using either of the two possible aggregated names (A.B1.C or
A.B2.C), with the deepest match preferring routing entries towards
the individual chunk C or the aggregates B1 and B2 before
defaulting back to the routes towards A.

Because most content-oriented network architectures rely heav-
ily on caching, a request might well encounter a detailed entry

14The deepest match seems intuitively simpler than the longest
prefix match, but how much the implementation complexities
actually differ remains unclear without a detailed comparison of
their (hardware and software) implementations. However, since
longest prefix matching often transforms into a sequence of exact
matching, the differences may be negligible in the end.

15See [7] for various anomalies that can occur when routers
aggregate entries.

4

in a routing table (for, say, the individual chunk). Thus, one can
limit proactive publishing to higher-level aggregates, but realize the
benefits when finer-grain objects are cached nearby.

Content Aggregators
Another form of aggregation arises when third-parties assist in
content publishing. With explicit aggregation the principal can use
names indicating that it can be found by routing towards a third-
party aggregate. We emphasize this sort of outsourcing of content
dissemination doesn’t imply anything about binding the content to
a topological location, but only to a third-party service for which
the principal might have technical or non-technical reasons to do.16

This resembles the use of CDNs today: the principal attaches
the name of the content aggregator, say C, to the (beginning) of the
name of the object, say A, and then uses this concatenation C.A
as a fetch-term. If the principal wants to publish A on its own, in
addition to using a content aggregator, it can do so by publishing
the object with the fetch-term A. With deepest match, using either
fetch-term C.A or A would match routing entries for A; this does
not work with longest prefix matching. Moreover, this can be done
with multiple third-parties simultaneously, so the principal could
use C.A and D.A as fetch-terms, with C and D being different
CDNs.

Binding Namespaces
In addition to providing the foundation for route aggregation, the
deepest match can assist in mapping between different namespaces.

For instance, assume that we wanted to provide a mapping
between a human-readable namespace and a self-certifying names-
pace. Consider a name “com.CNN.headlines”. By representing it
as a sequence of hashes, each part representing a longer prefix, we
can construct a name A.B.C appropriate for deepest matching. We
can make this name self-certifying by using the public key of com
as the principal for each of the component names:

A HASH(compublic key) : *
B HASH(compublic key) : HASH(CNN)
C HASH(compublic key) : HASH(CNN.headlines)

The principal of the content could publish the content directly
under the name C, and use A.B.C as a fetch-term – and as long
as the principal has a certificate from the root principal of the com
namespace binding “CNN” to its key, by including the certificate
in the object the content principal can continue to use its key to
sign the content. This would allow human-readable names to have
counterparts in the self-certifying namespace.

The publisher could also opt for a more indirect approach as
well: fetching C (either directly, or using the fetch-term A.B.C)
could result in a (signed) pointer to a pure self-certifying name
without human-readable semantics embedded.17 As long as the
mappings between these two namespaces are relatively static, their
dissemination and caching throughout the network could be made
more pervasive than the actual content.

16Hence, the aggregated name changes only if the used content
aggregator is replaced, not if the aggregator’s location changes.

17An advantage of a pure self-certifying name is that it is semantic
free and therefore persistent; for example if the human-readable
name points to a home page, and that page changes domains —
because the person changed universities — a pure self-certifying
name need not change while a human-readable name does; see [14].

4. NAMING AND FLEXIBILITY
No matter what naming scheme is used, external trust mech-

anisms will be needed to bind keys to RWIs (for self-certifying
names) or keys to names (for human-readable). We consider these
two cases separately.

A Public-key Infrastructure (PKI) is the most well-known tech-
nique for binding keys to names, but has the well-known drawback
of requiring universal agreement on the root trust authority and
its policies. Decentralized trust mechanisms such as SDSI/SPKI
provide an alternative not requiring a universal root of trust. Recall,
however, that the network must understand the key–name binding
(in order to prevent denial of service), and if the names themselves
don’t provide this binding then the network must get this binding
from the trust mechanism. This precludes the use of a decentralized
solution without a global root (as it would be untenable to have
different portions of the network invoking different bindings), and
forces the use of a PKI. Thus, human-readable names require the
use of a PKI.

Not only do human-readable names reduce the flexibility in trust
mechanisms, their name–RWI binding is imperfect (e.g., which
RWI does the name icsi.org refer to?), so an external mechanism
must be used to provide more secure bindings between names and
RWIs (in addition to the PKI used to bind keys to names).

Any binding to RWIs (whether key–RWI or name–RWI) in-
volves human-level notions of identity so the binding cannot be
completely reduced to cryptographic mechanisms. In particular,
we imagine that search engines and social networks will play an
important role in future trust mechanisms involving RWIs. In
fact, the whole purpose of search engines is to map real-world
identities (based on given keywords) to their relevant network
names (URLs).18

Social networking platforms have the opportunity to provide
trust on a more personal level. The networks of friendship could
map directly to the use of webs of trust, facilitating decentralized
trust management: in this model, establishing a trust in a name
becomes a matter of traversing your social network and finding the
certificate chain(s) from yourself to the name via your friends.

These and other RWI-based trust mechanisms are imperfect, but
they are the best we have, regardless of what naming scheme is
used. Moreover, the diversity of these mechanisms requires that
they be completely separate from the network.

Self-certifying names provide a clean, algorithmic binding be-
tween names and keys that is understandable by the network, and
leave the more amorphous RWI bindings to a collection of trust
mechanisms external to the network that can evolve over time as
new sources of trust arise (e.g., search engines and social networks
are relatively recent developments, and they will undoubtedly be
augmented by future innovations).

Human-readable names provide an imperfect binding between
names and RWIs, and thus require external mechanisms for both
bindings; moreover, they dictate the use of a PKI-like infrastructure
for the network because the network must understand the key–name
bindings.

5. DISCUSSION
The intuition underlying this paper is summarized by the follow-

ing design maxim: You should architect for security and flexibility

18Having the search engine to return a key (and/or self-certifying
name) for given a real-word identity description would be
straightforward, and at least one large search engine company is
planning to do so.

5

but engineer for performance. We now review the findings of this
paper with this maxim in mind.

There are essentially three options for the names used to route
requests:

Intrinsically bound to RWIs but not to keys. In this case, to
prevent denial of service the network must be able to determine the
keys itself, which means that the network must understand the trust
mechanism for key–name binding. This leads to the use of a PKI,
which reduces flexibility in trust management.

Intrinsically bound to both keys and RWIs. In this subcat-
egory of self-certifying names (motivated by the need to include
keys when fetching content to prevent denial of service), the
self-certifying component binds the key to the name and human-
readable component binds the RWI to the name. While superfi-
cially attractive, this approach is suboptimal because the name–
RWI binding provided by human-readable names is not reliable.
This would then leave a security hole unless replaced or augmented
by an external mechanism for name–RWI binding, which brings us
to the next option.

Intrinsically bound only to keys. This is the canonical self-
certifying naming paradigm, where key is bound to name through
self-certification and the RWI–key binding is provided externally
through a variety of mechanisms. While the RWI–key binding
will never be perfect, at least it can continue to evolve and
improve. This approach provides maximal flexibility in trust
mechanisms, cryptographically secure name–key binding, and still
allows one (though various forms of aggregation) to engineer for
better performance.

This is our rationale for promoting the use of self-certifying
names. We view this not as the final word on the subject, but
hopefully the beginning of a reasonable exchange of viewpoints
that can help lead the community to a deeper understanding of the
issues.

Acknowledgments
This work was supported by TEKES as part of the Future Internet
program of TIVIT (Finnish Strategic Centre for Science, Technol-
ogy and Innovation in the field of ICT).

6. REFERENCES
[1] B. Ahlgren et al. Second NetInf Architecture Description.

Technical Report D-6.2 v2.0, 4WARD EU FP7 Project, 2010.
[2] C. Dannewitz, J. Golić, B. Ohlman, and B. Ahlgren. Secure

Naming for a Network of Information. In Proc. of Global
Internet Symposium, March 2010.

[3] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylönen. SPKI Certificate Theory. RFC 2693, IETF,
September 1999.

[4] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko,
E. Nordstrom, J. Rexford, and D. Shue. Service-Centric
Networking with SCAFFOLD. Technical Report TR-885-10,
Princeton University, CS, September 2010.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking Named
Content. In Proc. of CoNEXT, December 2009.

[6] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A Data-Oriented (and
Beyond) Network Architecture. In Proc. of SIGCOMM,
August 2007.

[7] A. R. R. White, D. Slice. Optimal Routing Design. Cisco
Press, 2005.

[8] J. Rajahalme, M. Särelä, K. Visala, and J. Riihijärvi. On
Name-based Inter-domain Routing. Comput. Netw.,
December 2010.

[9] R. L. Rivest and B. Lampson. SDSI – A Simple Distributed
Security Infrastructure. Technical report, MIT, 1996.

[10] D. Smetters and V. Jacobson. Securing Network Content.
Technical report, PARC, October 2009.

[11] C. Soghoian and S. Stamm. Certified Lies: Detecting and
Defeating Government Interception Attacks Against SSL. In
Proc. of HotPETS, July 2010.

[12] D. Trossen. On long-lived routing identifiers.
http://www.fp7-pursuit.eu/PursuitWeb/?p=244, October
2010.

[13] D. Trossen, M. Särelä, and K. Sollins. Arguments for an
Information-centric Internetworking Architecture.
SIGCOMM CCR, 40, April 2010.

[14] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the
Web from DNS. In Proc. of NSDI, March 2004.

6

	Introduction
	Naming and Security
	The Basic Bindings
	Binding in Naming Schemes

	Naming and Scalability
	Explicit Aggregation
	Building on Deepest Match

	Naming and Flexibility
	Discussion
	References

