
Abstract
The energy usage of computer systems is becom-

ing more important, especially for battery operated
systems. Displays, disks, and cpus, in that order, use
the most energy. Reducing the energy used by displays
and disks has been studied elsewhere; this paper con-
siders a new method for reducing the energy used by
the cpu. We introduce a new metric for cpu energy per-
formance, millions-of-instructions-per-joule (MIPJ).
We examine a class of methods to reduce MIPJ that are
characterized by dynamic control of system clock
speed by the operating system scheduler. Reducing
clock speed alone does not reduce MIPJ, since to do
the same work the system must run longer. However, a
number of methods are available for reducing energy
with reduced clock-speed, such as reducing the voltage
[Chandrakasan et al 1992][Horowitz 1993] or using
reversible [Younis and Knight 1993] or adiabatic logic
[Athas et al 1994].

What are the right scheduling algorithms for tak-
ing advantage of reduced clock-speed, especially in the
presence of applications demanding ever more instruc-
tions-per-second? We consider several methods for
varying the clock speed dynamically under control of
the operating system, and examine the performance of
these methods against workstation traces. The primary
result is that by adjusting the clock speed at a fine
grain, substantial CPU energy can be saved with a lim-
ited impact on performance.

1 Introduction
 The energy use of a typical laptop computer is

dominated by the backlight and display, and second-
arily by the disk. Laptops use a number of techniques
to reduce the energy consumed by disk and display,
primarily by turning them off after a period of no use
[Li 1994][Douglis 1994]. We expect slow but steady
progress in the energy consumption of these devices.
Smaller computing devices often have no disk at all,
and eliminate the display backlight that consumes
much of the display-related power. Power consumed

by the CPU is significant; the Apple Newton designers
sought to maximize MIPS per WATT [Culbert 1994].
This paper considers some methods of reducing the
energy used for executing instructions. Our results go
beyond the simple power-down-when-idle techniques
used in today’s laptops.

We consider the opportunities for dynamically
varying chip speed and so energy consumption. One
would like to give users the appearance of a 100MIPS
cpu at peak moments, while drawing much less than
100MIPS energy when users are active but would not
notice a reduction in clock rate. Knowing when to use
full power and when not requires the cooperation of the
operating system scheduler. We consider a number of
algorithms by which the operating system scheduler
could attempt to optimize system power by monitoring
idle time and reducing clock speed to reduce idle time
to a minimum. We simulate their performance on some
traces of process scheduling and compare these results
to the theoretical optimum schedules.

2 An Energy Metric for CPUS
 In this paper we use as our measure of the energy

performance of a computer system the MIPJ, or mil-
lions of instructions per joule. MIPS/WATTS = MIPJ.
(Of course MIPS have been superseded by better met-
rics, such as Specmark: we are using MIPS to stand for
any such workload-per-time benchmark). MIPJ is not
improving that much for high-end processors. For
example, a 1984 2-MIPS 68020 consumed 2.0 watts
(at 12.5Mhz), for a MIPJ of 1, and a 1994 200-MIPS
Alpha chip consumes 40 watts, so has a MIPJ of 5.
However, more recently lower speed processors used
in laptops have been optimized to run at low power.
For example, the Motorola 68349 is rated at 6 MIPS
and consumes 300 mW for 20 MIPJ.

Other things being equal, MIPJ is unchanged by
changes in clock speed. Reducing the clock speed
causes a linear reduction in energy consumption, but a
similar reduction in MIPS. The two effects cancel.
Similarly, turning the computer off, or reducing the

Scheduling for Reduced CPU Energy

Mark Weiser, Brent Welch, Alan Demers, Scott Shenker
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

{weiser,welch,demers,shenker}@parc.xerox.com

clock to zero in the “idle-loop”, does not effect MIPJ,
since no instructions are being executed. However, a
reduced clock speed creates the opportunity for qua-
dratic energy savings; as the clock speed is reduced by
n, energy per cycle can be reduced by n2. Three meth-
ods that achieve this are voltage reduction, reversible
logic, and adiabatic switching. Our simulations assume
n2 savings, although it is really only important that the
energy savings be greater than the amount by which
the clock rate is reduced in order to achieve an increase
in MIPJ.

Voltage reduction is currently the most promising
way to save energy. Already chips are being manufac-
tured to run at 3.3 or 2.2 volts instead of the 5.0 voltage
levels commonly used. The intuition behind the power
savings comes from the basic energy equation that is
proportional to the square of the voltage.

E/clock ∝ V2

The settling time for a gate is proportional to the
voltage; the lower the voltage drop across the gate, the
longer the gate takes to stabilize. To lower the voltage
and still operate correctly, the cycle time must be low-
ered first. When raising the clock rate, the voltage must
be increased first. Given that the voltage and the cycle
time of a chip could be adjusted together, it should be
clear now that the lower-voltage, slower-clock chip
will dissipate less energy per cycle. If the voltage level
can be reduced linearly as the clock rate is reduced,
then the energy savings per instruction will be propor-
tional to the square of the voltage reduction. Of course,
for a real chip it may not be possible to reduce the volt-
age linear with the clock reduction. However, if it is
possible to reduce the voltage at all by running slower,
then there will be a net energy savings per cycle.

Currently manufacturers do not test and rate their
chips across a smooth range of voltages. However,
some data is available for chips at a set of voltage lev-
els. For example, a Motorola CMOS 6805 microcon-
troller (cloned by SGS-Thomson) is rated at 6 Mhz at
5.0 Volts, 4.5 Mhz at 3.3 Volts, and 3 Mhz at 2.2 Volts.
This is a close to linear relationship between voltage
and clock rate.

The other important factor is the time it takes to
change the voltage. The frequency for voltage regula-
tors is on the order of 200 KHz, so we speculate that it
will take a few tens of microseconds to boost the volt-
age on the chip.

Finally, why run slower? Suppose a task has a
deadline in 100 milliseconds, but it will only take 50
milliseconds of CPU time when running at full speed

to complete. A normal system would run at full speed
for 50 milliseconds, and then idle for 50 milliseconds
(assuming there were no other ready tasks). During the
idle time the CPU can be stopped altogether by putting
it into a mode that wakes up upon an interrupt, such as
from a periodic clock or from an I/O completion. Now,
compare this to a system that runs the task at half speed
so that it completes just before its deadline. If it can
also reduce the voltage by half, then the task will con-
sume 1/4 the energy of the normal system, even taking
into account stopping the CPU during the idle time.
This is because the same number of cycles are exe-
cuted in both systems, but the modified system reduces
energy use by reducing the operating voltage. Another
way to view this is that idle time represents wasted
energy, even if the CPU is stopped!

3 Approach of This Paper
This paper evaluates the fine grain control of CPU

clock speed and its effect on energy use by means of
trace-driven simulation. The trace data shows the con-
text switching activity of the scheduler and the time
spent in the idle loop. The goals of the simulation are
to evaluate the energy savings possible by running
slower (and at reduced voltage), and to measure the
adverse affects of running too slow to meet the sup-
plied demand. No simulation is perfect, however, and
a true evaluation will require experiments with real
hardware.

Trace data was taken from UNIX workstations
over many hours of use by a variety of users. The trace
data is described in Section 4 of the paper. The assump-
tions made by the simulations are described in Section
5. The speed adjustment algorithms are presented in
Section 6. Section 7 evaluates the different algorithms
on the basis of energy savings and a delay penalty
function. Section 8 discusses future work, including
some things we traced but did not fully utilize in our
simulations. Finally, Section 9 provides our conclu-
sions.

4 Trace Data
 Trace data from the UNIX scheduler was taken

from a number of workstations over periods of up to
several hours during the working day. During these
times the workloads included software development,
documentation, e-mail, simulation, and other typical
activities of engineering workstations. In addition, a
few short traces were taken during specific workloads
such as typing and scrolling through documents.
Appendix I has a summary of the different traces we

used.

The trace points we took are summarized in Table
1. The idle loop events provide a view on how busy the
machine is. The process information is used to classify
different programs into foreground and background
types. The sleep and wakeup events are used to deduce
job ordering constraints.

In addition, the program counter of the call to sleep
was recorded and kernel sources were examined to
determine the nature of the sleep. The sleep events
were classified into waits on “hard” and “soft” events.
A hard event is something like a disk wait, in which a
sleep is done in the kernel’s biowait() routine. A soft
event is something like a select that is done awaiting
user input or a network request packet. The goal of this
classification is to distinguish between idle time that
can be eliminated by rescheduling (soft idle) and idle
that is mandated by a wait on a device (hard idle).

Each trace record has a microsecond resolution
time stamp. The trace buffer is periodically copied out
of the kernel, compressed, and sent over the network to
a central collection site. We used the trace data to mea-
sure the tracing overhead, and found it to range from
1.5% to 7% of the traced machine.

5 Assumptions of the Simulations
 The basic approach of the simulations was to

lengthen the runtime of individually scheduled seg-
ments of the trace in order to eliminate idle time. The
trace period was divided into intervals of various
lengths, and the runtime and idletime during that inter-
val were used to make a speed adjustment decision. If
there were excess cycles left over at the end of an inter-
val because the speed was too slow, they were carried
over into the next interval. This carry-over is used as a
measure of the penalty from using the speed adjust-
ment.

The ability to stretch runtime into idle periods was
refined by classifying sleep events into “hard” and
“soft” events. The point of the classification is to be
fair about what idle time can be squeezed out of the
simulated schedule by slowing down the processor.
Obviously, running slower should not allow a disk
request to be postponed until just before the request

Table 1: Trace Points
SCHED Context switch away from a process
IDLE_ON Enter the idle loop
IDLE_OFF Leave idle loop to run a process
FORK Create a new process
EXEC Overlay a (new) process with another pro-

gram
EXIT Process termination
SLEEP Wait on an event
WAKEUP Notify a sleeping process

completes in the trace. However, it is reasonable to
slow down the response to a keystroke in an editor such
that the processing of one keystroke finishes just
before the next.

Our simulations did not reorder trace data events.
We justify this by noting that only if the offered load is
far beyond the capacity of the CPU will speed changes
affect job ordering significantly. Furthermore, the CPU
speed is ramped up to full speed as the offered load
increases, so in times of high demand the CPU is run-
ning at the speed that matches the trace data.

In addition, we made the following assumptions:
The machine was considered to use no energy

when idle, and to use energy/instruction in proportion
to n2 when running at a speed n, where n varies
between 1.0 and a minimum relative speed. This is a bit
optimistic because a chip will draw a small amount of
power while in standby mode, and we might not get a
one-to-one reduction in voltage to clock speed. How-
ever, the baseline power usages from running at full
speed (reported as 1.0 in the graphs) also assume that
the CPU is off during idle times.

It takes no time to switch speeds. This is also opti-
mistic. In practice, raising the speed will require a
delay to wait for the voltage to rise first, although we
speculate that the delay is on the order of 10s of
instructions (not 1000s).

 After any 30 second period of greater than 90%
idle we assumed that any laptop would have been
turned off, and skipped simulating until the next 30
second period with less than 90% idle. This models the
typical power saving features already present in porta-
bles. The energy savings reported below does not
count these off periods.

 There was assumed to be a lower bound to practi-
cal speed, either 0.2, 0.44 or 0.66, where 1.0 represents
full speed. In 5V logic using voltage reduction for
power savings, these correspond to 1.0 V, 2.2 V and
3.3V minimum voltage levels, respectively. The 1.0 V
level is optimistic, while the 2.2 V and 3.3V levels are
based on several existing low power chips. In the
graphs presented in section 7, the minimum voltage of
the system is indicated, meaning that the voltage can
vary between 5.0 V and the minimum, and the speed
will be adjusted linearly with voltage.

6 Scheduling Algorithms
 We simulated three types of scheduling algo-

rithms: unbounded-delay perfect-future (OPT),
bounded-delay limited-future (FUTURE), and

bounded-delay limited-past (PAST). Each of these
algorithms adjust the CPU clock speed at the same
time that scheduling decisions are made, with the goal
of decreasing time wasted in the idle loop while retain-
ing interactive response.

 OPT takes the entire trace, and stretches all the run
times to fill all the idle times. Periods when the
machine was “off” (more that 90% idle over 30 sec-
onds) were not considered available for stretching
runtimes into. This is a kind of batch approach to the
work seen in the trace period: as long as all that work
is done in that period, any piece can take arbitrarily
long. OPT power savings were almost always limited
by the minimum speed, achieving the maximum possi-
ble savings over the period. This algorithm is both
impractical and undesirable. It is impractical because it
requires perfect future knowledge of the work to be
done over the interval. It also assumes that all idle time
can be filled by stretching runlengths and reordering
jobs. It is undesirable because it produces large delays
in runtimes of individual jobs without regard to the
need for effective response to real-time events like user
keystrokes or network packets.

FUTURE is like OPT, except it peers into the
future only a small window, and optimizes energy over
that window, while never delaying work past the win-
dow. Again, it is assumed that all idle time in the next
interval can be eliminated, unless the minimum speed
of the CPU is reached. We simulated windows as small
as 1 millisecond, where savings are usually small, and
as large as 400 seconds, where FUTURE generally
approaches OPT in energy savings. FUTURE is
impractical, because it uses future knowledge, but
desirable, because no realtime response is ever delayed
longer than the window.

By setting a window of 10 to 50 milliseconds, user
interactive response will remain high. In addition, a
window this size will not substantially reduce a very
long idle time, one that would trigger the spin down of
a disk or the blanking of a display. Those decisions are
based on idle times of many seconds or a few minutes,
so stretching a computation out by a few tens of milli-
seconds will not affect them.

PAST is a practical version of FUTURE. Instead of
looking a fixed window into the future it looks a fixed
window into the past, and assumes the next window
will be like the previous one. The PAST speed setting
algorithm is shown at the top of the next column.

There are four parts to the code. The first part com-
putes the percent of time during the interval when the

CPU was running. The run_cycles come from two
sources, the runtime in the trace data for the interval,
and the excess_cycles from the simulation of the
previous interval.

The excess_cycles represents a carry over
from the previous interval because the CPU speed was
set too slow to accommodate all the load that was sup-
plied during the interval. Consider:

next_excess = run_cycles -
speed * (run_cycles + soft_idle)

The run_cycles is the sum of the cycles pre-
sented by the trace data and the previous value of
excess_cycles. This initial value is reduced by the
soft idle time and the number of cycles actually per-

Speed Setting Algorithm (PAST)
run_cycles is the number of non-idle CPU

cycles in the last interval.
idle_cycles is the idle CPU cycles, split

between hard and soft idle time.
excess_cycles is the cycles left over from the

previous interval because we ran too slow. All these
cycles are measured in time units.

idle_cycles = hard_idle + soft_idle;
run_cycles += excess_cycles;
run_percent = run_cycles /

(idle_cycles + run_cycles);

next_excess = run_cycles -
speed * (run_cycles + soft_idle)

IF excess_cycles < 0. THEN
excess_cycles = 0.

energy = (run_cycles - excess_cycles) *
speed * speed;

IF excess_cycles > idle_cycles THEN
newspeed = 1.0;

ELSEIF run_percent > 0.7 THEN
newspeed = speed + 0.2;

ELSEIF run_percent < 0.5 THEN
newspeed = speed -

(0.6 - run_percent);

IF newspeed > 1.0 THEN
newspeed = 1.0;

IF newspeed < min_speed THEN
newspeed = min_speed;

speed = newspeed;
excess_cycles = next_excess;

formed at the current speed. This calculation repre-
sents the ability to squeeze out idle time by lengthening
the runtimes in the interval. Only “soft” idle, such as
waiting for keyboard events, is available for elimina-
tion of idle. As the soft idle time during an interval
approaches zero, the excess cycles approach:

run_cycles * (1 - oldspeed)

The energy used during the interval is computed
based on an n2 relationship between speed and power
consumption per cycle. The cycles that could not be
serviced during the interval have to be subtracted out
first. They will be accounted for in the next interval,
probably at a higher CPU speed.

The last section represents the speed setting policy.
The adjustment of the clock rate is a simple heuristic
that attempts to smooth the transitions from fast to
slow processing. If the system was more busy than
idle, then the speed is ramped up. If it was mostly idle,
then it is slowed down. We simulated several varia-
tions on the code shown here to come up with the con-
stants shown here.

7 Evaluating the Algorithms
Figure 1compares the results of these three algo-

rithms on a single trace (Kestrel March 1) as the adjust-
ment interval is varied. The OPT energy is unaffected
by the interval, but is shown for comparison. The ver-
tical access shows relative power used by the schedul-

ing algorithms, with 1.0 being full power. Three sets of
three lines are shown, corresponding to three voltage
levels which determine the minimum speed, and the
three algorithms, OPT, FUTURE, and PAST. The
PAST and FUTURE algorithms approach OPT as the
interval is lengthened. (Note that the log scale for the
X axis.) For the same interval PAST actually does bet-
ter than FUTURE because it is allowed to defer excess
cycles into the next interval, effectively lengthening
the interval. The intervals from 10 msec to 50 msec are
considered in more detail in other figures.

Figure 2 shows the excess cycles that result from
setting the speed too slow in PAST when using a 20
msec adjustment interval and the same trace data as
Figure 1. Note that the graph uses log-log scales.
Cycles are measured in the time it would take to exe-
cute them at full speed. The data was taken as a histo-
gram, so a given point counts all the excess cycles that
were less than or equal that point on the X axis, but
greater than the previous bucket value in the histo-
gram. Lines are used to connect the points so that the
spike at zero is evident. The large spike at zero indi-
cates that most intervals have no excess cycles at all.
There is a smaller peak near the interval length, and
then the values drop off.

As the minimum speed is lowered, there are more
cases where excess cycles build up, and they can accu-
mulate in longer intervals. This is evident Figure 2

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1

Power used

Adjust Interval (secs)

Figure 1. Kestrel March 1 All Algorithms

Opt-3.3V
FUTURE-3.3V

PAST-3.3V
Opt-2.2V

FUTURE-2.2V
PAST-2.2V

Opt-1.0V
FUTURE-1.0V

PAST-1.0V

where the points for 1.0 V are above the others, which
indicates more frequent intervals with excess cycles,
and the peak extends to the right, which indicates
longer excess cycle intervals.

Figure 3 shows the relationship between the inter-
val length and the peak in excess cycle length. It com-
pares the excess cycles with the same minimum
voltage (2.2 V) while the interval length varies. This is
from the same trace data as Figures 1 and 2.The main
result here is that the peak in excess cycle lengths shifts
right as the interval length increases. All this means is
that as a longer scheduling interval is chosen, there can
be more excess cycles built up.

Figure 4 compares the energy savings for the
bounded delay limited past (PAST) algorithm with a 20
msec adjustment interval and with three different min-

imum voltage limits. In this plot each position on the X
access represents a different set of trace data.The posi-
tion corresponding to the trace data used in Figures 1
to 3 is indicated with the arrow.

While there is a lot of information in the graph,
there are two overall points to get from the figure: the
relative savings for picking different minimum volt-
ages, and the overall possible savings across all traces.

The first thing to look for in Figure 4 is that for any
given trace the three points show the relative possible
energy savings for picking the three different mini-
mum voltages.Interestingly, the 1.0 V minimum does
not always result in the minimum energy. This is
because it. has more of a tendency to fall behind (more
excess cycles), so its speed varies more and the power
consumption is less efficient. Even when 1.0 V does

1

10

100

1000

10000

100000

1e+06

0.0001 0.001 0.01 0.1

Frequency

Excess Cycles (secs)

Figure 2. Kestrel March 1 Penalty at 20msec

3.3 V
2.2 V
1.0 V

1

10

100

1000

10000

100000

1e+06

0.0001 0.001 0.01 0.1

Frequency

Excess Cycles (secs)

Figure 3. Kestrel March 1 Penalty at 2.2 V

Past 10 msec
Past 20 msec
Past 30 msec
Past 50 msec

provide the minimum energy, the 2.2 V minimum is
almost as good.

The other main point conveyed by Figure 4 is that
in most of the traces the potential for energy savings is
good. The savings range from about 5% to about 75%,
with most data points falling between 25% to 65% sav-
ings.

Figure 5 fixes the minimum voltage at 2.2 V and
shows the effect of changing the interval length. The
OPT energy savings for 2.2 V is plotted for compari-
sion.Again, each position on the X axis represents a
different trace. The position corresponding to the trace
data used in Figures 1 to 3 is indicated with the arrow.

In this figure the main message to get is the differ-
ence in relative savings for a given trace as the interval
is varied. This is represented by the spread in the points
plotted for each trace. A longer adjustment period
results in more savings, which is consistent with Figure
1.

Figures 6 and 7 show the average excess cycles for
all trace runs. These averages do not count intervals
with zero excess cycles. Figure 6 shows the excess
cycles at a given adjustment interval (20 msec) and dif-
ferent minimum voltages. Figure 7 shows the excess
cycles at a given minimum voltage (2.2 V) and differ-
ent intervals. Again, the lower minimum voltage

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

Power used

All Traces, sorted by run cycles per trace

Figure 4. Comparison of Min Volts, PAST 20 msec

3.3 V
2.2 V
1.0 V

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

Power used

All Traces, sorted by run cycles per trace

Figure 5. Comparison of 2.2 V vs. Interval

Past 10 msec
Past 20 msec
Past 30 msec
Past 50 msec

OPT

results show more excess cycles, and the longer inter-
vals accumulate more excess cycles.

There is a trade off between the excess cycles pen-
alty and the energy savings that is a function of the
interval size. As the interval decreases, the CPU speed
is adjusted at a finer grain and so it matches the offered
load better. This results in fewer excess cycles, but it
also does not save as much energy. This is consistent
with the motivating observation that it is better to exe-
cute at an average speed than to alternate between full
speed and full idle.

8 Discussion and Future Work
 The primary source of feedback we used for the

speed adjustment was the percent idle time of the sys-
tem. Another approach is to classify jobs into back-
ground, periodic, and foreground classes. This is
similar to what Wilkes proposes in his schemes to uti-
lize idle time [Wilkes 95]. With this sort of classifica-
tion the speed need not be ramped up when executing
background tasks. Periodic tasks impose a constant,
measurable load. They typically run for a short burst
and then sleep for a relatively long time. With these
tasks there is a well defined notion of “fast enough”,

0.001

0.01

0.1

0 5 10 15 20 25 30 35

Excess Cycles (secs)

Traces, sorted by total runtime

Figure 6. Average Excess Cycles, 20 msec Interval

3.3 V
2.2 V
1.0 V

0.001

0.01

0.1

0 5 10 15 20 25 30 35

Excess Cycles (secs)

Traces, sorted by total runtime

Figure 7. Average Excess Cycles, 2.2 V

10 msec
20 msec
30 msec
50 msec

and the CPU speed can be adjusted to finish these tasks
just in time. When there is a combination of back-
ground, periodic, and foreground tasks, then the stan-
dard approach is to schedule the periodic tasks first,
then fit in the foreground tasks, and lastly fit in the
background tasks. In this case there would be a mini-
mum speed that would always execute the periodic
tasks on time, and the system would increase the speed
in response to the presence of foreground and back-
ground tasks.

The simulations we performed are simplified by
not reordering scheduling events. In a real rate-adjust-
ing scheduler, the change in processing rates will have
an effect on when jobs are preempted due to time slic-
ing and the order that ready jobs are scheduled. We
argue that unless there is a large job mix, then the reor-
dering will not be that significant. Our speed adjust-
ment algorithm will ramp up to full speed during heavy
loads, and during light loads the reordering should not
have a significant effect on energy.

 In order to evaluate more realistic scheduling
algorithms, it would be interesting to generate an
abstract load for the simulation. This load includes
CPU runs with preemption points eliminated, pause
times due to I/O delays preserved, and causal ordering
among jobs preserved. Given an abstract load, it would
be possible to simulate a scheduler in more detail, giv-
ing us the ability to reorder preemption events while
still preserving the semantics of I/O delays and IPC
dependencies.

We have attempted to model the I/O waits by clas-
sifying idle time into “hard” and “soft” idle. We think
this approximation is valid, but it would be good to
verify it with a much more detailed simulation.

9 Conclusions
 This paper presents preliminary results on CPU

scheduling to reduce CPU energy usage, beyond the
simple approaches taken by today’s laptops. The met-
ric of interest is how many instructions are executed
for a given amount of energy, or MIPJ. The observa-
tion that motivates the work is that reducing the cycle
time of the CPU allows for power savings, primarily
by allowing the CPU to use a lower voltage. We exam-
ine the potential for saving power by scheduling jobs at
different clock rates.

Trace driven simulation is used to compare three
classes of schedules: OPT that spreads computation
over the whole trace period to eliminate all idle time
(regardless of deadlines), FUTURE that uses a limited
future look ahead to determine the minimum clock

rate, and PAST that uses the recent past as a predictor
of the future. A PAST scheduler with a 50 msec win-
dow shows power savings of up to 50% for conserva-
tive circuit design assumptions (e.g., 3.3 V), and up to
70% for more aggressive assumptions (2.2 V). These
savings are in addition to the obvious savings that
come from stopping the processor in the idle loop, and
powering off the machine all together after extended
idle periods.

The energy savings depends on the interval
between speed adjustments. If it is adjusted at too fine
a grain, then less power is saved because CPU usage is
bursty. If it is adjusted at too coarse a grain, then the
excess cycles built up during a slow interval will
adversely affect interactive response. An adjustment
interval of 20 or 30 milliseconds seems to represent a
good compromise between power savings and interac-
tive response.

Interestingly, having too low a minimum speed
results in less efficient schedules because there is more
of a tendency to have excess cycles and therefore the
need to speed up to catch up. In particular, a minimum
voltage of 2.2 V seems to provide most of the savings
of a minimum voltage of 1.0 V. The 1.0 V system,
however, tends to have a larger delay penalty as mea-
sured by excess cycles.
In general, scheduling algorithms have the potential to
provide significant power savings while respecting
deadlines that arise from human factors considerations.
If an effective way of predicting workload can be
found, then significant power can be saved by adjust-
ing the processor speed at a fine grain so it is just fast
enough to accommodate the workload. Put simply, the
tortoise is more efficient than the hare: it is better to
spread work out by reducing cycle time (and voltage)
than to run the CPU at full speed for short bursts and
then idle. This stems from the non-linear relationship
between CPU speed and power consumption.
Acknowledgments

This work was supported in part by Xerox, and by
ARPA under contract DABT63-91-C-0027; funding
does not imply endorsement. David Wood of the Uni-
versity of Wisconsin helped us get started in this
research, and provided substantial assistance in under-
standing CPU architecture. The authors benefited from
the stimulating and open environment of the Computer
Science Lab at Xerox PARC.

Appendix I. Description of Trace Data
 The table on the next page lists the characteristics

of the 32 traces runs that are reported in the figures.
The table is sorted from shortest to longest runtime to
match the ordering in Figures 4 through 7. The elapsed
time of each trace is broken down into time spent run-
ning the CPU on behalf of a process (Runtime), time
spent in the idle loop (IdleTime), and time when the
machine is considered so idle that it would be turned
off by a typical laptop power manager (Offtime). The
short traces labeled mx, emacs, and fm are of typing
(runs 1 and 2) and scrolling (run 3) in various editors.
The remaining runs are taken over several hours of
everyday use

References
William C. Athas, Jeffrey G. Koller, and Lars “J.” Svensson.

“An Energy-Efficient CMOS Line Driver Using
Adiabatic Switching”, 1994 IEEE Fourth Great
Lakes Symposium on VLSI, pp. 196-199, March
1994.

A. P. Chandrakasan and S. Sheng and R. W. Brodersen.
“Low-Power CMOS Digital Design”. JSSC, V27,
N4, April 1992, pp 473--484.

Michael Culbert, “Low Power Hardware for a High
Performance PDA”, to appear Proc. of the 1994
Computer Conference, San Francisco.

Fred Douglis, P. Krishnan, Brian Marsh, “Thwarting the
Power-Hungry Disk”, Proc. of Winter 1994
USENIX Conference, January 1994, pp 293-306

Mark A. Horowitz. “Self-Clocked Structures for Low Power
Systems”. ARPA semi-annual report, December
1993. Computer Systems Laboratory, Stanford
University.

Kester Li, Roger Kumpf, Paul Horton, Thomas Anderson,
“A Quantitative Analysis of Disk Drive Power
Management in Portable Computers”, Proc. of
Winter 1994 USENIX Conference, January 1994,
pp 279-292.

S. Younis and T. Knight. “Practical Implementation of
Charge Recovering Asymptotically Zero Power
CMOS.” 1993 Symposium on Integrated Systems
(C. Ebeling and G. Borriello, eds.), Univ. of
Washington, 1993.

Wilkes, John “Idleness is not Sloth”, to appear, proc. of the
1995 Winter USENIX Conf

.

Table 2: Summary of Trace Data

I Trace Runtime Idle Elapsed Offtime

0 feb28klono 0.906 29.094 9H 24M 20S 33828.9

1 idle1 1.509 28.653 39S 9.05

2 heur1 7.043 3.103 10S 0

3 emacs2 7.585 31.719 40S 0

4 emacs1 8.060 32.273 40S 0

5 mx2 8.362 30.916 39S 0

6 mx1 9.508 30.871 41S 0

7 fm1 9.544 10.594 20S 0

8 em3 11.669 27.580 40S 0

9 fm2 16.679 23.770 41S 0

10 mx3 20.738 18.642 39S 0

11 feb28dekanore 30.548 541.045 9H 24M 40S 33307.8

12 fm3 30.626 9.942 41S 0

13 mar1klono 41.822 1011.251 9H 55M 46S 34690.6

14 feb28mezzo 61.940 449.717 9H 24M 20S 33346.1

15 mar1cleonie 214.656 1321.591 9H 50S 30913.0

16 feb28kestrel 510.259 3362.222 1H 4M 33S 0

17 feb28corvina 524.248 768.857 9H 24M 41S 32588.0

18 mar1mezzo 686.340 673.204 9H 55M 36S 34375.7

19 mar1egeus 695.409 4774.911 9H 55M 35S 30263.6

20 feb28ptarmigan 1497.908 2207.005 1H 1M 41S 0

21 feb28fandango 1703.037 3489.760 9H 24M 17S 28665.0

22 feb28zwilnik 4414.429 29448.058 9H 24M 21S 0

23 mar1zwilnik 4914.787 30823.917 9H 55M 38S 0

24 mar1kestrel 5135.297 30599.364 9H 55M 34S 0

25 feb28siria 6714.109 27146.678 9H 24M 20S 0

26 mar1siria 8873.114 26868.738 9H 55M 37S 0

27 feb28egeus 9065.477 13500.028 6H 16M 6S 0

28 mar1corvina 10898.545 24648.883 9H 55M 57S 210.202

29 mar1ptarmigan 12416.924 23319.178 9H 55M 34S 0

30 mar1fandango 20101.182 15638.594 9H 55M 38S 0

31 mar1dekanore 25614.651 14168.562 9H 55M 58S 7191.81

