
Shark: Fast Data Analysis Using Coarse-grained
Distributed Memory

Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia,
Michael J. Franklin, Scott Shenker, Ion Stoica

AMPLab, EECS, UC Berkeley
{cengle, alupher, rxin, matei, franklin, shenker, istoica}@cs.berkeley.edu

ABSTRACT
Shark is a research data analysis system built on a novel
coarse-grained distributed shared-memory abstraction. Shark
marries query processing with deep data analysis, providing
a unified system for easy data manipulation using SQL and
pushing sophisticated analysis closer to data. It scales to
thousands of nodes in a fault-tolerant manner. Shark can
answer queries 40X faster than Apache Hive and run ma-
chine learning programs 25X faster than MapReduce pro-
grams in Apache Hadoop on large datasets.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
DESIGN, MANAGEMENT

Keywords
Databases, Data Warehouse, Machine Learning, Resilient
Distributed Dataset, Spark, Shark

1. INTRODUCTION
Modern data analysis employs statistical methods that go

well beyond the roll-up and drill-down capabilities provided
by traditional enterprise data warehouse (EDW) solutions.
Data scientists appreciate the ability to use SQL for simple
data manipulation but rely on other systems for machine
learning on these data. What is needed is a system that
consolidates both. For sophisticated data analysis at scale,
it is important to exploit in-memory computation. This
is particularly true with machine learning algorithms that
are iterative in nature and exhibit strong temporal locality.
Main-memory database systems use a fine-grained memory
abstraction in which records can be updated individually.
This fine-grained approach is difficult to scale to hundreds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12,May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

or thousands of nodes in a fault-tolerant manner for mas-
sive datasets. In contrast, a coarse-grained abstraction, in
which transformations are performed on an entire collection
of data, has been shown to scale more easily 1.

1.1 Coarse-grained Distributed Memory
We have previously proposed a new distributed memory

abstraction, Resilient Distributed Datasets (RDDs) [4], for
in-memory computations on large clusters. RDDs provide a
restricted form of shared memory, based on coarse-grained
transformations on immutable collections of records rather
than fine-grained updates to shared states. RDDs can be
made fault-tolerant based on lineage information rather than
replication. When the workload exhibits temporal locality,
programs written using RDDs outperform systems such as
MapReduce by orders of magnitude. Surprisingly, although
restrictive, RDDs have been shown to be expressive enough
to capture a wide class of computations, ranging from more
general models like MapReduce to more specialized models
such as Pregel.

It might seem counterintuitive to expect memory-based
solutions to help when petabyte-scale data warehouses pre-
vail. However, it is unlikely, for example, that an entire
EDW fact table is needed to answer most queries. Queries
usually focus on a particular subset or time window, e.g., http
logs from the previous month, touching only the (small) di-
mension tables and a small portion of the fact table. Thus,
in many cases it is plausible to fit the working set into a
cluster’s memory. In fact, one study [1] analyzed the access
patterns in the Hive warehouses at Facebook and discovered
that for the vast majority (96%) of jobs, the entire inputs
could fit into a fraction of the cluster’s total memory.

1.2 Introducing Shark
The goal of the Shark (Hive on Spark) project is to design

a data warehouse system capable of deep data analysis using
the RDD memory abstraction. It unifies the SQL query
processing engine with analytical algorithms based on this
common abstraction, allowing the two to run in the same
set of workers and share intermediate data.

Apart from the ability to run deep analysis, Shark is much
more flexible and scalable compared with EDW solutions.
Data need not be extracted, transformed, and loaded into
the rigid relational form before analysis. Since RDDs are de-
signed to scale horizontally, it is easy to add or remove nodes
to accommodate more data or faster query processing. The

1MapReduce is an example of coarse-grained updates as the
same map and reduce functions are executed on all records.

system scales out to thousands of nodes in a fault-tolerant
manner. It can recover from node failures gracefully without
terminating running queries and machine learning functions.

Compared with disk-oriented warehouse solutions and batch
infrastructures such as Apache Hive [3], Shark excels at ad-
hoc, exploratory queries by exploiting inter-query temporal
locality and also leverages the intra-query locality inherent
in iterative machine learning algorithms. By efficiently ex-
ploiting a cluster’s memory using RDDs, queries previously
taking minutes or hours to run can now return in seconds.
This significant reduction in time is achieved by caching the
working set of data in a cluster’s memory, eliminating the
need to repeatedly read from and write to disk.

In the remainder of this demonstration proposal, we sketch
Shark’s system design and give a brief overview of the sys-
tem’s performance. Finally, we describe in detail how we
plan to demonstrate Shark at SIGMOD. Due to space con-
straints, we refer readers to [4] for more details on RDDs.

2. SYSTEM OVERVIEW
For ease of adoption, we have designed Shark to be entirely

hot-swappable with Hive. Anyone can have Shark up and
running in an existing Hive warehouse. Queries will return
the same set of results in Shark, albeit much faster, without
any modification to data or the queries themselves.

We have implemented Shark using Spark, a system that
provides the RDD abstraction through a language-integrated
API in Scala (a statically typed functional programming lan-
guage for the Java VM). Each RDD dataset is represented
as a Scala object, while the transformations are invoked us-
ing methods on those objects. A Shark cluster consists of
masters and workers. A master’s lifetime can span one or
several queries. The workers are long-lived processes that
can store dataset partitions in memory across operations.
When the user runs a query, the client connects to a master,
which defines RDDs for the workers and invokes operations
on them.

Figure 1 shows the general architecture of Shark. Data are
stored physically in the underlying distributed file system
HDFS. The Hive metastore is used without modification in
Shark and tracks the metadata and statistics about tables,
much like the system catalog found in traditional RDBMS.

2.1 Query Processing
From a higher level, Shark’s query execution consists of

three steps similar to traditional RDBMS: query parsing,
logical plan generation, and physical plan generation. Hive
provides a SQL-like declarative query language, HiveQL,
which gets compiled into lower level operators that are ex-
ecuted in a sequence of MapReduce programs. Shark uses
Hive as a third-party Java library for query parsing and
logical plan generation. The main difference is in the phys-
ical plan execution, as Shark has its own operators written
specifically to exploit the benefits provided by RDDs.

Given a HiveQL query, the Hive query compiler is used to
parse the query and generate an abstract syntax tree. The
tree is then turned into the logical plan and basic logical
optimization such as predicate pushdown is applied. Up
to this point, Shark and Hive share an identical approach.
In Hive, this operator tree would then be converted into
a physical plan that consists of subtrees for separate map
reduce tasks. In contrast, in Shark, this operator tree is
converted into operators that perform transformations on

Figure 1: Shark Architecture

RDDs. An iterator traverses the operator tree and produces
an immutable RDD for each operator on the tree. This
RDD is not materialized until the execution engine returns
the query results.

Much of the common structure of Hive operators is re-
tained in order to ensure interoperability with HiveQL. We
have currently implemented support for all of the essential
Hive operators. We reuse all of Hive’s data model and type
system, in addition to supporting Hive’s user-defined func-
tions, user-defined aggregate functions, custom types, and
custom serialization/deserialization methods.

A major advantage of Shark over Hive is the inter-query
caching of data. The Spark framework provides a simple
mechanism to cache RDDs in memory across clusters and
recompute RDDs in the event of failures.

In the Shark configuration file, users can specify types
of operators whose outputs will be cached automatically by
Shark. Each output is cached as an in-memory RDD and
Shark computes a signature for this RDD based on the sub-
tree of the query plan. Signatures are computed for subse-
quent query subtrees and are compared with those of the
in-memory RDDs, and in case of a match, the in-memory
RDD is used to replace the subtree. For example, in order to
force Shark to naively cache all input data, users can enable
caching for the TableScan operator.

In addition, users can choose to explicitly cache certain
data by using the CREATE TABLE AS SELECT state-
ment. If the name of the table created using this statement
ends with “ cached”, the table is automatically cached as
an in-memory RDD and can be used to answer subsequent
queries. For example, the following clause creates an in-
memory table:

CREATE TABLE top_employee_cached AS
SELECT employee_id, name, salary
FROM employee_data WHERE salary > 200000;

We have implemented an LRU cache replacement policy
at RDD granularity, and are currently exploring more so-
phisticated algorithms that perform cost-based analysis for
intermediate data. We are also investigating how to an-
swer queries using in-memory RDDs by rewriting the queries
given by users.

2.2 Deep Data Analysis
Shark provides a streamlined interface to marry deep data

analysis with SQL query processing. It combines SQL’s con-
venience in data manipulation with sophisticated analysis

using machine learning algorithms. The analytical algo-
rithms run in the same set of workers as the query processing
engine and can reuse intermediate data in the form of RDDs
created by the engine.

Shark allows users to write user-defined functions (UDFs)
in Spark to express their algorithms for distributed compu-
tation. Users can integrate these functions with SQL using
a special kind of table-valued UDF. Shark provides a simple
API for these UDFs, which accept a Table RDD as input
and emit a Table RDD as output.

We have already implemented a number of basic machine
learning algorithms, e.g., linear regression, logistics regres-
sion, k-means. In most cases, the user only needs to im-
plement a UDF that transforms the input Table RDD into
the desired input data type for the selected algorithm and
transforms the output from the algorithm into a separate
Table RDD.

The following example illustrates a distributed UDF im-
plementing k-means clustering in Shark. The kmeans_core
function does the iterative k-means computation that parti-
tions n points into k clusters represented by the centroids.

def kmeans_core(points: RDD[Point], k: Int) = {
// Initialize the centroids.
clusters = new HashMap[Int, Point]
for (i <- 0 until k) centroids(i) = Point.random()

for (i <- 1 until 10) {
// Assign points to centroids and update centroids.
clusters = points.groupBy(closestCentroid)

.map{
(id, points) => (id, points.sum / points.size)

}.collectMap()
}

}

Note that since the output of the UDFs is also an RDD,
the system is in closed form and the UDF output can be
further processed by other Shark operators or analysis algo-
rithms.

3. PERFORMANCE
This section briefly discusses Shark’s performance, includ-

ing query processing and iterative machine learning execu-
tion. We also report experience from an alpha testing user.
Note that the intent is to demonstrate the benefits in real
applications, rather than to give an extensive, scientific per-
formance study.

3.1 Query Processing
We used the teragen program from [2] to generate a 50GB

dataset and experiment with a simple grep query on a 10-
node Hive cluster and a 10-node Shark cluster. The 50GB
of input data fits in the cluster’s memory.

SELECT * FROM grep WHERE field LIKE ’%XYZ%’;

Figure 3.1 reports the execution time of running the query
in Hive, in Shark when the data are not cached, and in Shark
when input is cached. It is clear that Shark provides at least
an order of magnitude speedup when we need to run several
queries on the same working set of data.

3.2 Iterative Machine Learning
Many machine learning algorithms are iterative in nature

because they run iterative optimization procedures, such as
gradient descent, to optimize an objective function. These

Hive

Shark (cold)

Shark (hot)

0 30 60 90 120

Execution Time (secs)

Figure 2: Grep Query Performance

Regression

K-Means

0 30 60 90 120

Execution Time (secs)

Hadoop
Shark UDF

Figure 3: Logistic Regression and K-Means Perfor-
mance

algorithms can be sped up substantially using Shark if their
working set fits into RAM across a cluster. Furthermore,
these algorithms often employ bulk operations like maps and
sums, making them easy to express with RDDs in UDFs.

We implemented two iterative machine learning algorithms,
logistic regression and k-means, in Hadoop MapReduce and
in Shark distributed UDFs. We ran both algorithms for 10
iterations on 100 GB datasets using 100 machines. The key
difference between the two algorithms is the amount of com-
putation they perform per byte of data. The iteration time
of k-means is dominated by computation, while logistic re-
gression is less compute-intensive and thus more sensitive to
time spent in deserialization and I/O.

Note that by the time the user runs the machine learning
algorithms in Shark, the working set are likely to be already
in memory through the SQL manipulations. Since typical
learning algorithms need tens of iterations to converge, we
report times for the subsequent iterations. Figure 3.1 shows
that sharing data via RDDs greatly speeds up future itera-
tions.

For logistic regression, Shark was 25.3× faster than Hadoop
on 100 machines. For the more compute-intensive k-means
application, Shark still achieved speedup of 3.2×. It is also
worth noting that the implementation of these algorithms
are much more concise as Shark UDFs than as Hadoop
MapReduce programs.

3.3 Conviva Data Warehouse
Conviva Inc, a video distribution company, runs a 20 node

Hive warehouse for data analytics. They have two types of
queries: predefined reporting queries and ad-hoc debugging
queries.

Their reporting queries mostly work on the same subset of
the data (records matching a customer-provided predicate),
but perform aggregations (averages, percentiles, and COUNT

DISTINCT) over different grouping fields, requiring separate

MapReduce jobs. A typical reporting query takes 20 hours
to run on 200 GB of compressed data. They experimented
with an earlier prototype of Shark that required the devel-
opers to hand code the query plans. The query now runs in
30 mins using only two nodes with 96GB of RAM. This is a
40× improvement in query runtime, using only 10% of the
hardware resources. The speedup comes from a combination
of keeping the columns of interest in memory and avoiding
repeated decompression and filtering of the same data files.

Conviva is now running approximately 30% of its report-
ing queries on the earlier prototype of Shark instead of Hive,
but this requires manual porting of SQL queries. With the
new version, Conviva doesn’t need to rewrite their queries
and will be able to achieve the same performance gains.

In addition, a number of users at Conviva use Hive inter-
actively for debugging e.g., finding commonalities between
users who experienced low video quality to identify miscon-
figurations and software bugs. Like the reporting queries,
these queries repeatedly access and refine the same dataset,
so running them over Shark would greatly reduce the length
of debug cycles.

4. DEMONSTRATION DETAILS

4.1 Demo Setup
We will present an end-to-end implementation of Shark

and demonstrate the benefits it provides. The demonstra-
tion exhibits three main components:

Data Set: We will have a HDFS cluster on Amazon
EC2 hosting one terabyte (uncompressed) of tweets. It con-
tains roughly 400 million tweets, collected using the Twitter
streaming API prior to the conference. These tweets are
stored using a nested JSON format.

Shark and Hive Clusters: During the demo, we will
have a 100-node Shark cluster and an equal-sized Apache
Hive cluster running on EC2 for side-by-side comparison.

Web Console: Since it is hard to capture the internals
of query processing given only the query and the output, we
have implemented a web console that illustrates the query
plan, the caching of RDDs for multi-query optimization, and
status of each node. In addition, to demonstrate Shark’s
fault-tolerance feature, we will arbitrarily submit kill signals
to Spark nodes from the web console.

4.2 Story Line
Imagine a situation in which a data journalist is exploring

new topics for a story. At her disposal is a large collection
of tweets.

She first generates a histogram of the number of tweets
and realizes there is a spike in early October, 2011. Since
Twitter activities usually correlate with events, she would
like to gain insight into these events by understanding the
causes of the spike. To do so, she drills down to focus on the
particular two weeks, clustering tweets by their hash tags.
She then realizes that there is a large cluster representing
the Occupy Wall Street movement.

Suppose she then decides to write a piece about the move-
ment and wants to investigate the public’s sentiment toward
this movement. Since it is unlikely for the world to have a
unanimous view on this particular issue, she would like to
compare the distribution of sentiments across different cities:
e.g., how are people in San Francisco similar to those in New
York City? She achieves this by grouping the tweets in this

window by geographical location and running the sentiment
analysis algorithm. She then uses statistical distribution
comparison algorithms to compare the sentiments.

SIGMOD attendees will be able to run queries outlined
above as well as perform ad-hoc exploration of the dataset
through the command-line interface.

5. TAKE-AWAYMESSAGE
This demonstration highlights the benefits of a coarse-

grained distributed memory abstraction in allowing deep
analysis and interactive querying of massive datasets. Our
working prototype provides optimized execution of ad-hoc,
exploratory queries that exploit inter-query temporal local-
ity. It additionally provides efficient execution for itera-
tive algorithms that exhibit intra-query temporal locality.
We demonstrate Shark’s scalability, fault-tolerance and high
performance on a realistic analytical workload, while com-
paring it to Hive. Users will observe the ease of combining
deep analysis with SQL, demonstrating how a unified sys-
tem allows the reuse of intermediate data and significantly
improves the performance of analytical queries on massive
datasets.

6. ACKNOWLEDGMENTS
We would like to thank Peter Alvaro, Eric Yi Liu, Tim

Kraska, Gene Pang, and Andrew Wang for feedback.
This research is supported in part by gifts from Google,

SAP, Amazon Web Services, Blue Goji, Cloudera, Erics-
son, General Electric, Hewlett Packard, Huawei, IBM, Intel,
MarkLogic, Microsoft, NEC Labs, NetApp, Oracle, Quanta,
Splunk, VMware and by DARPA (contract #FA8650-11-C-
7136).

7. REFERENCES
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and

I. Stoica. Disk-locality in datacenter computing
considered irrelevant. In HotOS ’11, 2011.

[2] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt,
S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In Proceedings
of the 35th SIGMOD international conference on
Management of data, pages 165–178. ACM, 2009.

[3] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive-a
petabyte scale data warehouse using hadoop. In Data
Engineering (ICDE), 2010 IEEE 26th International
Conference on, pages 996–1005. IEEE, 2010.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI
2012.

