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Abstract

This paper addresses two issues related to resource reserva-
tion establishment in packet switched networks offering real-
time services. The first issue arises out of the natural tension
between the local nature of reservations (i.e., they control
the service provided on a particular link) and the end-to-end
nature of application service requirements. How do reserva-
tion establishment protocols enable applications to receive
their desired end-to-end service? We review the current one-
pass and two-pass approaches, and then propose a new hy-
brid approach called one-pass-with-advertising. The second
issue in reservation establishment we consider arises from
the inevitable heterogeneity in network router capabilities.
Some routers and subnets in the Internet will support real-
time services and others, such as ethernets, will not. How
can a reservation establishment mechanism enable applica-
tions to achieve the end-to-end service they desire in the
face of this heterogeneity? We propose an approach involv-
ing replacement services and advertising to build end-to-end
service out of heterogeneous per-link service offerings.

1 Introduction

There are many proposed designs that make Internet-style
packet-switched networks capable of supporting real-time
applications (see [3, 6, 11, 12, 14, 18, 19, 21, 22, 23, 25] and
references therein for a few representative examples). These
proposals tvpically involve three main changes to the Inter-
net architecture. The first change is to extend the Internet
service model bevond its current single class of best-effort
service to include delay-bounded and other packet delivery
services." These services are typically defined in terms of
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't 15 important to note that not all proposals involve extending the
service model As discussed in [26), one possible approach 1s merely
to implement Fair Queuing in all switches and then put the onus on
applications to be sufficiently adaptable We confine our attention
n this paper to proposals that do include adding delay-bounded and
other similar packet delivery services to the service model
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end-to-end guantities; for instance, the delay bounds in a
delay-bounded service refer to the total end-to-end delays
experienced by packets.

The second change is in the routers. In order to pro-
vide these new services, routers may need to implement
packet scheduling algorithms that are more sophisticated
than FIFO. In addition, each router must have an admis-
sion control module which can respond to requests for ser-
vice. Admission control is needed if any of the services pro-
vide guantitative assurances about the actual level of service
provided, such as a delay bound, rather than just a descrip-
tion of the level of effort, such as a priority level. Such an
admission control module not only responds with a ves/no
to the request. but also determines what service must be in-
stalled at the router. While services are typicallvy defined on
an end-to-end basis, all services are necessarily implemented
on a per-link basis, and so end-to-end service requirements
must be translated into the necessary service performed at
that router. Thus, along with the service model comes a set
of router requirements that dictates what each router along
the path must do in order to meet the end-to-end service
requirements.

The third change is that a reservation establishment pro-
tocol must be introduced to propagate the client’s service
request to the switches along the data flow path. The reser-
vation protocol must take a service request issued by an
application and then must visit each router along the path
delivering an appropriate service request.”

In this paper. we discuss two issues that arise when de-
signing such a reservation establishment protocol. The first
issue involves the relationship between end-to-end services
and their per-link implementations. Applications care only
about the end-to-end quality of service their flows receive.
How does the reservation establishment protocol, in con-
junction with the admission control modules on the routers.
enable applications to get the end-to-end service they desire?
In particular. if an application desires a certain end-to-end
delay bound, how do the appropriate per-link services get
installed along the path to make sure this bound is met?
This question is especially difficult in the context of multi-
cast [7] flows. where there are many service requests (e.g.,

20ur language here 15 intentionally vague because some reserva-
tion protocols deliver the apphcation’s service request to each router
unchanged, whereas other reservation protocols take the application
service request and then do some computation on that reguest be-
fore delivering 1t to individual routers We discuss this more fully n
Section 3



one from each receiver) to deal with simultaneously.

The second issue involves the set of services itself. When
the service model is extended beyond its current single class
of best-effort service, there will inevitably be heterogeneity
in the set of services supported by different routers. Some
routers will support the entire service model while others,
such as ethernets, will continue to support only the tra-
ditional best-effort service. The reservation establishment
protocol, again in conjunction with the admission control
modules on the routers, must manage this heterogeneity
carefully. We want applications to be minimally disturbed
by this heterogeneity. In addition, we also want to maximize
the extent to which partially deployed services are utilized,
and to facilitate incremental deployment of new services.

These two issues will arise in the context of any architec-
ture that supports real-time applications. The architecture
must enable applications to secure the end-to-end services
they desire, and it must also be able to cope with the in-
evitable presence of heterogeneity in the capability of net-
work routers. These two problems are not adequately ad-
dressed by existing proposals. In this paper, we propose a
general approach to these two problems, which provides ap-
plications with knowledge about the end-to-end service that
will result from a particular service request and enables ap-
plications to build end-to-end service out of heterogeneous
service offerings at different routers.

This paper has 5 sections. In the next section we de-
scribe the context in which we discuss these problems. In
Section 3 we discuss the problem of mapping end-to-end re-
quests into per-link services. We first argue that the existing
approaches, which we categorize as one-pass and two-pass,
do not provide the desired functionality. We then propose
a new approach, which we call one-pass-with-advertising
(OPWA). In Section 4 we discuss the problem of hetero-
geneity. Our approach here, which uses the notion of re-
placement services and advertising, builds end-to-end ser-
vice out of heterogeneous service offerings. We conclude in
Section 5 with a brief discussion of our findings.

2 Context

The problems we address in this paper are rather general,
and we think they will arise in the context of any service
model that includes services explicitly designed to support
real-time applications using resource reservation. However,
it is difficult to discuss these issues absent the context pro-
vided by actual mechanisms or proposals. Consequently,
we have chosen to consider a rather specific context moti-
vated by proposals resulting from previous research on ser-
vice models and reservation establishment protocols.® At
the end of sections 3 and 4 we will discuss what fundamen-
tal aspects of the service model and reservation establish-
ment protocol are necessary for these issues to arise. We
present the context in two parts: (1) the service model and
the associated router requirements, and (2) the reservation
establishment protocol. We then discuss the implications
of reservations in a multicast environment, which raises the
issues of sharing reservations among sources and merging

3The two proposals we describe are also being considered by two
IETF working groups the Integrated Services Working Grouvp (for
the service model) and the RSVP Working Group (for the reservation
establishment protocol)
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reservations from different receivers.

2.1 Service Model and Router Requirements

The service model we use for context is based on that de-
scribed in [6] and [25]. We assume that the network offers
three basic packet delivery services related to real-time ap-
plications, which we describe below. This paper should not
be read as an endorsement of, nor an argument for, this
particular set of services, and we expect that the actual ser-
vice model of the future Internet will be somewhat different
than what is discussed here. We have chosen these services
because they represent a concrete proposal and they are gen-
eral enough to provide a useful illustration of the problems
at hand.

Before describing these three services, we should note
that each of the services requires the application to make
a reservation, and for each reservation request routers must
make admission control decisions. As part of the reserva-
tion request, the application must specify its traffic char-
acteristics to the network; we call this traffic specification
the TSpec. To specify traffic we use the token bucket fil-
ter [6, 21]. which has two parameters: the token bucket
rate r and the token bucket depth b. A source conforms
to this filter if, and only if. the cumulative bits sent dur-
ing any period of time (t,t¢'), denoted by S(t.1'). satisfies
S(t,t') < r(t' —t)+b. Thus. r is an upper bound on the
long term rate of the traffic and b bounds its burstiness.

The most traditional form of real-time service is what we
call guaranteedservice (see [6]), which provides an absolutely
firm delay bound on every packet. The way this bound is
provisioned is not completely traditional; rather than pro-
viding a delay bound at each switch and then adding up
the delays, we take advantage of the celebrated result due
to Parekh and Gallager [21, 22, 23] on the weighted-fair-
queueing (WFQ) scheduling algorithm [8]. The guaranteed
service delivered to an individual application is parametrized
by a rate rg (specified by the client) and error terms A and
B (specified by the network). For a flow characterized by
an (r,b) token bucket TSpec and a reserved rate ry, with
g =it the maximal packet delay, following [21, 22, 23], is
given by’ '—+ +B To implement this end-to-end service,
the sw:tches are reqmred to bound their error away from the
weighted-fair-queueing (WFQ) fluid model ([8. 21, 22, 23]2
in terms of A® and B® (where a is a label of the swiich).
Then, the end-to-end error parameters are given by the
sums: A = S 4PN pa and B = Y AnPUR ga This
form of service allows the maximal end-to-end delay bound
to be significantly less than the sum of the per-link delay
bounds, in that the term Lg only appears once. To summa-

rize, the end-to-end definition of guaranteed service is that
the delays will be bounded by ‘—,’;— - ,-"—:- + B. The service re-
quired at each hop is that the service must model the fluid
model to within an error tolerance defined by A% and B“.

A second type of real-time service. introduced in [6], is

This 1s a shght generalization of their result, in that the error
terms are more general

*We do not explain more fully what the flid model 15, nor how
error tolerances are described by the parameters A® and B®, because
it would take us too far afield We mention this service mainly because
it has a nontrivial rranslation between per-link service and end-to-end
service



predictive service. Predictive service provides a fairly re-
liable bound on the maximal delay of each packet. This
service is designed for those applications that are tolerant
of occasional violations of the delay bound, and thus do
not need the complete reliability of guaranteed service. The
small reduction in reliability enables significantly higher net-
work utilization, giving applications more efficient service.
Routers offering predictive service provide three logical lev-
els of service, each associated with its own delay bound.®
The end-to-end delay bound is the sum of the per-link delay
bounds.

An even less stringent form of real-time service is con-
trolled delay service. This service is designed for applications
that need some control on delay, but do not need specified
delay bounds; the switch promises to provide some level of
delay control, but the network makes no quantitative assur-
ances about the end-to-end service characteristics. Thus,
the network is only specifying a level-of-effort and not an
actual delay bound. Routers supporting this service are re-
quired to use admission control to turn flows away when
delays are too high. but there is no standard definition of
what “too high” means. We again assume there are three
logical levels of service provided by every router, which cor-
respond to differing levels of delay control.

The service model we consider has three real-time ser-
vices. Each service has a different relationship between the
per-link service and the resulting end-to-end service: con-
trolled delay has no quantitative end-to-end assurances, pre-
dictive service has an end-to-end delay bound which is the
sum of the per-link delay bounds, and guaranteed service's
end-to-end delay bound depends on the cumulative error
terms .4 and B. These relationships between the end-to-end
service and the per-link services are the only aspects of the
service model that are essential to our present discussion.

In addition to these real-time services, we assume that
the service model also includes three priority levels of the
standard best-effort service.” This service, unlike those above,
requires no admission control and the network makes no as-
surances about the resulting delays. Of course, the delays
experienced in best-effort service depend on the ambient
loading. Thus, while best-effort service provides no quan-
titative assurances, on a well-provisioned link it can provide
very high quality service.

Because the service model provides the basic abstraction
for networking service built into end host software, it must
remain extremely stable. The service model is extensible.
in that new services can be added, but existing services can
not be easily removed. However, it is unrealistic to expect.
in most circumstances, that these services will be uniformly
and universally deployed. For instance, in the Internet con-
text. the Internet Engineering Task Force (IETF) will likely
define these services, but it will probably not mandate de-
ployment of them (see [27]). That is, it will provide stan-
dards delineating what a router must do in order to claim to
support specific services. such as guaranteed, predictive. and
controlled delay. However, it will be up to individual router
vendors and network service providers to decide which of
these services is actually supported in any particular router.
This leads to the issue of heterogeneity we discuss in Section
4.

SThe choice of three levels i1s somewhat arbitrary, but there is a
need for a standard number of levels
‘Reference [25] refers to this as ASAP service.
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2.2 Reservation Protocol

We base our discussion of the resource reservation protocol
on RSVP, which was introduced in [29] and is currently un-
der discussion in the IETF (see [30] for a preliminary design
specification). This protocol was designed to support both
unicast and multicast applications, and thus serves as a use-
ful guide to our discussion. For our purposes in this paper.
there are three basic design principles that are especially
relevant. First, the protocol is receiver-initiated, in that ser-
vice requests are generated by receivers and then propagated
towards senders. These service requests. carried in RESV
messages, follow the reverse of the paths over which data
packets travel. Second, the protocol is based on the notion
of soft-state[5], which means that the state in the switches is
periodically refreshed by the receivers. Rather than relying
on the network to detect and respond to failures, RSVP puts
the onus on receivers to resend their service requests periodi-
cally; if a failure has occurred a refreshed service request will
re-establish the appropriate state. This is a very important
design principle, since it requires that the reservation estab-
lishment messages be idempotent. That is, a service request
must result in the same state being installed at a router
whether the request is new or a retransmission. Third, the
protocol itself is independent of the service model. While
RSVP transports the client service requests to the routers,
it need not understand the content of those requests.® This
allows RSVP to remain unchanged while the service model
is extended.

2.3 Implications of Multicast

The flows for which reservations are being made can be mul-
ticast flows, where each packet is transmitted down a dis-
tribution tree from a source to all members of the multicast
group. There can be many sources of the flow, and these
sources need not be members of the multicast group. This
has two important implications for our discussion of reser-
vation establishment. We do not go into the details here,
but only give the following short description.

The presence of multiple sources raises the issue of shared
channels. As proposed in [15] and [29], a given reservation
can be shared by the trafhic streams from several sources.
Shared channels take advantage of application level seman-
tics to reduce the aggregate resources reserved. For example,
rather than reserving resources for each speaker in a multi-
party conference, a single shared reservation, large enough
to allow one or two simultaneous speakers. can be estab-
lished. The Wildcard reservation style in RSVP shares a
single reservation among all sources to a multicast group.

The presence of multiple recipients raises the issue of
reservation merging. When two receivers request a reser-
vation for the same flow, their requests must be combined
into a single reservation at all links on their common path.
Merging requires installing a service that is at least as good
as either individual service request (i.e., an upper bound).
Thus, there must be an ordering relationship between ser-
vices so that a router can determine if it can establish such
an upper bound on the service requests. Admission control
must respect this ordering, in that if a flow would be ac-

#To be more precise, 1t must understand the scope of the requests,
which 1s the list of the sources sharing this reservation, but 1t need
not understand the quality of service requested for the flow



cepted for a given level of service, it would also be accepted
for all lower (relative to the ordering) service levels.

3 Satisfying End-to-End Service Requirements

There is an inherent tension in most approaches to resource
reservations in networks. Reservations are local, in that they
pertain only to the service provided on individual links. Yet,
the purpose of reservations is to meet application require-
ments, and applications care only about the resulting end-
to-end service. How does one design the reservation mech-
anism so that the set of per-link reservations results in the
desired end-to-end service? This is the problem we discuss
in this section.

We should note that this is only a problem for services
where there is a nontrivial relationship between what is pro-
vided per-link and the resulting end-to-end service. By non-
trivial here we mean that the application cannot compute,
without additional knowledge, the per-link service that re-
sults in the desired end-to-end service: we will say such
services have nontrivial composition properties. For a ser-
vice completely characterized by a bandwidth reservation,
the end-to-end service is merely the minimum of the band-
widths provided on each link, and so the reservation proto-
col would merely establish the same reserved bandwidth on
each link. Hence, bandwidth has a trivial composition prop-
erty. For services characterized by delay bounds, however,
the relationship between the end-to-end delays and the per-
link service is more complicated. With predictive service,
for example, the end-to-end delay bound is the sum of the
per-link delay bounds. Establishing the appropriate set of
per-link bounds to meet a particular end-to-end delay target
requires knowledge of the number of hops in the path and
the latency along the path, and that is where the problem
arises. This problem is not restricted to the provision of de-
lay bounds. Even adaptive applications, which do not need
delay bounds in order to process the incoming packets, face
the issue of how to obtain the desired end-to-end delays.

The appendix contains a detailed discussion of what in-
formation applications need to know, both before and after
making a reservation. For our purposes it is sufficient to as-
sume that some real-time applications would prefer to know
the end-to-end service that results from a given service re-
quest, and that others would like to know the resulting end-
to-end service before selecting a service. An example of the
former might be an audio playback application that values
fidelity over reduced delay; such an application would like
to know the maximum delays experienced by its packets so
it can set its playback point. Applications with very tight
delay constraints may want to know the resulting end-to-
end delays before making their service requests in order to
choose an appropriate service level.

We now turn to how to meet these needs. To make the
presentation more precise, in this section we refer to the case
of an application caring about the end-to-end delay bound
(as opposed to other relevant parameters of the delivered
service). In practice, reservation requests might come from
some generalized resource manager on the host rather than
the application itself: for convenience we will just refer to
applications as the entities controlling the endpoint reserva-
tion process.
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3.1 Current Approaches

There are many different reservation protocol designs (see,
for example, [12, 13, 14, 18, 24, 28, 29]), and they differ in
many important aspects. At a more abstract level, how-
ever, one can say that there are only two basic approaches
to reservation establishment in the literature. The first is
a one-pass mechanism, as represented by RSVP. The sec-
ond is a two-pass mechanism, as represented by the original
Tenet design [1, 16] and by ST [13, 28]. We discuss these
approaches separately, and in each case ask to what extent
they can meet the end-to-end service needs of applications.
The sketchy descriptions we provide here merely capture the
general properties of these approaches; we do not address
any of the detailed aspects.

3.1.1 One-Pass Mechanisms

The current mechanism in RSVP delivers a reservation re-
quest sequentially to the admission control module in each
switch along the data path, thereby making reservations
along the way in a single pass. RSVP itself does not ma-
nipulate this reservation request; as far as RSVP is con-
cerned, this reservation request is an opaque sequence of
bits that RSVP deposits at each router. This reservation
request could be modified by the admission control module
at each router as it traverses the path; the essential point,
from the perspective of keeping RSVP independent of the
service model, is that RSVP itself does not make any modi-
fications. Each switch maps this reservation request into the
local service to be provided, and then makes the local ad-
mission control decision. If the reservation request is denied
at a switch, the affected downstream receivers are sent an
error message.” If the reservation request is successful at all
switches along the path, no confirmation messages are sent.

In this one-pass approach, the reservation request can-
not, in any reasonable manner, allow a receiver to specify
an end-to-end delay or jitter bound. This is because the
network cannot tell if the desired end-to-end service goals
will be met by the resulting set of reservations. If the reser-
vation request is not modified at each hop, then there is no
way to ensure that the set of per-link services installed will
meet any end-to-end service goals with nontrivial composi-
tion properties. If the reservation request is modified at each
switch, each switch could install the minimal delay service
and add their delay to a cumulative field in the reservation
request so that the last switch along the path could check
to see if the the requested delay bound was met. This, of
course, is an extremely wasteful use of network resources
and is not a viable approach.

Because the reservation request cannot reasonably spec-
ifv the desired end-to-end service, in essence the reservation
request can only meaningfully specify the per-link service
desired. For instance, the request can specifv that the re-
ceiver wants level 2 predictive service, or guaranteed service
with rate rg, at every hop (of course. the TSpec would also
be specified). The receiver. however. never knows the end-
to-end delays that result from the per-link service.

Thus. the one pass approach has the requester specify the

%Recall that RSVP reservation messages aré recerver imtiated
Therefore, error messages are sent downstream, to the receivers that
sent the rejected reservation regquest



per-link service to be reserved without knowing, either in ad-
vance or after-the-fact, the resulting end-to-end delays. This
is inappropriate for either guaranteed or predictive service;
if the receiver cannot ensure beforehand that an end-to-end
delay bound will be satisfied, nor even find out what the re-
sulting delay bound is afier-the-fact, then there is no reason
to offer delay bounds at all. Thus, the one-pass approach
is only appropriate for the controlled delay service, which
itself does not provide any quantitative characterization of
its service.

The one-pass approach does have several attractive fea-
tures. One important aspect is that it deals with multicast
very well. By using the same distribution tree (traversed in
the reverse direction) and merging reservation requests, the
RSVP protocol manages to scale roughly as well as multicast
routing does. In addition, the one-pass approach is idempo-
tent; the reservation state present at the switch is the same
as would be installed if the reservation request were resent.
This enables RSVP to use a soft-state approach based on pe-
riodically resending the reservation requests to refresh the
router state, which provides a simple and robust recovery
mechanism. Lastly, the one-pass approach allows RSVP to
be independent of the service model, in that the reserva-
tion requests are opaque blocks to the reservation protocol.
It also allows the admission control module to be indepen-
dent of RSVP, in that the system calls to admission control
are merely service requests and they could be issued by any
number of different protocols.

3.1.2 Two-Pass Mechanisms

Two-pass mechanisms, such as employed in the original Tenet
architecture [1], have very different properties. We will first
sketch this general approach as it applies to the unicast
case. The receiver!” sends a reservation message towards
the source containing the desired end-to-end delay bound.
Each switch makes a reservation with a tight delay bound on
this first pass, and the cumulative delays along the path are
recorded in the message. If, upon arriving at the source host,
the cumulative delay in the reservation message is more than
the desired end-to-end delay, then the source host issues a
reject message and the initial reservations are released. If
the cumulative delay in the reservation message is less than
than the desired end-to-end delay, then the source host is-
sues a relar message which carries information about how
much excess delay there is (e.g., the extra delay per hop,
or the total extra delay). As this return message passes
through the switches, they relaz their original reservations.
Increasing the per-hop delays as much as possible while still
meeting the end-to-end requirements enables the network to
provide the requested service efficiently.

The two-pass approach enables receivers to meaningfully
specify an end-to-end delay bound in their reservation re-
quests, Thus, it can adequately support guaranteed and
predictive service, unlike the simple one-pass approach. It
can also trivially support controlled delay service, by not
having any end-to-end delay target and having the first pass
set up a given service level in each router.

However, the two-pass approach also has several draw-

'°For this discussion, 1t does not particularly matter whether the
two-pass approach is sender-initiated or receiver-initiated in the uni-
cast case, we describe the receiver-imtiated version here
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backs. Whether or not there is actual charging for network
usage, users of the network should be aware of the “cost” of
their usage in terms of resources consumed and opportuni-
ties denied other flows. When receivers specify a given end-
to-end delay target, they do not know (either beforehand
or after-the-fact) what per-link services must be installed.
Receivers, therefore. do not know the “cost/performance”
tradeoff along their path, and must issue their service re-
quests in ignorance. If we believe that the delay targets are
somewhat flexible, then we should allow receivers to make
tradeoffs between performance and “cost”.

Another problem with this two-pass approach is that it
is not idempotent. The reserved state present at the router
is not the same as would be installed if the reservation mes-
sage were resent; the whole relaxation process would have
to be restarted. This lack of idempotency makes it harder
to adopt the soft-state approach. One could probably use a
triggered relaxation process that was restarted only when a
node detected that it was receiving a new reservation mes-
sage (as opposed to a resent version of an old one), but it
is hard to show that such an approach has no failure mode;
the beauty of RSVP’s soft-state approach is its simplicity.

Lastly, in such two-pass approaches, typically either the
reservation protocol knows about the service model and per-
forms the delay budget manipulations, or the admission con-
trol module knows that the reservation protocol is a two-pass
protocol and can distinguish between the two passes. We
think it better to have a cleaner division of labor.

A variation of the two-pass approach, which does not
have some of the problems mentioned above is what we
call the passive two-pass approach. The reservation requests
specify the per-link services to be installed, and the initial
pass is just like the original one-pass approach. The return
pass no longer performs any relaxation. Instead, it is used
merely to return to the receiver information about resulting
end-to-end service. In the passive two-pass approach, the
application specifies the per-link services and the network
then informs the application of the resulting end-to-end ser-
vice. This approach maintains the idempotent properties,
and the clean separation between service model and reser-
vation protocol, of the one-pass approach, while offering su-
perior functionality. However. in contrast to the original
two-pass approach, an application needing to achieve a spe-
cific delay target would have to iteratively search for the
appropriate per-link request.

The above discussion only considered the unicast case,
where the two-pass mechanism. both passive and otherwise,
is fairly simple. While, the passive two-pass mechanism can
be generalized easily to the multicast case, relaxation in the
multicast case is somewhat harder. In particular, it seems
impossible to achieve full relaxation when there are shared
channels. While partial relaxation is still possible, using
the two-pass-with-relaxation approach with shared channels
leads to wasteful over-reservations. Because it is somewhat
far afield from our current focus, we do not expand on this
phenomena here except to note that for architectures which
allow shared channels, it appears that only the passive two-
pass approach is viable. In this vein. it is interesting to
note that the revised Tenet approach (Suite 2) does not
implement relaxation on the second pass.!!

UIn this design 2 route server which has knowledge* of the
path characteristics, determnes the appropriate per hop services to



3.2 OPWA

We have discussed the features of the one-pass and two-
pass approaches. We now propose a third alternative. which
is a hybrid of the two previous approaches. It maintains
the one-pass reservation messages in RSVP, but augments
them with messages providing receivers with information
about available services. We call it one-pass with advertising

(OPWA).

3.2.1 Basic Mechanism

In the context of RSVP, this approach requires a new con-
trol message. which we call an ADV message. ADV mes-
sages are sent periodically from each source to all receivers.

Reservation requests are processed in a one-pass manner and
specify the desired per-link service, just as they are in the
current RSVP. The ADV messages are used to advertise (be-
forehand) the end-to-end service that would result from any
given per-link service request. When going downstream, an
AD\’ message carries with it the end-to-end delay bounds
(both jitter and latency) that would result from reserving
in various categories (see below for details). The receivers,
knowing this information, can then request the level of ser-
vice that best meets their needs. This is similar to the one-
pass approach in that the receiver specifies the per-link ser-
vice to be reserved rather than the end-to-end service. How-
ever, it is like the two-pass case in that the receiver knows
what the resulting service will be before requesting service.
Most importantly. this approach allows a receiver to evaluate
the end-to-end delays resulting from various per-link service
requests and then choose their desired level of service. This
ability to scan the menu of available end-to-end services will
allow the receiver to do a rough cost/performance tradeoff,
which is not possible in the one-pass or two-pass approaches.

Advertisements are intended to provide receivers with
information about the services offered along a path from the
source, They do not indicate whether a particular service
request would be admitted or rejected by admission control.
Since the information provided in advertisements is fairly
static. ADV messages can be refreshed at the same rate as
other RSV'P control messages.

3.2.2 Advertisements

The ADV messages contain fields relating to the end-to-end
services available along that path. RSVP merely carries the
ADV messages along but does not understand their content.
These fields are updated by the admission control module at
each hop. Each field is associated with a composition rule.
which specifies how each router composes their local quan-
tity into the quantity in the ADV message. To illustrate how
this works. consider the delay bound for predictive service.
There is a field in the ADV message for the end-to-end delay
bound of each level of predictive service. call it D,. When

mstall [17)

MRSVP currently has a message called a PATH message. which
also travels from each source to all receivers This message was ongi-
nally imtended mainly to install rhe appropriate routing state so thatr
RSVP could run on top of almost any routing protocol. but may
nat Le ncluded 1in RSVP once routing protocols supply the appro-
priate functionaliry A single message type can certainly embody the
funerionality of the currenr PATH message and the ADV message we
propose here
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the ADV message arrives at a router a. the router inserts
into this field the value D, +d, where d;' is the delav bound
of predictive service level 1 at that link.

In general. each service-specific field is associated with
local information used to update the field and a composi-
tion rule for how this information is combined with the in-
formation already present in the field: we will denote these
composition rules in brackets. There are some generic ad-
vertised quantities contained in all ADV messages that are
not associated with any specific service. For instance:

¢ Propagation delay [additive]
e Hop count [add 1]

o Bandwidth of links [minimum]

In addition. there are fields specific to the various ser-
vices. For guaranteed service, the most relevant advertise-
ments are:

¢ Error term A [additive]
e Error term B [additive]

These two fields, combined with the propagation delays
above, enable a receiver to compute the end-to-end delays
and jitter for their flow: this computation also involves the
reserved rate r, and the token bucket parameters (r,b),
which the receiver already knows. (See Section 2 for def-
initions of A and B and for details of this computation).

For predictive service, the delay bounds are the obvious
quantity to advertise. However. some applications would
probably like to know the current delays as well. These
current delayvs would most likely be some measure of the
maximal delay recently seen, rather than a strict average of
the delays. Thus, for each level ¢ of predictive service the
following quantities are advertised:

e Delay bound D, [additive]

¢ Current delay C7 [additive]

For each level of controlled delay service. the only rele-
vant advertisement is:

e Current delay C'°¢ [additive]

These quantities enable applications to determine what
end-to-end service will result from a given service request.
In the appendix we discuss various categories of applications
and their likely use of this information. To make the pre-
sentation more concrete, we have described these advertise-
ments in the context of a specific service model. The general
approach applies to any service whose end-to-end character-
istics can be computed on a sequential per-hop basis where
the cumulative quantity in the AD\" message is composed
sequentially with the local per-hop quantity. We are not
aware of any proposed service which does not fall into this
category. Moreover. if the composition rule is associative
and commutative, then the order mm which the composition
occurs 1~ irrelevant.’’

1$This 1s important 1f other mechamsms for distributing the adver-
tising contents are used such as routing rables



We are proposing advertising as a general paradigm. We
described its use to advertise quantities relevant to the end-
to-end quality of service. There are other measures of qual-
ity of service besides what we discussed here, such as mea-
sures of loss rates and convolutions of parametrized delay
distributions. The advertising paradigm can be applied to
other kinds of information as well. Routers can advertise
their mean-time-between-failure (MTBF) and so applica-
tions can evaluate the likelihood of a failure along the path.
In addition, advertising can be used to advertise the costs
associated with link usage. This will be particularly useful
in allowing applications to evaluate the cost/performance
tradeoffs.

One can modify the semantics of reservation requests,
while still retaining the OPWA model, to make better use
of the advertising information. In the next two subsections
we discuss two such modifications.

3.3 Achieving a Finer Delay Granularity

Because there are only three (or so) levels of predictive ser-
vice, the delay targets at individual routers are likely to be
widely separated. Thus. along a reasonably long path the
differences in the end-to-end delays of the various predictive
levels might be rather large (the difference along the path
is the sum of the per-hop differences).!* In this section we
describe a way to enable users to request intermediate de-
lays. Our point here is not to advocate this feature as much
as illustrate how the information from ADV messages gives
one the ability to implement new features by making the
reservation request syntax more complex.

The reservation request for predictive service, in this
case. will consist of a TSpec, a predictive service level, and a
scalar E. E represents the extra delay that can be absorbed
by the network along the path: i.e., if the end-to-end delay
in the requested predictive service class is D, the applica-
tion is indicating that it is willing to tolerate end-to-end
delays up to D' + F. When the request arrives at a router
the reservation can be made for a lower class (i.e., higher
delay ) of predictive service than that requested if the extra
delay is less than E; if the reservation is made for the lower
class. the E field is decremented by the difference.'® The
greedy algorithm (where you use up as much of E as pos-
sible at each hop) leads to making low quality reservations
near the receiver and keeping high quality reservations closer
to the source. When sharing among different receivers. this
is exactly the desired behavior of sharing the high quality
“expensive” reservations.

3.4 Shared Channels

Consider a shared channel reservation for an audio telecon-
ference. There is a single reserved “pipe” used by all sources,
going to all receivers. It would be natural that each receiver
would want a reservation where the end-to-end delay to each
sender is roughly the same. This cannot be done with reser-
vation requests that merely specify a single level of service

MNote that guaranteed service does not have this problem since
the recerver can continuously tune the resulting delays by varying r,

'*The mapping of request to service at the router must be inde-
pendent of the other reservations present, otherwise one ends up with
pathological cases where when another flow leaves your reservation
request (which had been granted) 1s suddenly denied.
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for the reverse distribution tree.'® Specifying a single level
of service on all links would lead to unnecessarily stringent
reservations on some links. Relaxing the service on those
links will provide more efficient service while still meeting
the application’s requirements. To achieve this goal, the
per-hop service installed on a link must depend on exactly
which sources are upsiream. We could define a reservation
request of the form:

If source S1 is upstream, reserve at least Ri
If source S2 is upstream, reserve at least R2

where R1, B2, R3 are per-hop service requests with a nat-
ural ordering among them (e.g., they are all levels of predic-
tive service). Thus, at every hop, the router can determine
the necessary service because it knows, from multicast rout-
ing, the set of upstream sources. The receiver can compute
the appropriate values for the Ri from the advertising infor-
mation.

This clearly does not scale because of the need to list all
the sources. The RESV messages sent over a link are as big
as the number of sources upstream (as the RESV messages
go upstream. entries that are no longer needed can be dis-
carded). However, recent discussions in the RSVP design
community suggest that RSVP itself, in order to support
shared channels, might require RESV messages to include
such a list of sources, at least when running on top of current
multicast routing protocols [2].

3.5

Interactions with Type-of-Service Routing

There are several proposals for routing algorithms that can
provide paths tailored for an application’s service require-
ments; see [4, 9. 20] for a few representative references.
These protocols offer an application a choice of path, and
OPWA offers an application a choice of services along a path.
How does OPWA interact with such routing algorithms?

These routing algorithms choose routes based on a Quality-
of-Route (QoR) request. The basic assumption we make is
that QoR is measured on a much coarser granularity than
the differences in service provided by the different service
classes along a given route. While such routing algorithms
will likely supply routes that minimize latency. or of max-
imize bandwidth, we do not think Type-of-Service routing
will ever support a request of the form: “give me a route
with 100 millisecond delay in level 2 predictive”. Control-
ling the delay at this fine level of granularity is the job of
packet scheduling, and should be done through the reserva-
tion requests.

To be more specific, when joining a multicast group a re-
ceiver might include, in its join message, an indication of its
desired QoR., such as delay sensitivity and likely bandwidth
requirements (order of magnitude). Routing finds a route,
and then ADV messages start flowing down the path. The
receiver can then evaluate the offered services and decide if
they are sufficient. If not. the receiver can ask routing for

'*This 1s a reverse tree because the tree consists of the paths from
all sources down to this single receiver



an alternate route. and that alternate route request could
specifv a different QoR.

Thus, Type-of-Service routing and OPWA are comple-
mentary because thev operate at rather different granulari-
ties of service. Of course, there are many other interesting
interactions between routing and reservation protocols: see
[10] for a more extensive discussion.

3.6 Discussion

The philosophy of OPWA is that receivers are given enough
information so that they know the end-to-end service that
would result from any per-link service request. This allows
applications to make tradeoffs between “cost™ and perfor-
mance. MNoreover, because the reservation establishment
process itself remains one-pass, the various mechanisms are
quite simple and robust.

This philosophy can be implemented in many ways. The
OPWA mechanism we presented here has two basic aspects.
The first. and more fundamental, aspect of this mechanism
is that routers make available through some general inter-
face information about the services they provide. We refer
to this as advertising. The second aspect of the mechanism
is that ADV messages collect these advertisements along the
path and deliver them to receivers. There are other ways to
accomplish this same goal: for instance, static advertised pa-
rameters could be made available through routing.’” In par-
ticular. some architectural proposals for the Internet, such
as Nimrod [4]. provide link-state maps to each end host.
Certainly in such an architecture, the ADV messages we
propose here would be largely superfluous (they would still
be needed to carry any advertisements that varied on time
scales shorter than the frequency of routing updates). How-
ever, routing does not provide such information now, nor
do we expect it to do so before the real-time extensions
to the service model are adopted. Thus, we must propose
a solution that does not rely on routing to provide these
quantities.'®

OPWA was presented here in the context of a specific
service model. OPWA is in no way tied to the details of this
service model. and OPWA should not be confused with the
particular service model we used as an example. If. for in-
stance. the delay bounded services used other composition
rules to calculate their end-to-end delay, OPWA could be
used with them as well (as long as the end-to-end delay can
be computed by a sequential computation along the path).
OPWA is not needed if all services have trivial composi-
tion rules. and so the only necessary property of the service
model, as far as our discussion here is concerned, is that
there be some services with nontrivial composition rules,
and that these composition rules allow one to compute the
end-to-end service from a sequential pass along the path.

"The Tenet architecture, in Suite 2, has adopted a very similar
approach m that 1ts roure servers have complete path information
However it 1s The route servers which do the translation from desired
end-to-end service to required per-link service, whereas in OPWA the
receiver does the translation

81t 1s debatable whether routing should ever provide these quan-
tities. but we do not pursue rhat here It suffices to observe that
routing will not provide Those quanfities in the near future
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4 Heterogeneity

If one were designing and deploving a new network from
scratch, and did not expect its service model to evolve, then
it might be reasonable to assume that all routers and sub-
nets supported every service in the service model. When
designing for the existing Internet. which is large and ad-
ministratively decentralized, and where one expects future
extensions to the service model. such homogeneity is impos-
sible to achieve. Whenever new services are added to the
service model, deplovment of these new services in network
routers will take time. and during the transitional period
some routers will support the new services while others will
not. Upgrading or replacing existing infrastructure to sup-
port new services will be a gradual process. Moreover, im-
plementing the algorithms required to offer real-time service
will be difficult or impossible on certain network technolo-
gies, such as ethernet, so real-time services may never be
deployed on such subnets. Therefore, heterogeneity is in-
evitable in the Internet, and we must incorporate its pres-
ence in our design.'® New services can be standardized for
the Internet, but their deployment can not be mandated.
Whether or not a service is deployved remains under the
control of individual network service providers and router
vendors. Different service providers may choose to deploy
a different subset of newly defined services. Thus, different
real-time services will be available at different routers in the
Internet, and some routers may not support any real-time
service at all.

The resulting heterogeneity implies that the set of ser-
vices available end-to-end will depend on the particular path,
and routers along a given path may not all support the same
services. Without mechanisms to address this heterogene-
ity, routers not supporting a service requested by an ap-
plication must deny the service request. This enables ap-
plications to use only those services offered by all routers
along a path. This restriction to the “best common ser-
vice” significantly limits the services available to applica-
tions. For example. applications running on any host at-
tached to an ethernet would be unable to secure anything
other than best-effort service at all routers along a path.
Moreover. such a design would severely inhibit the incre-
mental deplovment of new services and the use of partially
deploved ones. This default “best common service” behav-
ior would therefore greatly slow. and perhaps even prevent,
the evolution of the Internet towards an integrated services
architecture. Thus. mechanisms that address the problem
of heterogeneity are a necessary component of an integrated
services architecture.

4.1 Replacement Services

The approach we take to heterogeneity is based on the prin-
ciple of replacement services. When a particular service is
not offered end-to-end. it can be replaced at one or more
routers by an alternate service. The fundamental principles
underlying this approach are that (1) the service expected

“Indeed. the Integrated Services Working Group of the IETF 1s
<urrently vperating under the assumprion thar while the IETF will
define and standardize a service model hike the one described 1n Sec-
tion 2, 1t cannot mandate the universal deployment of the constituent
services  See the archives of the Integrated Services Working Group,
available for anenymous ftp on frpsi edu for a further discussion of
this subject In parnicuiar, see [27)



by an application should be modeled on the ideal of end-
to-end connectivity of the requested service (i.e., the service
that would be provided if all routers along the path offered
the requested service). and (2) the network is responsible
for informing the application the extent to which this is a
realistic approximation. This insulates applications from
having to understand, or even know about, the detailed na-
ture of heterogeneity or how the different services along the
path compose. This insulation is critical, we feel, for en-
abling applications to function relatively undisturbed while
the network infrastructure evolves.

The use of replacement services can be viable for two
reasons.’’ First, local conditions may enable a router to
substitute one service for another without a perceptible dif-
ference in the quality of service delivered to the applica-
tion. For example, a lightly loaded ethernet that offers only
best-effort service may have low enough delays that it pro-
vides service as good as is required by predictive service.
Second, applications vary in the degree of assurance they
require about the service they receive. An adaptive appli-
cation that is tolerant of packet loss, may be satisfied with
best-effort service at those routers where real-time service is
not available.

e characterize replacement services as reliable or unre-
liable. A reliable replacement is one that meets the service
specifications of the original service a large majority of the
time. We do not express the degree of compliance precisely,
but for purposes of the present discussion we assume reli-
able replacements achieve this conformance well over 95%
of the time.?’ While this lack of specification may seem
vague. we assume that over time operational guidelines and
informal standards of acceptable practice will emerge. The
key point behind the notion of reliable replacements is an
implicit statement that use of the replacement will result in
service that is usually not perceptibly different from the re-
quested service. Examples of reliable replacements could be
the use of predictive service for guaranteed service, or the
use of best effort service on an underutilized ethernet as a
replacement for controlled delay service.??

Unreliable replacements are a weaker form of replace-
ment services. carrying no assurance about the quality of

*®Routers are always free to substitute a “better” service, in the
sense of the ordering used for merging (which we discussed 1n Section
2 31 For instance. a router can always use a higher lever of pre-
dictive service rhan the one requested, and in fact merging depends
on such subsritutions Less trivially, if predictive 15 always consid-
ered better than controlled delay in the ordering relationship, then
a router can always substitute predictive service for controlled de-
lay service We do not use the term replacements to refer to such
“ordered substitutions”

*1There 15 a subtle distinction between the notion of rehability 1n
predicrive service and the reliabihity of a “relhiable replacement " For a
router 1o offer predictive service, 1t must be able to meet the service
requirements mdependent of where 1t 1s deployed and the ambient
load Adherence to the service requirements could be evaluated with
conformance testing, in which a router 1s subjected to a wide varety
of loads and 1ts ability to deliver the advertised service 1s measured
In contrast the reliabihty of a rehiable replacement need only ap-
ply to the particular context where assumptions can be made about
the nature of the load Thus, an overprovisioned router with FIFO
scheduling. and no admission control, does not support predictive
service, bur can offer a rehable replacement for predictive service

¥ The specific examples given of replacement services, and their
classification as reliable or unrehable. should not be taken as a defini-
five statemenr about the suitability of these services to act as re-
placements This ultimately depends on the specific services defined
and on decisions taken by routers, which can be impacted by local
conditions
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the resulting service. That is, service offered as an unreli-
able replacement can be arbitrarily bad. For example, con-
trolled delay service or best-effort service on an often con-
gested network could be considered unreliable replacements
for guaranteed service. Some applications may be willing to
use unreliable replacements when no alternative exists, since
poor service will in some cases be better than no service at
all.

The use of replacements (reliable and unreliable) leaves
it to the router to decide which service best fits the origi-
nal request, and whether or not this substitute constitutes
a reliable replacement. This allows overprovisioning of less
stringent services to serve as replacements for more demand-
ing ones. A network built around overprovisioned best-effort
service cannot claim to support guaranteed or predictive ser-
vice. but it could claim to provide reliable replacements for
them. In some cases users will care about the difference
in perceived quality between guaranteed or predictive ser-
vice and its reliable replacement and will not use reliable
replacements, but for the majority of cases the difference in
perceived quality will not matter.?

4.2 Advertising Service Availability

In our approach to dealing with heterogeneity of service of-
ferings, routers make known the availability of services and
their replacements via the ADV messages introduced in Sec-
tion 3. While routers mayv decide whether or not to offer
particular services. they must advertise the availability (or
Jack thereof) of everv service. For each service, the router
advertises one of the following four conditions:

1. Offered.
2. Reliable replacement available.
3. No reliable replacement available.

4. Not known.

The first condition indicates the router ofiers the service
as defined in the service model. The second indicates the
router does not offer the service, but instead offers a reli-
able replacement. The third indicates that the router offers
neither the actual service nor a reliable replacement. Every
router implicitly offers an unreliable replacement, as best-
effort service (which all routers must offer) constitutes an
unreliable replacement for all services. Finally. “not known”
means that in addition to not offering the specified service,
the router does not even know what the service is. For in-
stance, a newly defined service will not be known to most
deployed routers. In contrast. known but not offered ser-
vices (the second and third advertisements) are those that
the router knows about but chooses not to offer.

For each service. the advertisements keep a count of how
many routers fall into each category (offered. reliable re-
placement available. etc.). Thus. a setup protocol like RSVP

?*There 1s a vigorous debate in the Internet community about
whether the overprovisioning of best-effort links 15 a reasonable real-
time architecture Our proposal would allow such overprovisioned
best-effort networks to compete with networks supporting real-time
services The community can thus experiment with different ways of
meeting application needs without changing the service model We
think this 1s crucial 1 allowing us to learn as we build the next gen-
eration Interner



can use advertising to transmit to the application the degree
of service availability end-to-end. Replacements can only
be used if applications know about their use; that is, the
only reasonable semantics for a reservation request, in the
absence of other information (i.e., that providing by adver-
tising). is that the application should assume thev received
the service they asked for unless they are sent a notification
of failure. ADV messages enable us to provide notification
of replacements to applications beforehand. An application
that would not be satisfied with the resulting service has
the option to not request the service. For example. an ap-
plication that requires a fairly reliable assurance about the
service it receives might not request service if one or more
routers advertises no reliable replacement. Hence, adver-
tising permits applications to avoid end-to-end service that
does not meet their needs.” An enhanced routing architecture
might be employed to find alternate routes which do meet
the end-to-end service requirements in such a circumstance.

At each hop. the router attempts to update the adver-
tisement fields with meaningful values. When a replacement
service is offered (reliable or otherwise), the router fills in
the advertisement in the normal manner. For a reliable re-
placement. the advertised values should accurately reflect
the service provided by the replacement service. A router
can also attempt to fill in an advertised value for an un-
reliable replacement since it understands something about
the service. For example, a router that uses an unreliable
replacement and is consequently unable to guarantee packet
delivery might still be able to advertise an estimated delay
bound based on delays experienced at the router. However,
advertisements for unreliable services will often be of little
value. Finallv. routers cannot advertise anything meaningful
for services that are not known since they cannot understand
the rules for updating the advertised values. For example,
a router cannot know whether the advertised value for an
unknown service reflects the delay experienced end-to-end
or some other value. Applications receiving advertisements
will know how much confidence to place in the advertised
values based on the availability of the services end-to-end.

4.3 Router Substitutions

Requests for services not offered by a router can be divided
into two categories: services known but not offered by the
router and services that are neither offered nor known. In
the former case the router substitutes its best replacement
service for the original request. This means a reliable re-
placement is substituted if one is offered. and an unreliable
replacement is substituted if no reliable replacement is of-
fered. The service request is then processed as if it were a
request for the replacement service. If the replacement ser-
vice requires admission control. the router uses the admis-
sion control algorithm to determine the admissibility of the
new request. The service request is rejected if the admission
control test fails: substitutions of additional replacement ser-
vices are not permitted because the resulting service would
not conform to the previously advertised values.®* If the ser-

*!We do not address the issue of allowing substitutions for admis-
ston control failures here as 1t 15 not specifically a function of hetero-
genelry 1 service avallability  Admission control failures will occur
even when all routers offer the same services Hence. the question
must be considered in the context of a wider discussion of rhe inte-
grared services architecture However. we do think this 1s an impor-
tant 1ssue especially when admission control faillures are a result of
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vice request is admitted. or if the replacement service does
not require admission control. the original service request is
forwarded to the next router along the path.

When a router receives a service request for an unknown
service, it cannot even judge the suitabilitv of services as
replacements. The best it can do is to substitute the ubiqui-
tously available best-effort service. Since the router cannot
update the ADV fields for unknown services. any advertis-
ing information pertaining to this service will be of little use
to the application.

We show in some simple examples how advertising and
service replacements can be used to deal with heterogeneity.
We expect the two scenarios we describe here to be represen-
tative of situations likely to be encountered in the future In-
ternet. Consider first a situation in which a single real-time
service (e.g. guaranteed) is offered at some routers along a
path, and other routers offer only best-effort service. These
routers will substitute best-effort service for the request for
guaranteed service. Thus, the use of service replacements al-
lows an application to obtain the real-time service where it
is offered. Applications are not confined to using a common
service offered end-to-end. Instead. the end-to-end service
is built out of heterogeneous services offered at the routers.

Next, we consider the case in which all routers offer real-
time service, but they do not all offer the same real-time
service. For example. some routers may offer guaranteed
service, while others offer predictive (but neither service is
offered at all routers). Without a mechanism to allow for the
composition of end-to-end service out of different services,
applications would only be able to use best-effort service
(which is offered evervwhere). In this example. if routers
use the real-time service they offer as a replacement for the
service they do not offer. applications can acquire a real-
time service at each router. For example, an application
may request guaranteed service, and routers that offer only
predictive can substitute predictive. Using these replace-
ments. applications receive better service than if they were
confined to using a single service.

The previous example depends on routers using the real-
time services they offer as replacements for ones they do not
offer. While the intelligent use of replacements at routers
cannot be mandated, we believe that service providers will
have strong incentives to use the best replacement strategies
they can. Offering replacement services will make their ser-
vices more usable and will therefore increase the utilization
of their networks. Note that in the above examples, advertis-
ing provides applications with knowledge about end-to-end
service offerings. Therefore. an application that requires a
particular service at every router has the option not to issue
a service request when such a request would result in the
substitution of replacements for the requested service.

4.4 Other Approaches

To put our solution in context, it is worth mentioning alter-
native approaches to solving this problem which we consid-
ered. Another way that heterogeneity could be addressed
is to allow applications to control router actions when the
desired service is not offered. Abstractly. a reservation re-
quest could contain a reservation scripl that specifies cer-

merging problems (1 e a predicrive request and a guaranteed request
not being able to merge)



tain router actions if the requested service is not available.
For example, an application could express a preference for
the router not to use any replacements, to use only reliable
replacements. or to use any replacement service. This ap-
proach obviates the need for the availability and reliability
of replacement services to be included in advertising mes-
sages. However, we see little benefit to this tradeoff, and
the use of reservation scripts introduces a very serious merg-
ing problem. Specifically, if applications can express their
desires through individualized reservation scripts, the pres-
ence of multicast flows implies that two receivers of the same
flow may specify conflicting scripts. One receiver may want
any available replacement to be used, while another may
not want service consisting of replacement services. What
action should a router that must merge these conflicting
scripts take? The correct behavior is to give applications
only those replacement services they are willing to accept,
while not denyving them access to acceptable replacements.
Achieving this would significantly increase the complexity
of a reservation protocol.

One can extend the idea of reservation scripts to have
individual applications indicate specifically which services
should be used as replacements. This idea continues to have
the same merging problem described above. In addition,
and perhaps more importantly, we believe it places the re-
sponsibility for replacements in the wrong hands. Since the
quality of service provided by best-effort and controlled de-
lay services will likely depend a great deal on the ambient
load conditions. the local router is much better equipped to
make the decision about whether or not a given service can
function as a reasonable replacement (if the router knows
about the service). There may be a few exceptional cases
where a particular application requirement would suggest a
different substitution, but we are not convinced that such
occurrences outweigh the considerable additional complex-
ity such specific reservation scripts would introduce.

A more limited but similar alternative we considered is to
include an explicit list of services in the reservation request.
Upon receiving a reservation request, a router would scan
the list of requested services until finding the first one that it
knows about. It would then process the request as a request
for this service. If this service is known, but not offered. the
router would substitute a replacement; it does not continue
to scan the list of services for one it offers. Thus, receiver
specified replacement services are used only when the router
does not know about the receiver’s first choice service: in all
other cases. the decision about replacement services is left to
the router. Since it is specifically in situations where services
are not known that routers lack sufficient information to
make intelligent decisions abont replacement services, this
limited control exerted by the receiver might be useful.

We conclude this section with a statement about the gen-
erality of our proposed approach. We believe that hetero-
geneity will be an issne. regardless of what service model is
defined for real-time services. Even if only a single tvpe of
real-time service were to be specified, this service will not be
universally deploved. Some routers will offer it and others
will not. However. we expect that the requirements of real-
time applications differ enough to warrant multiple types of
real-time service. each geared towards supporting different
classes of applications. Multiple classes of service. none of
which will be offered everywhere. only serves to compound
the problem of heterogeneity.
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5 Discussion

In this paper, we considered two basic issues in reservation
establishment: allowing applications to control the end-to-
end service their flows receive. and coping constructively
with heterogeneity in service offerings. Any architecture
that does not address these two issues is likely to fail. The
one-pass-with-advertising approach advocated here enables
applications to peruse the menu of possible end-to-end ser-
vices before submitting their service requests. In addition
to giving applications the information they need about their
service requests, one-pass-with-advertising does not violate
the principle of idempotency needed to implement the soft-
state approach. The use of replacement services. in combina-
tion with the advertisement of service availability. provides
the semblance of homogeneity in a heterogeneous environ-
ment in that applications do not have to deal directly and
explicitly with the variety of router capabilities along the
path.

We have provided a basic architectural description of
these proposals. While we have not incloded the details
required for an actual protocol specification, the basic mech-
anisms are straightforward. Adding advertising messages to
a reservation protocol such as RSVP should not be difficult,
and the mechanisms for heterogeneity should require fairly
simple changes to the admission control modules of a router
offering real-time services. Beyond that, the crucial ques-
tions about this design revolve around the nature of future
applications and the degree of heterogeneity in future net-
works. For example, do applications really need to know
about the resulting service beforehand? Are applications
willing to tolerate an end-to-end path consisting of hetero-
geneous per-link services? Is the ability for an application
to choose from an advertised set of services and correspond-
ing performance values useful? We believe the answer to
these quesiions is yes, but only through implementation of
our proposed enhancements and experimentation with ac-
tual applications that utilize these added features will these
questions be definitively resolved.

In this paper. we addressed what we considered are the
two most important open issues in the design of a reserva-
tion protocol. However. other interesting questions remain.
In Section 4. we alluded to the possibility of service substi-
tution on admission control failures. This is one issue that
arises in the context of a larger question. Namely, can an
application that is willing to accept any of several services
offered by the network make a service request reflecting this
flexibility? From the application viewpoint. a reservation
protocol and service model that can support this function-
ality is desirable. Whether or not this functionality is pos-
sible without adding an unacceptable degree of complexity
remains 1o be seen.
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A Application Requirements

In this appendix we present a slightly more general formula-
tion of the issue addressed in Section 3. That is. rather than
asking merely how to achieve end-to-end delay bounds. we
ask: what information do applications need both before and
after making reservations” To address this question. we use
the following taxonomy of applications. We do not claim



that this taxonomy is all-encompassing, nor that its distinc-
tions are sharp, nor that all categories we list are nonempty:
we merely find the taxonomy useful in guiding the following
discussion.

We will assume that the bulk of real-time applications
are playback applications.®® It is useful to distinguish be-
tween four broad categories of plavback applications. This
taxonomy is a generalization of that presented in [6, 25]. In-
tolerant plavback applications cannot accept any violations
of the delay bound: these applications must request guar-
anteed service and set their playback point to the maximal
delay specified by the delay bound. Tolerant applications,
on the other hand, can tolerate occasional violations of de-
lay bounds. Some tolerant applications do not adapt to
the actual delays of their packet and, like intolerant appli-
cations, set their playback point to the delay bound; this
lack of adaptation need not be because of the inability of
the application to adapt, but rather because the applica-
tion cares more about fidelity than about reduced delay.
For example, when listening to a speech, or a concert, the
delays are typically less important than fidelity. These tol-
erant but not-adapting applications would presumably re-
guest predictive service. However, many tolerant applica-
tions will adapt to the actual received delays, and these
applications need not set their playback point to the given
delay bound. We call these tolerant delay-adaptive applica-
tions. and they would presumably request either predictive
or controlled delay service. For the previous three applica-
tion classes we have implicitly assumed that they request a
given fixed level of service, and continue to use that level
of service for the duration of the flow. Tolerant service-
adaptive applications not only adapt to current delays by
changing their playvback point. but they also change their
service request to the appropriate level depending on the
received delays. This implies a greater degree of tolerance
than is needed for delay-adaptation, and the appropriate
service class is either predictive or, more likely. controlled
delay service.

Of course. another distinction between applications, quite
orthogonal to the ones above, is between interactive and
noninteractive applications. Interactive applications such
as a teleconference require low end-to-end delays, whereas
noninteractive applications such as a broadcast movie typi-
cally do not. Adapting to the delivered delays, in order to
take advantage of the fact that the delivered delays are typ-
icallv much smaller than the delay bounds, is really only an
advantage for interactive applications. Noninteractive ap-
plications would only be adaptive out of necessity; that is, if
they knew the delay bound of their incoming packets, they
would be just as happy to set the playback point at this
bound.?*

The classes of applications described above differ not
only in the services they might request, but in the infor-
mation they need during the reservation process. We now
brieflv address two questions: (1) what information does an
application need before making a reservation and (2) what
information does an application need after making a reser-
vation”

¥ Certamly there are some real-time applications which are not
playback applications, but the discussion that follows applies to them
as well

““We are assunung, for convenience, that the buffer requirements
are not much of anissue If they are. then noninteractive applications
might become adaptive in order to decrease their buffer consumption
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What information does an application need before mak-
ing a reservation? Interactive applications typically have
some delay requirements that can be expressed by a delay
target. For the various application classes. this target de-
lay may need to be a guaranteed delay bound (intolerant
nonadaptive). a predictive delay bound (tolerant but-not-
adapting), or an estimate of the likely delays (tolerant adap-
tive). Only service-adaptive applications need not know the
target delays beforehand, becanse they are the only ones
prepared to switch between service levels. Note, however,
that not knowing anything about the likely delays before-
hand means that service-adaptive applications are risking
unknown and perhaps substantially worse delays whenever
they lower their requested service level. 1t would be helpful,
though perhaps not necessary, for even these applications
to know something about the delivered delays in advance.
Thus, before requesting service. most interactive real-time
applications would like to know, at least approximately. the
likely delays and/or jitters (either experienced or bounds)
that would result from a given reservation request.

What information does an application need after making
a reservation? Applications which are not adapting to the
delivered delays (either out of design or out of choice) need
to know the resulting end-to-end delay bounds in order to
safely set the offset delay. Adaptive applications do not need
to know the resulting end-to-end delay bounds. although
knowledge of a delay bound might help in the adaptation
process, and in setting aside buffers.

Thus, the information provided by the traditional one-
pass approach is inadeguate unless all applications are tol-
erant and service-adaptive. Even then, one-pass is sufficient
only if these applications are willing to sample services with-
out any pre-knowledge of the likely resulting service.

We make this point because it is often claimed that adap-
tive applications make it unnecessary to provide information
about the service being provided. It is true that adaptive
applications do not need know the delay bounds to use the
service; they can set their plavback point themselves. But
unless applications are service-adaptive as well, and can tol-
erate periods of substantially longer delays, then interac-
tive applications need this information to choose the service
level. The information relevant to this choice is probably
not the delay bound. o1 at least not only the delay bound.
but there is a need for some knowledge beforehand. This is
why we mentioned advertising currently-experienced-delay,
and doubtless other such quantities will be proposed.

The widespread use of nv, vat. and other similar tools
on the Internet has given us some experience with delay-
adaptive applications. However, we have little experience
with service-adaptive applications. We think it somewhat
premature to base an architecture on the hope that service-
adaptive applications will become dominant, and thus we
think OPWA, or some equivalent approach, is a necessary
component to the future Internet.



