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Abstract

This paper presents the design and implementation of Application-Aware
Anonymity (A3), an extensible platform for rapidly prototyping and evaluating
anonymity protocols on the Internet. A3 supports the development of highly tunable
anonymous protocols that enable applications to tailor their anonymity properties and
performance characteristics according to specific communication requirements.

To support flexible path construction, A3 uses a declarative language to compactly
specify path selection and instantiation policies. We demonstrate that our declar-
ative language is sufficiently expressive to encode novel multi-metric performance
constraints as well as existing relay selection algorithms employed by Tor and other
anonymity systems, using only a few lines of concise code. We experimentally evalu-
ate A3 using a combination of trace-driven simulations and a deployment on PlanetLab,
as well as a case-study of A3-enabled voice-over-IP communication. Our experimental
results demonstrate that A3 can flexibly and efficiently support a wide range of path
selection and instantiation strategies at low performance overhead.
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1. Introduction

In the past two decades, there has been intense research [5, 12, 13, 16, 38, 52,
53, 62, 67] in designing systems that enable parties to communicate anonymously
in the presence of eavesdroppers. Typically, these systems achieve anonymity by
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sending a message through a path of relays before delivering it to its final destina-
tion. Broadly speaking, recent innovations have improved relay selection – choosing
a path of relays to provide high anonymity and good performance – and path instan-
tiation – establishing necessary state at each relay to enable anonymous communica-
tion [1, 11, 39, 58, 63].

Despite the proliferation of proposed techniques, we argue that no one-size-fits-all
anonymity system exists. The appropriate relay selection and path instantiation strate-
gies can vary according to application requirements, performance characteristics, and
additional constraints imposed by the underlying network. For example, in the con-
text of relay selection, an anonymous video conferencing system may be willing to
achieve weaker anonymity in exchange for a path that meets its high-bandwidth, low-
latency performance demands. In contrast, an anonymous email system may require
very strong anonymity guarantees while imposing no constraints on bandwidth or la-
tency.

Similarly, several path instantiation approaches exist. Onion Routing [67] and Tor’s
telescoping scheme [12] build paths by recursively encrypting and shipping key ma-
terial to their constituent nodes. The former constructs anonymous paths that have
constant length over their lifetime, while the latter adds the ability to extend existing
anonymous paths. On the other hand, the Crowds [52] approach relies on the network
to make routing decisions on behalf of the source. Crowds is best suited for an environ-
ment where source routing is not available and intermediate relay nodes can be trusted
with the identity of the receiver.

This paper presents the design and implementation of Application-Aware
Anonymity (A3): an anonymity platform that enables developers to rapidly prototype
and evaluate anonymity protocols. The high level goal of A3 is to enable researchers
to develop and study strategies that intelligently trade off between performance and
anonymity; once understood, these strategies can then be applied to deployed anonymity
services. A3 aims to support a wide range of anonymity-based networked services with
different application-specific constraints. Our target users are primarily researchers of
anonymity systems, who can leverage A3 in a policy-driven fashion by specifying path
instantiation and relay selection techniques that meet their applications’ performance
and anonymity requirements.

Importantly, A3 is not intended to replace existing anonymity systems such as
Tor. Rather, A3 provides a language and platform for quickly formulating and test-
ing anonymity protocols in a controllable and methodical manner.

Motivation. Anonymity protocols are often complex, and even small changes in relay
selection and path instantiation may significantly impact performance and anonymity [1,
58, 63]. There is a critical need to understand the effects of anonymity protocols be-
fore they are deployed on a live network. Although specialized simulators [21, 39, 44]
and emulators [3, 20] exist, they are often closely and inseparably tied to a particular
approach (e.g., onion routing) and rely on hard-coded relay selection and path instan-
tiation policies that are difficult to customize. Anonymity researchers and protocol
designers currently lack a flexible platform for quickly prototyping, deploying, and
evaluating novel and diverse algorithms. A3 provides (1) a simulation environment,
(2) an implementation framework, and (3) a language for specifying two core aspects
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of anonymity system design: how relays are chosen and how paths are constructed.
A3 allows developers to quickly test their protocols under either simulation or deploy-
ment, before undertaking the time-consuming task of modifying existing systems or
constructing new software.

Contributions. We make the following contributions in this paper:

• Declarative relay selection and path instantiation: We propose the use of
declarative networking [27, 29] techniques in A3 as a policy engine for speci-
fying and executing relay selection and path instantiation policies. Declarative
networking provides a high-level logic-based framework that can efficiently exe-
cute a high-level protocol specification using orders of magnitude less code than
an imperative implementation. Our proposed A3Log declarative language extends
previous declarative networking languages with constructs that are added specif-
ically to enable the specification of anonymity systems. For example, we have
integrated the ability to specify user-defined cryptographic primitives for secure
communication. We have also adapted recently proposed extensions for declara-
tive network composition [35] to enable us to develop reusable components that
are ideal for specifying and customizing anonymous routing. We demonstrate
how these extensions enable the concise expression of relay selection and path
instantiation algorithms. By providing a flexible framework for realizing both re-
lay selection and path instantiation policies, A3 enables the rapid development,
deployment, and testing of both existing and novel anonymity protocols.

• Extensible anonymity via flexible relay selection. A3 is sufficiently exten-
sible to support both traditional node-based as well as recently proposed link-
based [57, 58] relay selection strategies. Node-based strategies select relays with
desirable node properties (usually bandwidth), whereas link-based strategies bias
relay selection in favor of link characteristics such as latency, AS hop count, or
jitter. We demonstrate that both link- and node-based relay selection strategies,
including those used by Tor and other systems, can be concisely represented in
a few lines of A3Log code. Moreover, one can combine node and link-based
metrics to implement hybrid relay selection policies. In many instances, we can
quantify the selectivity of the tested relay selection strategy and provide the de-
veloper with feedback as to the strategy’s anonymity properties.

• Implementation and experimentation. We describe the design and implemen-
tation of the A3 platform, developed using the RapidNet declarative network-
ing engine [30, 40]. We conduct extensive trace-driven network simulations in
the ns-3 network simulator [43] to demonstrate that A3 flexibly supports a wide
range of path selection and instantiation strategies at low performance overhead.
We additionally describe a PlanetLab deployment of A3 and show how our plat-
form may be easily and mostly transparently employed to study the effects of
relay selection and path instantiation policies when anonymizing legacy applica-
tions. In particular, we present a case study that examines how A3 may be used
to evaluate the benefits of real-time constraint-based relay selection strategies
for anonymizing voice-over-IP (VoIP) communication. Finally, we introduce the
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RapTor system that integrates A3’s relay selection engine with Tor, permitting
customizable anonymous paths on the live Tor network.

Code release. A3 is well-suited for security and anonymity researchers, allowing one
to quickly develop and deploy new relay selection and path instantiation policies and
techniques. The goal of our work is to provide an extensible platform for anonymity
researchers, and to this end, we have released the source-code of our A3 system; the
software is available for download at http://a3anonymity.com.

2. Related Work

We begin by reviewing existing approaches for enabling anonymous communica-
tion (Section 2.1), comparing A3’s features with existing anonymity simulators, em-
ulators, and testbeds (Section 2.2), and describing how this paper improves upon our
prior work with A3 (Section 2.3).

2.1. Anonymous Routing Overlays
To support diverse applications, the Internet uses a simple routing scheme in which

packets are forwarded on a best-effort basis towards their intended destinations. With
the exception of fragmented portions of the Internet that support IP quality-of-service
features, applications usually have little control over the performance aspects of their
network connections. An overlay network built on top of the Internet routing infrastruc-
ture can allow users to exercise greater control over the manner in which their messages
are relayed, as forwarding can be based on application layer information. When com-
bined with source-routing, these networks allow applications the ability to select paths
that meet their specific requirements.

Overlay networks may also enable anonymous routing on the Internet. For exam-
ple, Tor [12], Onion Routing2 [67], Crowds [52], Tarzan [16], Hordes [62], JAP [13],
and MorphMix [53] (among many others) utilize application-layer overlay routing.
These anonymity systems exploit two features of overlay networks: (i) the ability
to obfuscate the addresses of the initiator (sender) and responder (receiver) while
still providing reliable message delivery; and (ii) in some instances, the ability to
produce anonymous paths that achieve some desirable property (usually high band-
width) [12, 16, 63].

A large volume of existing literature examines methods for generating high perfor-
mance anonymous paths. Tor [11, 12] attempts to achieve high bandwidth paths by
imposing a probability distribution over the set of potential anonymous relays. The
probability of a relay being selected is proportional to its advertised bandwidth. Mur-
doch and Watson have demonstrated that such a strategy delivers both performance
and strong anonymity [39]. Snader and Borisov offer refinements to Tor’s strategy,

2Throughout this paper, we differentiate between traditional onion routing [67] in which the initiator
establishes a path using a single multi-layered onion and Tor’s telescoping strategy [12] in which anony-
mous circuits are incrementally extended. Tor’s technique borrows heavily from and has similar anonymity
properties to the original onion routing approach, but offers greater flexibility.
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allowing an initiator to tune the performance (quantified in their work as bandwidth)
of its anonymous paths [63] by defining the degree to which relay selection is biased
in favor of bandwidth. At one extreme, initiators consistently choose relays with the
highest bandwidth, achieving very high bandwidth paths at the expense of allowing a
small subset of relays to view a significantly disproportionate amount of anonymous
traffic [2, 45, 58]. At the other extreme, initiators may opt to favor anonymity while dis-
regarding performance by selecting relays uniformly at random. Given the bandwidth
requirements of the particular application, Snader’s and Borisov’s technique enables
the sender to select a point in this anonymity-vs-performance spectrum. Similarly, we
previously introduced tunable link-based routing [58], where initiators can weigh relay
selection based on the expected e2e cost computed using link performance indicators
such as latency, AS hop count, and jitter. We showed that biasing selection on link char-
acteristics offers some anonymity benefits over node-based (i.e., bandwidth-weighted)
techniques, since link-based routing reduces “hotspot nodes” in the network that appear
attractive to all initiators.

TorCtl [70] is a Python library for interfacing with an instance of Tor. Compared
with TorCtl, A3’s use of declarative networking provides a higher level abstraction
for selecting and setting up paths as logical specifications. TorCtl provides a limited
API for selecting the next relay node. As such, users of TorCtl still need to write
Python code to implement policies for relay selection. One can in principle compile
our declarative specifications into Python code written by TorCtl. In addition to a code
size reduction, our approach also derives other benefits of declarative programming —
namely, the ability to verify and debug rules using a high level language. Finally, since
TorCtl is specific to Tor, it does not support flexible path instantiation.

To our best knowledge, A3 is the first system that provides extensible anonymous
routing. Unlike the above anonymity services that provide hardcoded relay selection
and path instantiated functionality, our anonymity platform allows researchers to effi-
ciently formulate and evaluate different strategies. In particular, A3 enables developers
to construct and test “application-aware” policies that are compatible with the underly-
ing application’s communication requirements.

2.2. Anonymity Simulators, Emulators, and Testbeds
Perhaps the most significant challenge of developing techniques for private com-

munication is conducting an analysis or experiment that accurately reflects how the
system will perform in reality. At the extreme, experimentation can be performed on a
deployed network such as Tor; however, such an approach raises ethical concerns [64]
since experimenting on a live network risks compromising the anonymity of its users.
Moreover, modifications to algorithms and protocols cannot be easily propagated to all
of the network’s participants, enabling only small segments of the network to run any
modified code.

At the other extreme, mathematical modeling ensures that live users’ anonymity is
not breached. However, the complexities involved in anonymous networking require
such analytic work [6, 39] to rely on simplifications which may not hold in an actual
deployment. Similarly, there are also network simulators [21, 39, 44] that attempt to
model the behavior of anonymity systems. These approaches often trade off realism
for efficiency, simplifying the behavior of both the network and end hosts in order to
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efficiently produce simulations. Network emulators [3, 20] adopt a hybrid approach,
running actual software over an emulated network.

A3 functions in either simulation or deployment mode. The former allows
“network”-wide testing of novel relay selection and path instantiation protocols us-
ing user-provided network topology specifications. (As described in Section 6, A3 is
constructed using the ns3 [43] network simulator, permitting both high- and low-level
network simulations.) Additionally, A3’s deployment mode permits testing on actual
networks. In contrast to other approaches that model, simulate, or emulate a particular
system (with its particular relay selection and path instantiation policies), A3 allows for
rapid prototyping and evaluation of novel policies.

2.3. Improvements over Prior A3 Papers

This paper is an extension of our prior conference publication [61] on applying
declarative techniques to enable anonymity systems. Extensions that we have made in
this paper include:

• Adapter interface specification: In Section 3.1, we provide a specification of
the adapter interface used by A3 to communicate with Information Providers for
various scalable network measurements.

• Improved implementation: In Section 6, we describe our implementation,
which is based on a vastly enhanced architecture developed using the Rapid-
Net declarative networking system. The new system not only outperforms its
predecessor P2 system [46] used in our prior system [61], but also fixes exe-
cution ambiguities [34] through the use of atomic rule execution and local fix-
point computations in between external network events. Language constructs
on secure communication and composition are fully integrated into the A3Log
language and runtime system. Moreover, we have added support for integration
with the emerging ns-3 network simulator [43], enabling more realistic network
simulations in our evaluation. Finally, we have introduced transparent tunneling
functionality that provides support for legacy applications, without the need to
recompile source code or reconfigure applications to use proxy servers.

• Application-driven evaluation: Section 7 presents more comprehensive exper-
iments that extend earlier results based on micro-benchmarks [61]. In particular,
we evaluate the performance and anonymity offered by A3 for an existing appli-
cation – a SIP [54] VoIP softphone – with real-time latency, jitter, and bandwidth
requirements on the PlanetLab testbed using actual audio streams.

• Comparison with other anonymity testbeds: We have expanded our related
work (Section 2.2) to contrast the A3 platform to existing efforts to model, sim-
ulate, and emulate anonymity networks.

• Integration with Tor: We introduce the RapTor system that integrates A3’s
flexible relay selection engine with Tor. We execute RapTor on the live Tor
network and validate its capabilities to select tunable routes at low overhead.
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• Code release: An open-source code release is now available under the GNU
GPLv2 license at http://a3anonymity.com. As of June 2012, there have
been more than 1000 downloads of the software.

3. A3 Design Goals and Architecture

A3 allows an investigator to provide a relay selection policy that precisely specifies
the manner in which relays are chosen for anonymous paths. This is in contrast to
existing anonymity systems in which an immutable relay selection algorithm is hard-
coded into the anonymity service. The A3Log policy language (Section 4) enables
the researcher to not only intelligently tune relay selection in favor of performance or
anonymity [58, 63], it also allows her to easily define her individual characterization
of performance in terms of bandwidth, latency, loss, jitter, etc., or some combination
of the above. In addition to supporting flexible relay selection, A3 also permits the
customization of path instantiation policies (Section 5).

A3’s use of declarative networking provides the capability for investigators to
rapidly customize and refine the policies that best meet their underlying applications’
constraints. Declarative networking technologies have been widely applied to a wide
range of domains in distributed systems programming, including fault tolerance pro-
tocols, cloud computing, sensor networks, overlay network compositions, anonymity
systems, mobile ad-hoc networks, secure networks, network configuration manage-
ment, network forensics, optimizations, and as a basis for course projects in a dis-
tributed systems class (cf. Loo et al. [28] for a survey of recent use cases).

In addition to ease of implementation, another advantage of the declarative net-
working approach is its amenability to formal and structured forms of correctness
checks. These include the use of theorem proving [72], algebraic techniques for con-
structing safe routing protocols [73], and runtime verification [78]. These formal analy-
sis techniques are strengthened by recent work on formally proving correct operational
semantics of NDlog [42]. Finally, the dataflow framework used in declarative net-
working naturally captures information flow as distributed queries, hence providing a
natural way to use the concept of network provenance [77] to analyze and explain the
existence of any network state, a useful feature for debugging anonymity policies.

The anonymity offered by an anonymous path depends in no small part on the
mechanisms for relay selection [39, 45, 58] and path instantiation. A thorough review
of the performance and anonymity properties of various relay selection and path in-
stantiation algorithms is outside the scope of this paper. Our goal in this paper is to
provide a flexible architecture for developing, testing, and studying path strategies and
implementations.

System Overview. Figure 1 shows the architecture of an A3 client running on the ini-
tiator’s host. An investigator provides relay and path instantiation policies; the Relay
Selection Engine interprets the relay selection policy and applies that policy to produce
(but not instantiate) an anonymous path consisting of relays from the Local Directory
Cache. To populate the cache, the A3 instance periodically contacts a Directory Server
to ascertain membership information – that is, a listing of available relays – and, option-
ally, one or more Information Providers. Information Providers are data aggregating
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Figure 1: The A3 architecture.

services that report performance characteristics of relays (e.g., bandwidth) and links
(e.g., the latency between two relays). The Relay Selection Engine uses cached data to
generate paths that conform to the provided relay selection policy.

Once the Relay Selection Engine produces a path, the Forwarding Engine instanti-
ates that path according to the provided path instantiation policy. After path establish-
ment, a Tunneling Service on the local machine transparently intercepts the applica-
tion’s traffic and relays it through the anonymous path. Likewise, incoming data from
the anonymous channel is forwarded through the Tunneling Service to the application.
The tunneling service emulates a network interface, permitting legacy applications to
communicate anonymously via A3.

Below, we describe each component of A3 in more detail.

3.1. Information Providers

To support non-trivial relay selection policies, A3 makes use of Information
Providers (also referred to as Providers) that aggregate node and/or link performance
data. Policies may utilize such information to more precisely define their requirements
(e.g., “include only relays that have been online for at least an hour”).

A3 imposes few restrictions on the types of Information Providers. Each Informa-
tion Provider is interfaced through an adapter that resides on the A3 relay. Adapters
are small programs or scripts that periodically query a Provider for new informa-
tion, storing the results in the Local Directory Cache. Our current implementation
includes adapters for the Vivaldi [9] embedded coordinate system (described below)
and CoMon [47], although others can be easily constructed.

3.1.1. Provider Interface
A3 defines an interface (Table 1) through which a client may communicate with an

Information Provider. Clients use the interface both to send updates to the Providers
when their positions change as well as to query information about potential relays.
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Function Description
post(location,[credentials]) updates the Provider with the client’s specified location

get(node id,[credentials]) returns the location of the specified node, or ∅ if no such node
or location is known

find(filter,[credentials]) returns the node identifiers and locations of nodes that match
the provided query filter

Table 1: Adapter interface. The optional credentials argument contains sufficient information (e.g., digi-
tal signatures) to authenticate the client to the Information Provider.

The interface serves as an abstraction layer, enabling A3 to retrieve data from (and
later base routing decisions off of) any searchable information service. By imple-
menting the three functions described in Table 1, lightweight adapters can easily be
constructed, effectively serving as translation services between A3 and an Information
Provider. Note that the interface does not restrict the Information Provider to any par-
ticular architecture – for example, our current implementation of A3 (Section 6) uses
adapters to query information from both centralized (CoMon [47]) and fully distributed
(Chord DHT [66]) sources. The optional credentials argument may be used to au-
thenticate the client (for example, using a digital signature). Authentication and au-
thorization processes are Provider-specific, and the Provider should define its expected
format for the credentials argument.

3.1.2. Example Information Providers
Below, we highlight the flexibility of the A3 architecture by describing several po-

tential Information Providers:

Network Coordinate Information Providers. Traditional anonymous relay selec-
tion algorithms (most notably Tor [12] and the refinement proposed by Snader and
Borisov [63]) bias selection in favor of relays that advertise high bandwidths. How-
ever, in addition to bandwidth, an application may also prefer paths that exhibit low
latency. Unlike bandwidth, latency is not a node characteristic that can be associated
with an individual relay. Rather, latency is a link characteristic that has meaning only
when defined in terms of a connection between a pair of relays.

Given that there are
(

N
2

)
links in a network composed of N relays, maintaining up-

to-date link characteristics for all links in the anonymity network is infeasible. One
practical solution to succinctly capture pairwise link latencies is via the use of virtual
coordinate embedding systems (also called network coordinate systems). These dis-
tributed algorithms enable the pairwise latencies between all participating relays to be
estimated to high accuracy with low overhead. Network coordinate systems, such as
Vivaldi [9], PIC [8], NPS [41], and Big Bang Simulation [56] map each relay to mul-
tidimensional coordinates such that the Euclidean distance between any two relays’
coordinates corresponds to the latency between the pair. By representing pairwise dis-
tances using N virtual coordinates, these systems effectively linearize the information
that must be stored and maintained by the Information Provider.

Coordinate systems use distributed algorithms in which each participant periodi-
cally measures the distance between itself and a randomly selected peer. By comparing
the empirical measurement with the Euclidean distance between the two nodes’ coordi-
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nates, the relay can adjust its coordinate either towards (in the case of over-estimation)
or away from (for under-estimation) the neighbor’s coordinate. Although network dis-
tances cannot be perfectly represented in Euclidean space due to the existence of trian-
gle inequality violations on the Internet, virtual coordinate systems efficiently estimate
pairwise distances with very low error [9]. Since network coordinate systems require
only periodic measurements (on the order of a single ping every 15 seconds), partici-
pation in the system does not incur a significant bandwidth cost.

A Network Coordinate Information Provider maintains the current coordinates of
the relays in the A3 network. Relays periodically send updates to the Provider whenever
its coordinate changes from its last reported value (e.g., by more than 10ms).

Unfortunately, the distributed nature of coordinate systems make them particularly
vulnerable to insider manipulation [7]. Recent studies [23] on Vivaldi have shown that
when 30% of nodes lie about their coordinates, Vivaldi’s accuracy decreases by a factor
of five. Attacking the coordinate system provides a vector for an adversary to either
prevent high performance routing or bias routing decisions in favor of relays under
their control.

Several schemes have been proposed [4, 8, 22, 55, 59, 75] for securing coordi-
nate systems. These schemes are typically applied on top of the embedding system
in order to ensure the veracity of advertised coordinates. They rely on spatial and
temporal heuristics to spot false coordinate advertisements [75], use machine learn-
ing techniques [4] to thwart so-called frog-boiling attacks [7], utilize a small set of
trusted surveyor nodes [22, 55], or assess coordinate accuracy using a distributed vot-
ing protocol [59]. These techniques can be used together with A3; A3 is agnostic to the
specific security technique being employed, so long as it can query coordinates using
the Adapter Interface API.

Relay-Assisted Information Providers. Relays have access to a significant number
of local performance indicators. For instance, a relay can measure its current upstream
and downstream throughput, processor usage and available memory, and estimate its
bandwidth capacity. Such information can be collected and stored in a Relay-Assisted
Information Provider. The CoMon Monitoring Infrastructure [47] that operates on the
PlanetLab testbed [48] is one such example.

As has been pointed out by Øverlier [45] and others [2, 58, 63], malicious relays
may purposefully attract a large fraction of anonymous traffic by falsely advertising
favorable performance, consequently increasing their view of traffic in the anonymous
network. To mitigate such attacks, Snader and Borisov propose the use of opportunistic
measurements in which relays report the observed throughput of their network peers.
The Provider (or in their case, the directory service) reports the median of the reported
measurements [63]. Similar protection schemes—where relays report the bandwidth
and responsiveness of peer relays with whom they interact—are applicable to A3 In-
formation Providers. Certain metrics (e.g., memory usage) cannot easily be probed by
remote parties, and if reported by Information Providers, should be treated with some
degree of skepticism by the relays that make use of them.

Other Potential Information Providers. There have been a number of proposed sys-
tems (e.g. iPlane [32, 33], IDMaps [14], OASIS [15], Meridian [74], and Sequoia [50])
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that attempt to provide estimates of latency and (in some cases) bandwidth between ar-
bitrary hosts, by succinctly capturing the structure of the Internet. Such systems have
typically been deployed to provide proximity-based routing [31, 60], neighbor selection
in overlays [10], network-aware overlays, and replica placement in content-distribution
networks. However, these systems are also applicable to anonymity services in which
the initiator is interested in discovering the cost of routing through a particular relay.
All that is required for an investigator to use information from such a system in A3 is
to write an adapter to its interface.

3.2. Other Components of A3.
We briefly describe the other components of the A3 system:

Directory Service. Node discovery is facilitated by a Directory Service (or sim-
ply Directory) that maintains membership information on all the relay nodes currently
participating in the A3 network. Relays that join the network publish their network
addresses and public keys to the Directory Service. Initiators periodically poll the Di-
rectory to discover peer nodes that may potentially be used as routers in anonymous
paths.

Local Directory Cache. The Local Directory Cache periodically queries and stores
performance data from Information Providers. The rate at which the cache polls
Providers affects both the freshness of cached data as well as the relay’s communi-
cation overhead. The tradeoff between update intervals and bandwidth costs depends
on the rate at which performance characteristics change in the network, and is explored
in more detail in Section 7.

Relay Selection Engine. At runtime, an investigator provides relay selection policies.
Using the information stored in the Local Directory Cache, the Relay Selection Engine
forms routes according to the specified policy. The participants of generated paths are
relayed to the Forwarding Engine that instantiates the path. Relay selection is explored
in more detail in Section 4.

Forwarding Engine. The Forwarding Engine consists of a declarative network-
ing engine enhanced with low-level cryptographic primitives. The Forwarding Engine
provides methods for composing these primitives to form high-level operations. For
example, the one-way authentication and symmetric key-exchange primitives used in
Tor path instantiation are constructed by composing RSA digital signatures with Diffie-
Hellman key exchange.

The Forwarding Engine instantiates the anonymous path provided by the Relay
Selection Engine according to rules specified in the path instantiation policy. Addi-
tionally, the Forwarding Engine supports message relay over instantiated anonymous
paths. That is, the Forwarding Engine is used both to construct paths as well as to relay
application messages over the anonymous route. Often, the rules for path instantiation
and message relay are distributed recursive queries. We revisit the routing engine in
Section 5.

Tunneling Service. The Tunneling Service provides legacy application support, en-
abling an investigator to experiment with different relay and path instantiation policies
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using legacy applications, without requiring recompilation or application reconfigura-
tion. The Tunneling Service operates by emulating a network interface on the client’s
host. Local routing rules redirect application traffic through the virtual interface, where
communication is tunneled through the anonymous circuits that are constructed and
maintained by the Forwarding Engine.

4. Relay Selection Policies

In this section, we demonstrate how a variety of strategies used by the relay selec-
tion engine can be expressed using the A3Log declarative networking language. Our
goal is to highlight the flexibility, ease of programming, and ease of reuse afforded by
a declarative query language. We show that routing protocols can be expressed in a
few A3Log rules, and additional protocols can be created by simple modifications to
previous examples.

4.1. A3Log

A3Log extends existing work on declarative networking [29]. The high level goal
of declarative networking is to enable the construction of extensible architectures that
achieve a good balance of flexibility, performance, and safety. One specifies a declar-
ative networking protocol as a set of queries in a high-level language. Because such a
specification expresses what a program achieves as opposed to how it operates, declar-
ative queries are a natural and compact way to implement routing protocols and overlay
networks [25–27, 29].

Our A3Log declarative language is primarily based on Datalog [49]. A Datalog
program consists of a set of possibly recursive declarative queries, also referred to as
rules. Each rule has the form q :- p1, p2, ..., pn., which can be read informally as
“p1 and p2 and ... and pn imply q”. Here, q is the head of the rule and p1, p2, ..., pn is
a list of literals that constitutes the body of the rule. Literals are either predicates (also
called relations) with attributes (variables or constants) or boolean expressions that
involve function symbols (including arithmetic) applied to attributes. A3Log extends
Datalog by allowing the specification of rules with multiple head literals, i.e. rules of
the form q1, q2, ..., qm :- p1, p2, ..., pn.. A rule of this form is short-hand for
the set of m rules where the ith rule is of the form qi :- p1, p2, ..., pn. A Datalog
program is said to be recursive if a cycle exists through any predicate – such as when
a predicate that appears once in a rule’s body appears in the head of the same rule. A
recursive Datalog program is continuously executed until a fixpoint is reached, i.e. no
new facts are derived.

The order in which the rules are presented in a program, as well as the ordering
of predicates in a rule body, is semantically immaterial. By convention, the names
of predicates, function symbols, and constants begin with a lowercase letter, while
variable names begin with an uppercase letter. Function calls are prepended with f . An
aggregate construct, which defines an operation on multiple results from the rule body,
is represented as a special function in the rule head with its attribute variables enclosed
in angle brackets (<>). To support anonymous relay selection, A3Log enhances Datalog
with cryptographic functions, random and ranking aggregates, and composability.
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Algorithm Description Benefits Example
Usage

A3Log
Rules

Random Relays selected uniformly at
random

Offers strong anonymity Email mixing 5

Tor Relays biased proportion-
ally to bandwidth

High bandwidth and network
utilization [39]

Web
browsing

5

Snader-Borisov Tunable bias in favor of
bandwidth

Tunable anonymity and
performance

File transfer 6

Constraint Specification of end-to-end
performance requirements

Expresses communication
requirements

VoIP 6

Weighted Bias relay selection in favor
of link-properties

Extends support to multiple
metrics (latency, jitter, etc.)

Streaming
multicast

6

Hybrid Combines above techniques Supports highly flexible
routing policies

Video
conferencing

varies

Table 2: Example relay selection policies.

Example: All Pairs Reachability. We illustrate A3Log using a simple example of
two rules that compute all pairs of reachable nodes in a network.

r1 reachable(S,N) :- neighbor(S,N).

r2 reachable(@N,D) :- neighbor(S,N), reachable(S,D).

Rules r1 and r2 specify a distributed transitive closure computation that derives all
pairs of nodes that can reach each other through paths of neighbors. The rules take
as input a local neighbor table stored at each node S. Each fact in the neighbor(S,N)

relation denotes that N is a neighbor of S. Rule r1 computes all pairs of nodes reachable
within a single hop from all input neighbor links. Rule r2 expresses that “if N is the
neighbor of S, and S can reach D, then N can reach D.” The output of interest is the
set of all reachable(S,D) facts, representing reachable pairs of nodes from S to D. By
modifying this simple example, we can construct more complex routing protocols,
such as distance vector and path vector routing protocols.

Rule r2 introduces the location specifier, which is the argument prefixed with the @

symbol. This argument denotes the location of each fact derived by the rule head. For
example, in rule r2, all derived reachable(N,D) facts are exported based on the address
encoded in their first attribute (@N). This means that the execution of rule r2 results in
each node propagating its reachability information to its neighbors until a distributed
fixpoint is reached—i.e., until no node can derive any new facts.

4.2. Example Relay Selection Policies

We next present sample relay selection policies written in A3Log. In all our ex-
amples below, we assume that node and link information obtained from Information
Providers is stored on each node in a table called node. The node table is indexed by
the IP addresses of remote peers. These node and measurement data are then used as
input to A3 for executing A3Log rules that will select candidate relays. In all our ex-
ample programs, the output of interest is an ePathResult(Src,Dst,P) tuple, where P is
the list of relay node tuples (a relay node tuple includes includes the node’s address,
bandwidth, coordinates and any other attributes relevant to the query) from Src to Dst.
The relay selection strategies described in this section are summarized in Table 2.
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4.2.1. Node-based Relay Selection
As its name suggests, node-based relay selection selects nodes based on node char-

acteristics (in most cases, bandwidth).

Random Selection (Random Policy). Given a request to generate a path from Src to
Dst, the following program produces a path of three randomly selected relays (exclud-
ing Src and Dst).

r1 ePathResult(Src, Dst, RAND(3)<IP>) :- ePathRequest(Src, Dst), node(IP),

Src != IP, Dst != IP.

Rule r1 takes as input a path request, in the form of an event tuple
ePathRequest(Src,Dst), where Src is the address of the node that issued the request,
and Dst is the address of the responder. Rule r1 is essentially a typical database query
with group-by attributes (IP in this case) and a random aggregate.

Unlike a regular aggregate that computes, for instance, the minimum and maximum
value, a random aggregate is a function of the form RANDAGG(a1, a2, ..., am)〈p1, p2, ..., pn〉

that takes in (a1, a2, ..., am) as m argument parameters, and n arguments in 〈p1, p2, ..., pn〉

that denote the output (projection) attributes of the resulting group-by value. Given re-
sult tuples generated in the rule body, for each group-by value, RANDAGG performs the
appropriate random selection algorithm based on its function definition, and then re-
turns a list of tuples with the appropriate n attributes being projected from the results.

For instance, in rule r1, RAND(3)<IP> is a random aggregate with argument 3 and
projecting by IP. With these parameters, the aggregate will return 3 randomly selected
nodes without replacement from the result of executing the rule body. The output of
executing the rule r1 is the ePathResults(Src,Dst,P) event tuple, where P is a list of
tuples each containing the IP address field of the selected relay nodes from Src to Dst.
The additional selection predicates in r1 ensure that neither Src or Dst are selected as
relay nodes.

Bandwidth-weighted Selection (Tor Policy). The Random strategy chooses three
nodes as relays without taking into consideration their node characteristics. As an en-
hancement, the following rules implement Tor’s relay selection [11] and select nodes
with probabilities that are proportional to their bandwidths. A node with higher band-
width has a greater probability of being selected, and the likelihood of selection relative
to other nodes is linearly proportional to bandwidth.

t1 eCandidateRelay(Src, Dst, PathsSoFar, RANDWEIGHTED(1,BW)<IP>) :-

ePathRequest(Src, Dst, PathsSoFar), node(IP,BW), Src != IP, Dst != IP.

t2 ePartialPath(Src, Dst, PathNew) :-

eCandidateRelay(Src,Dst,PathsSoFar,Relay),

PathsSoFar.inPath(Relay[0]) = false,

PathNew = f_append(PathsSoFar, Relay[0]).

t3 ePartialPath(Src, Dst, PathsSoFar) :-

eCandidateRelay(Src,Dst,PathsSoFar,Relay),

PathsSoFar.inPath(Relay[0]) = true.

t4 ePathRequest(Src, Dst, P) :- ePartialPath(Src, Dst, P), f_size(P) < 3.
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t5 ePathResult(Src, Dst, P) :- ePartialPath(Src, Dst, P), f_size(P) = 3.

The initial route request is triggered by the requesting event
ePathRequest(Src,Dst,()), where the last attribute is the current path (initially initial-
ized to the empty list ()). Rule t1 is similar to the earlier rule r1, except that it uses the
aggregate function RANDWEIGHTED(1,BW)<IP> which selects one tuple randomly from the
tuples derived from executing the rule body, with probability linearly weighted by the
bandwidth attribute BW. (To bias the selection using another metric such as average node
load, one would simply have to modify the parameter to RANDWEIGHTED.) The resulting
output is a list containing one tuple, which can be retrieved as the first element of the
list (indicated by the index [0]) followed by a projection on the IP field.

Rules t2 and t3 generate a new ePartialPath if the chosen Relay is not already in the
current partial path; otherwise, they add the relay’s IP to the path. The process repeats
in t4 if the number of relays selected is less than three. Eventually, the resulting path
ePathResult is returned via rule t5 when three relay nodes have been chosen.

Tunable Performance/Anonymity Selection (Snader-Borisov Policy). Snader’s and
Borisov’s recent proposal introduces a tunable weighting system that allows the initia-
tor to trade between anonymity and performance [63]. Briefly, their proposal defines
the family of functions

fs(x) =

{ 1−2sx

1−2s if s , 0
x if s = 0 (1)

where s is a parameter chosen by the initiator that allows for a tradeoff between
anonymity and performance. After ranking the relays by bandwidth, the initiator
chooses the relay with index bn · fs(x)c, where x is chosen uniformly at random from
[0, 1), and n is the number of nodes. By applying higher values of s, the initiator is able
to more heavily bias her selections towards bandwidth. On the other hand, for s = 0, a
relay is chosen uniformly at random. Each relay is selected independently and without
replacement according to the distribution imposed by Eq. 1.

Snader and Borisov’s algorithm may be represented in A3Log by modifying the t1

rule from above into two rules:

s1 eRelayList(Src,Dst,PathsSoFar,S,SORT(BW)<IP>) :-

ePathRequest(Src,Dst,PathsSoFar,S),

node(IP,BW), Src != IP, Dst != IP.

s2 eCandidateRelay(Src,Dst,PathsSoFar,Relay) :-

eRelayList(Src,Dest,PathsSoFar,S,SortedRelayList),

sbRand = (1 - 2^(S * f_rand01())) / (1 - 2^S)),

Relay = f_selectIndex(SortedRelayList,sbRand).

SORT(BW)<IP> is a ranking aggregate which follows a similar syntax as the random
aggregates. It takes all the resulting tuples derived from executing the rule body, per-
forms a sort using the BW attribute, and then returns the projected field IP as a nested
tuple based on the sort order. Hence, the SortedRelayList attribute of eRelayList will
include a sorted list of IP tuples. Rule s2 applies Eq. 1 to generate a biased random
variable which is then used to index into the list and select a relay.
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4.2.2. Link-based Selection
The previous examples have focused exclusively on node characteristics – per-

formance metrics (i.e., bandwidth) that may be attributed to individual relays. In link-
based path selection [58], the e2e performance of a path is computed by aggregating the
cost of all links that comprise the path, where cost is defined in terms of link character-
istics such as latency, loss, and jitter. (While bandwidth is a node-based characteristic,
it can also be represented as a link characteristic by considering the measured available
bandwidth on a link connecting two nodes.) The use of link rather than node character-
istics enables not only more flexible routing (since initiators can construct anonymous
routes that meet more specific communication requirements), but also offers better pro-
tection of the identities of the communicating parties [58].

In these examples, node information gathered from the directory service and In-
formation Providers is stored in node(IP, Coord) tuples and includes nodes’ network
addresses and virtual coordinates.

End-to-end Constraint-Based Selection (Constraint Policy). The Constraint pol-
icy allows the investigator to specify explicit communication requirements. In the ex-
ample below, anonymous paths are constructed such that the e2e latency is below some
user-specified threshold.

c1 eCandidatePath(Src,Dst,Limit,RAND(3)<IP,Coord>) :-

ePathRequest(Src, Dst, Limit),

node(IP, Coord), Src!=IP, Dst!=IP.

c2 ePathCost(Src, Dst, Limit, P, Cost) :-

eCandidatePath(Src, Dst, Limit, P),

Cost = f_coorddist(Src.Coord, P[0].Coord) +

f_coorddist(P[0].Coord, P[1].Coord) +

f_coorddist(P[1].Coord, P[2].Coord) +

f_coorddist(P[2].Coord, Dst.Coord).

c3 ePathRequest(Src, Dst, Path) :-

ePathCost(Src,Dst,Limit,Path,Cost), Cost > Limit.

c4 ePathResult(Src, Dst, Path) :-

ePathCost(Src,Dst,Limit,Path,Cost), Cost <= Limit.

Rule c1 is similar to rule r1 of the Random selection policy. Here, however, the
Coord field is also projected for use in rule c2. Based on the three selected relays, c2
computes the e2e path cost as the sum of the Euclidean distances of the coordinates.
The process repeats (rule c3) until a path whose overall cost is less than Limit (an input
variable) is selected (rule c4).

Tunable Performance/Anonymity Selection (Weighted Policy). The Weighted
link-based path selection algorithm provides tunable performance and anonymity. The
algorithm operates in two phases:

In the first phase, the initiator rapidly generates (but does not instantiate) candi-
date paths consisting of three relays chosen uniformly at random without replacement.
The initiator computes the e2e cost of each generated candidate path. In the second
phase, the initiator sorts the candidate paths by their cost estimates. Using the family
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of functions introduced by Snader and Borisov [63] (see Eq. 1), the initiator instanti-
ates the candidate path with index bn · fs(x)c, where x is chosen uniformly at random
from [0, 1), and n is the number of nodes. As with Snader and Borisov’s algorithm, a
larger value of s more heavily weighs path selection in favor of performance. The s
parameter is denoted by the S attribute in the initial path request.

Weighted is represented in A3Log as follows:

w1 eCandidatePaths(Src, Dst, S, RAND(3, 100)<IP,Coord>, PathCosts) :-

ePathRequest(Src, Dest, S), node(IP, Coord),

Src != IP, Dst != IP, PathCosts = {}.

w2 eCandidatePaths(Src, Dst, S, PathList, PathCosts) :-

eCandidatePaths(Src, Dst, S, PathList, PathCosts), f_size(PathList) > 0,

P=f_popfront(PathList),

PathCost=f_coorddist(Src.Coord,P[0].Coord) +

f_coorddist(P[0].Coord,P[1].Coord) +

f_coorddist(P[1].Coord,P[2].Coord) +

f_coorddist(P[2].Coord,Dst.Coord),

PathCosts.append([P, PathCost]).

w3 ePathResult(Src, Dest, Path) :-

eCandidatePaths(Src, Dst, S, PathList, PathCosts), f_size(PathList)=0,

SortedPathCosts=f_sortByField(PathCosts, "PathCost", "desc"),

sbRand=(1 - 2^(S*f_rand01())) / (1-2^S)),

Path=f_selectIndex(SortedPathCost,sbRand).

Rule w1 first generates 100 random permutations of three elements each from the
node table. Then, rule w2 repeatedly converts these list elements into pairs with the
path’s e2e cost, based on the embedded coordinates. Finally, rule w3 sorts this list and
selects an index using the Snader-Borisov random variable described in Eq. 1, with a
tunable performance parameter S. Note that in this case, we sort in reverse order since
lower latency is preferred to higher latency. The above rule assumes a left-to-right
execution ordering of predicates. This assumption can be avoided with a more verbose
version of the above program using some additional rules.

Hybrid Selection (Hybrid Policy). Although the above rules use a single metric when
selecting a path, it is easy to combine multiple factors for relay selection.

The following rule (h1) selects a path whose minimum bandwidth is above Thres

by a conditional join on nodes in the table, and then uses the coordinate embedding
system to select a path with e2e latency less than Limit. In this example, node(IP,

Coord, BW) tuples store the virtual latency coordinate as well as bandwidth for each
node. Interestingly, we need only make one change to replace c1 (from the Constraint
strategy) with h1:

h1 eCandidatePath(Src, Dst, Limit, RAND(3)<IP,Coord,BW>) :-

ePathRequest(Src, Dst, Limit, Thres), node(IP,Coord,BW),

Src!=IP, Dst!=IP, BW>Thres.

Other hybrid policies using multiple metrics can be similarly constructed (for ex-
ample, using the Weighted policy only on nodes whose bandwidth is above a thresh-
old).
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5. Path Instantiation Policies

A3’s forwarding engine performs path instantiation, a process that establishes nec-
essary network state at each selected relay to enable bidirectional data flow over an
anonymous circuit between a given initiator and any destination. Unlike relay selec-
tion, which happens locally at the initiator, path instantiation is an inherently distributed
operation, and thus exercises the distributed execution features of A3Log.

We begin with a brief overview of the path instantiation scheme used by Onion
Routing (see Footnote 2). After selecting a path consisting of one or more relays –
called onion routers – the initiator sends a recursively encrypted message called an
onion to the first hop of the selected path. Each layer of the onion contains the address
of the next desired hop in the path, and seed material to generate symmetric keys shared
with the initiator3. Public key cryptography ensures that every node can interpret ex-
actly one layer of the onion. Each node removes its layer, generates keys from the seed
material, and – if it is not the endpoint – forwards the remainder of the onion on to the
next hop. The endpoint sends a confirmation message to the initiator backward along
the newly-instantiated path.

More precisely, if the relays in the anonymous path are R1, ...,Rn and M1, ...,Mn are
the relays’ corresponding onion layers, then the onion is encrypted as
ER1 (M1, ER2 (M2, ..., ERN (MN))), where EX(W) denotes the encryption of message W
using the public key belonging to X. In practice, only the key seed material is en-
crypted with the public key. The remaining data is encrypted using a symmetric key
derived from the key seed material. Finally, onion routing specifies an additional link-
layer protocol that governs how messages are exchanged between onion routers.

5.1. Onion Routing in A3Log

Our A3Log implementation of Onion Routing requires 12 rules to specify path in-
stantiation. These rules consist of three recursive computations: building the onion,
relaying the onion along the path to establish state at each node, and forwarding a con-
firmation back along the path. We extended our implementation to support forwarding
data along an instantiated path at a cost of five additional rules.

We briefly summarize the format of the relations at each node. All relations are in-
dexed by a locally unique CID (circuit identifier). An initiator stores a
circuitPath(CID,Path) fact that associates a circuit with a path representing the cho-
sen relay nodes. The Path variable represents the result of the relay selection phase and
is populated based on the ePathResult tuple. In addition, the initiator stores the current
state of the circuit in the circuitStatus(CID,Status) relation. The value for Status may
be either BUILDING or ESTABLISHED. As the path is being instantiated, the initiator and
each intermediate relay creates a link-local identifier (ACI) for the circuit, stored along
with the circuit’s next relay in a circuitForward(CID,ACI,Node) fact. Similarly, the fi-
nal relay and each intermediate relay stores the ACI generated by the previous Node in
the circuitReverse(CID,ACI,Node) relation. At each relay, symmetric encryption keys

3In practice, each layer also contains information about which cryptographic algorithm to use in each
direction of the circuit, a timestamp, and a version identifier.
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(shared with the initiator) for forward and reverse cryptographic operations are stored in
the circuitKeys(CID,ForwardKey,ReverseKey) relation. For each relay node, the initiator
maintains these keys in the circuitInitiator(CID, Relay, ForwardKeys, ReverseKeys)

relation.
It is worth noting that many of the relations used by the Onion Routing rules can

also be used by Tor and Crowds. For example, all of these systems involve multiplexing
traffic from multiple anonymous circuits over a single link, necessitating the use of
per-circuit link-local unique identifiers. Also, in each system, paths are bidirectional,
requiring intermediate nodes to store the next node in each of the forward and backward
directions.

Below, we highlight the use of A3Log via the following three rules (oc1-oc3) that
express the local recursive computation of generating an Onion at the initiator:

oc1 circuitPath(CID, Path),

circuitStatus(CID, "BUILDING"),

circuitForward(CID, ACIForward, FirstRelay),

eCreateOnion(CID,LastRelay,RemainingPath,FirstLayer) :-

ePathResult(_,_,Path), FirstRelay=f_first(Path).IP,

LastRelay=f_last(Path).IP, ACIForward=f_gen_aci(),

RemainingPath=f_removeLast(Path), CID=f_gen_cid(), FirstLayer={}.

Rule oc1 is triggered upon insertion of a new path. It generates state at the initiator
for the new circuit, including the local CID and link-local ACI. These are respectively
used to differentiate between circuits at a given node and circuits on a given link. In
addition, oc1 associates the new circuit with its path representation, and a status (i.e.,
BUILDING) indicating that the circuit is currently being instantiated and is not yet ready
for use. Rule oc1 triggers the recursive rule, oc2, through the eCreateOnion event:

oc2 eCreateOnion(CID,NextRelay,RemainingPath,NextLayer) :-

eCreateOnion(CID, CurrentRelay,Path, PrevLayer),

f_size(RemainingPath) != 0,

NextRelay = f_last(Path).IP, RemainingPath = f_removeLast(Path),

encryptOnion(CID, CurrentRelay, PrevLayer, &EncryptedLayer),

NextLayer={NextRelay, EncryptedLayer}

The eCreateOnion event represents an intermediate step of circuit instantiation. Its
first argument references the CID of the circuit being created, its second notes the most
recently added relay, and its third contains the intermediate representation of the onion.
Note that onions are built outwards from the innermost layer. We denote the innermost
layer as an empty list, as this layer will be interpreted by the ultimate relay in the
circuit, who does not extend the path any further.

Rule oc2 calls the encryptOnion Composable View (CView, described in Section 5.2),
which encrypts the previous layer of the onion. Rule oc2 is linearly recursive and will
continue to trigger itself and derive new facts as long as RemainingPath is non-empty.
Each invocation of the rule removes a relay node from RemainingPath as it adds a layer
of encryption. Upon reaching the terminating condition – when RemainingPath is empty
– rule oc3 is triggered:

oc3 eOnionMessage(@FirstRelay, ACI, CompleteOnion) :-

eCreateOnion(CID, CurrentRelay, RemainingPath, PrevLayer),

f_size(RemainingPath) = 0, circuitForward(CID, ACI, FirstRelay),

encryptOnion(CID, CurrentRelay, PrevLayer, &CompleteOnion).
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Rule oc3 calls encryptOnion to encrypt the final layer of the onion, and sends the
completed onion to the first relay node (via the location specifier @FirstRelay) read
from the circuitForward relation. Upon receiving the onion, each intermediate relay
will peel off and decrypt a layer of the onion (using the decryptOnion CView), extract
the location of the subsequent hop, and recursively forward the onion. The decryptOnion

CView is similar to encryptOnion CView in structure, except for the use of decryption
functions instead of encryption functions.

The above rules do not implement Onion Routing’s link-layer protocol. One may
easily specify this protocol in A3Log by adding a layer of indirection to any rule that
sends a high-level anonymous message. We omit the specification here, as it involves
relatively mundane serialization, encapsulation, and encryption.

5.2. Composable Virtual View for Onion Encryption
In order to maximize reusability between different path instantiation protocols and

to enable re-configurable encryption, we leverage Composable Virtual Views (CViews)
[35] to express high-level cryptographic primitives. A CView is a user-defined function
implemented in A3Log. A call to a CView may only occur in the body of a rule, and
has the following syntax:
viewName(K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView has a set of input attributes – shown above as K1,K2,...Kn – which
must be bound at the beginning of the call to the CView, and a set of attributes,
&R1,&R2,...,&Rm, that are returned by the call. Note that CViews do not augment the
expressive power of the A3Log language but rather provide modularity. In fact, any rule
that uses CViews can be rewritten as a series of regular A3Log rules using a rewrite [35].

We illustrate the encryptOnion CView used by the above rule:
def encryptOnion(CID, Node, Data_in, &Data_E) {

eo1 circuitInitiatorKeys(CID, Node, Key_forw, Key_back)

this.return(Data_E) :-

this.init(CID, Node, Data_in), KeySeed = f_genKeySeed(),

Key_onion = f_sha1(KeySeed), Key_forw = f_sha1(Key_Onion),

Key_back = f_sha1(Key_forw),

Payload_E = f_symEncrypt(Key_onion,Data_in),

publickey(Node,PubKey), KeySeed_E = f_asymEncrypt(PubKey,KeySeed),

Data_E=[KeySeed_E, Payload_E].

}

The built-in predicates this.init and this.return respectively specify the input
values and return values to/from the CView. Rule eo1 generates key seed material and
iteratively applies the SHA-1 hash function to derive three symmetric keys to be shared
between the initiator and a given Node in the circuit: (i) Key onion, used for encrypting
the layer of the onion (except for KeySeed) destined for Node; (ii) Key forw, used for
cryptographic operations on data sent forward from the initiator; and (iii) Key back,
used for cryptographic operations on data sent backward to the initiator. These keys
are stored at the initiator in the circuitInitiatorKeys relation4. Rule eo0 then employs

4Note that circuit initiator does not contain Key onion – this key is only used for cryptographic
operations on the onion sent for path instantiation, and need not be persisted.
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Key onion to encrypt Data in, which consists of the next node in the circuit, and the
previous layer of the onion. The KeySeed is then encrypted with the public key of Node.

Since CViews can separate the cryptographic operations from the specification of
the protocol, one can easily tune the encryption by customizing the above encryptOnion

(and the corresponding decryptOnion) CView. Furthermore, CViews can facilitate
reusability of these high-level cryptographic primitives across different path instanti-
ation protocols.

5.3. Path Instantiation Policies for Tor and Crowds

We briefly outline how the above path instantiation policies may be modified to
support the techniques used by Tor and Crowds.

Tor: Unlike Onion Routing in which the initiator recursively builds a single onion that
is relayed along the entire path, Tor uses an incremental telescoping path instantiation
strategy. At a high level, a circuit initiator sends a CREATE message to the first Tor
router in the desired circuit. The Tor router establishes local state and replies to the
CREATE message, resulting in a path of length one. Should the initiator choose to add
another hop to the end of path, he relays an EXTEND message to the current endpoint.
The current endpoint translates the EXTEND into a CREATE message and sends it to
the desired new endpoint. The new endpoint of the circuit replies with a confirmation
message, which is forwarded back to the initiator. The initiator may continue to extend
the path if desired.

Both CREATE and EXTEND messages can be encoded as A3Log message tuples,
each containing half of a Diffie-Hellman handshake that has been encrypted with the
public key of the desired new endpoint. The new endpoint completes the handshake
with the initiator, resulting in symmetric keys shared with the initiator. The encryp-
tion/decryption modules can be implemented as a CView module with the correspond-
ing cryptographic functions, similar to the technique used for Onion Routing (Sec-
tion 5.2). For sending messages between Tor routers, Tor specifies a link-layer protocol
similar to that of Onion Routing.

Crowds: Path instantiation in Crowds begins when an initiator starts an anonymous
relay on his machine called a jondo and contacts a server to obtain membership in a
crowd – a collection of anonymous users. To build a path, the initiator forwards a
request to a jondo chosen uniformly at random – possibly his own. Upon receiving a
request to create a path, a jondo chooses to extend the path to another jondo (again cho-
sen uniformly at random) with probability p f , or ceases path creation with probability
1 − p f . Typically, an initiator will use a single bidirectional path for all anonymous
communication. The forward half of the path instantiation scheme used in Crowds is
implemented using the following rules:

c0 circuitStatus(CID, "BUILDING"), circuitForward(CID, ACI_out, Node_out),

extend(@Node_out, ACI_out, Me) :-

establish_path(), ACI_out=f_gen_aci(),

CID = f_gen_cid(), random_jondo(&Node_out).

Rule c0 begins the process of building a new path of jondos in response to an
establish path event. Such an event is triggered when a node retrieves a new list of
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jondos, for example. c0 generates a CID and ACI for the new circuit, and selects a
jondo uniformly at random (using the random jondo CView) to receive the path exten-
sion request, extend. Upon receipt of an extend request, rule c1 is triggered:

c1 circuitReverse(CID, ACI_in, Node_in), incoming(CID, X) :-

extend(@Me, ACI_in, Node_in), X = f_rand01(), CID = f_gen_cid().

Rule c1 generates a random number in the range [0, 1], as well as a CID for the circuit.
c1 also derives a local incoming event, containing the local CID of the new circuit, and
the previously generated random number. The incoming event triggers rule c2:

c2 circuitForward(CID, ACI_out, Node_out), extend(@Node_out, ACI_out, me) :-

incoming(CID, X), p_forward(P), X <= P, ACI_out = f_gen_aci(),

random_jondo(&Node_out).

Rule c2 compares the random number (X) against the probability of extending the
path forward, (P). If X ≤ P, then rule c2 generates an outgoing ACI, and selects a jondo
uniformly at random to serve as the next relay in the circuit. Alternatively, if X > P,
another set of rules relays a confirmation back to the initiator informing him that the
newly instantiated path is ready for use.

6. Implementation

The declarative features of A3 enable rapid prototyping and development of
anonymity protocols. To maximize the usefulness of an extensible anonymity archi-
tecture, we designed our A3 implementation to serve as a testbed for anonymity re-
searchers. Towards that goal, in addition to the use of declarative techniques, our A3

implementation achieves the following key functionalities:

• Network simulation mode. To enable researchers to scale their experiments, our
platform provides a simulation mode in which multiple simulated A3 instances com-
municate using a virtual network layer. Our A3 implementation uses ns-3 [43], an
emerging discrete-event network simulator aimed to replace the popular ns-2 simu-
lator. ns-3 emulates diverse network effects (e.g., congestion, loss, jitter) and imple-
ments virtualized versions of physical, link, network, and transport layer protocols.
The simulation mode allows investigators to measure the performance and security
properties of anonymity protocols under different network topologies, sizes, and con-
figurations.

• Implementation mode. Alternatively, the A3 client may run in implementation mode,
enabling experimentation on the actual Internet. Note that an identical codebase is
used for both simulation and implementation modes. The only distinction between
the two modes is the use of network simulation in ns-3 versus our own custom sockets
implementation in implementation mode.

• Transparent tunneling. When run in implementation mode, A3 instantiates a virtual
network interface using Linux’s tun/tap capabilities; IP packets transmitted through
this interface are transparently tunneled to the A3 executable and subsequently redi-
rected through the A3 network. Legacy applications can be configured to use A3 by
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causing them to bind to the virtual network address (if such functionality is supported
by the application) or by configuring host-based redirection rules (for example, via
iptables).

We utilize a MySQL database as our Directory Service. We constructed adapters to
interface with the CoMon monitoring service [47] on PlanetLab as well as the Vivaldi
virtual coordinate embedding system. The former enables node-based relay selection
policies that prioritize relays based on their bandwidth utilization, available memory,
CPU load, or any other feature monitored by CoMon. Vivaldi supports link-based
policies (in particular, those that consider latency). We built our own implementation
of Vivaldi, which we integrated into ns-3.

The source code of our implementation (released under the GPLv2 license) may be
downloaded from http://a3anonymity.com.

RapidNet Declarative Networking Engine. The Relay Selection Engine and For-
warding Engine are constructed using RapidNet [30, 40], an open-source declarative
networking engine that is integrated with ns-3. The RapidNet system is a significant
improvement over its predecessor P2 system in the following ways:

First, we have significantly improved the performance of the declarative runtime
system via a careful reengineering effort. This has resulted in higher throughput in
messaging and rule firing, enabling us to send actual packets via transparent tunnel-
ing through A3. (This is in contrast to our previous implementation in which packet
forwarding was handled by an external utility program.) The new unified architecture
provides enhanced customizability in the data plane.

Second, we have also enhanced the RapidNet system to address execution ambigu-
ities [34] that arise in the P2 system due to the inter-leaving of local rule executions
and incoming network events. Our new system provides a clear operational semantics
for A3Log that enables one to directly reason about correctness relative to centralized
Datalog programs [25]. At a high level, RapidNet provides atomic rule execution in
which a network event will trigger the execution of local rules at a node until a fixpoint
is reached (i.e. no new facts are generated) before the next network event is processed.

Third, RapidNet adds several language constructs into A3Log that are required for
path instantiation – in particular, encryption/decryption modules, secure communica-
tion [76], and CViews.

Finally, via the integration with ns-3, one can incorporate actual network effects in
simulation-based experiments. This is an improvement over our prior simulation re-
sults [61] which did not simulate congestion, packet queueing, or other network events
that are supported by ns-3.

7. Evaluation

In this section, we present measurement studies that demonstrate A3’s ability to
implement diverse relay selection and path instantiation strategies. We show how A3

permits investigators to study performance and anonymity under both simulation (Sec-
tion 7.1) and actual deployments (Section 7.2). Additionally, we describe a case study
that highlights A3’s ability to instantiate high-performance relay selection strategies,
permitting the “anonymization” of legacy VoIP softphones (Section 7.3).
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7.1. Simulation Results

To demonstrate A3’s ability to implement diverse relay selection policies, we use
ns-3 to simulate pairwise latencies using latency data from real-world network traces.
All relay selection policies were written in A3Log. Unless otherwise indicated, all
experiments involving setting up three-relay circuits.

Bandwidth. Figure 2 shows the achieved e2e bandwidth for the Random, Tor, and
Snader-Borisov node-based relay selection strategies. Paths were constructed using
500 simulated nodes whose bandwidth capacities were set to the first 500 bandwidths
reported by Tor’s directory servers. As expected, the Tor routing policy produces paths
with significantly greater bandwidths than random selection. The Snader-Borisov al-
gorithm achieves tunable performance results – as the value of s increases, the effective
e2e bandwidth of anonymous paths also increases.

Latency. The efficacy of our Constraint algorithm for producing low-latency paths
can be observed from Figure 3. Here, Internet latencies are based on data from the King
dataset [19] – a collection of pairwise latencies computed using the “King” method [18]
between Internet DNS servers. Our network consists of the first 500 nodes from the
King dataset. Each node was configured to have a bandwidth capacity of 100Mbps.
The Figure plots the percentage of anonymous paths whose e2e latency met the con-
straint for both the Random and Constraint policies. The results from the uniform
selection policy serve as an approximation for the percentage of possible paths that
meet the constraint, and therefore indicate the difficulty of finding conforming paths.
Failure to meet the requirements specified by the Constraint strategy are due to em-
bedding errors in the Vivaldi virtual coordinate system. That is, underestimations of
network distances occasionally cause the Relay Selection Engine to incorrectly believe
that a nonconforming path met the requirements of the policy.

When the constraint is relaxed to permit paths with e2e latencies of up to 350ms,
75% and 95% of the paths generated using uniform and Constraint, respectively, ad-
here to the requirement. Even for very stringent requirements – e2e latencies of 150ms
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Dataset /Metric Relay selection strategy Min-entropy
(bits)

Probability of
presence

King (Latency)

Random 6.3808 0.012
Constraint (< 400ms) 5.632 0.020
Constraint (< 350ms) 5.632 0.020
Constraint (< 300ms) 5.632 0.020
Constraint (< 250ms) 5.358 0.024
Constraint (< 200ms) 5.552 0.022
Constraint (< 150ms) 5.340 0.024

Weighted (s=3) 6.2695 0.013
Weighted (s=9) 5.8898 0.017

Weighted (s=15) 5.6696 0.020
Tor Directory Random 6.6775 0.010
(Bandwidth) Tor 1.4218 0.373

Table 3: Min-entropy for various relay selection algorithms using latency and bandwidth datasets. The prob-
ability of presence (rightmost column) reflects the probability that a given path contains the most frequently
chosen relay, and is equivalent to 1/2min−entropy.

or less – 77% of paths produced for the Constraint policy met the requirement. In
contrast, less than 9% of random paths had latencies below the threshold.

Anonymity. In previous work, we introduced the node prevalence metric for quan-
tifying the anonymity offered by a relay selection strategy [57, 58]. Conceptually, the
node prevalence of a node is the likelihood that it will be chosen in an anonymous
path, given the current network state and chosen relay selection policy. Ideally, the
node prevalences should form a uniform distribution – i.e., all nodes should be equally
likely to appear in an anonymous path. This denies an attacker the abilities to (i) intel-
ligently predict which relays will be chosen and (ii) strategically position rogue nodes
to attract a disproportionate share of anonymous traffic.

In this work, we conservatively focus on worst-case analysis and use min-entropy
to capture the uncertainty of identifying any relay in an initiator’s anonymous path. If
pi is the node prevalence for node i, then the min-entropy is defined as

Hmin(X) = − lg max
i∈N

pi

where N is the set of nodes in the network. Strategies with greater min-entropy – and
therefore more uncertainty – offer better anonymity.

Table 3 lists the min-entropies achieved in our bandwidth (using the Tor dataset)
and latency (using the King dataset) networks. Tor’s relay selection strategy exhibits
very low min-entropy, indicating that a single high-bandwidth relay is present in ap-
proximately 37% of anonymous paths. In contrast, our results show that link-based
relay selection strategies (i.e., Weighted and Constraint) produce greater min-entropy
than node-based (that is, bandwidth) techniques. This is consistent with earlier re-
sults [58] that found that link-based relay selection policies often offer stronger
anonymity.

25



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

e2e RTT (ms)

Random
Weighted (s=9)

Constraint (< 400ms)

Figure 4: Achieved e2e RTT on PlanetLab for the
Random, Weighted, and Constraint relay selec-
tion strategies.

 0.1

 1

 10

 100

 1000

 10  100  1000

D
is

ta
n

c
e

 f
ro

m
 p

re
v
io

u
s
 c

o
o

rd
in

a
te

 (
m

s
)

Time (minutes)

Median
10%
90%

Figure 5: Median, 10th, and 90th percentile dis-
tances between coordinate updates on PlanetLab
(log scale). Initially, 90% of all relays join the net-
work at approximately the same time. Arrows in-
dicate the point at which the remaining relays join.

We also note that A3 is able to achieve a tradeoff between anonymity and perfor-
mance. For instance, in the Weighted scheme, as the value of s increases from 3 to 15,
the median combined RTT across three relay nodes decreases from 217 ms to 157 ms.
Correspondingly, the min-entropy decreases as A3 sacrifices a modicum of anonymity
for higher-performing routes with lower latency.

It is worth emphasizing that investigators may use min-entropy as a method of
quantifying the selectivity of a relay selection strategy. Strategies that incur too high a
min-entropy may not be suitable when strong anonymity is desired.

7.2. PlanetLab Results

To evaluate our platform’s utility on real-world networks, we installed A3 on ap-
proximately 75 hosts on the PlanetLab testbed.

Path Performance. Figure 4 shows the e2e path performance results on PlanetLab
for the Random, Weighted, and Constraint strategies. Weighted (with s = 9) reduced
the median RTT of paths by 319ms (43%) as compared to random selection. 63%
of paths met the fairly stringent 400ms requirement using the Constraint policy. By
comparison, only 0.2% of random paths had e2e RTTs of less than 400ms.

Information Provider Polling Frequency. In order to produce paths that adhere
to application policies, the Routing Engine must rely on the data stored in the Local
Directory Cache. If the data are stale, then routing decisions will be based on out-
dated information. However, frequent polling of the Information Providers consumes
bandwidth both at relay nodes (whose resources may already be overburdened from for-
warding traffic) and at the Providers. The rate at which information should be refreshed
is highly dependent upon the particular metric. For example, bandwidth capacities may
be fairly static, whereas bandwidth utilization varies significantly over time.

To understand this tradeoff for our Network Coordinate Information Provider, we
examined the rate at which coordinates changed under high degrees of churn. Figure 5
(log scale on both axes) plots the rate of change (as measured by the distance between
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successive coordinate updates) on PlanetLab. Since relays operate independently and
conduct coordinate updates at varying times, results are grouped at one minute inter-
vals, with the 10th, 50th (median), and 90th percentiles plotted on the graph. Initially,
90% of all relays join the network at approximately the same time, resulting in sub-
stantial coordinate movement early in the experiment. However, the system quickly
stabilizes–the median rate of change decreases to less than 2ms within 20 minutes.

To model a more realistic scenario, the remaining 10% of PlanetLab nodes join the
network after approximately 30 minutes (indicated by arrows on the graph). Immedi-
ately following the introduction of the new participants, the median difference between
coordinate updates experiences a minor jump, but remains below 3ms.

Our results indicate that latency is fairly stable (at least on PlanetLab), requiring
infrequent coordinate updates. Even when members of a large coalition of relays join
the network simultaneously, the effect on coordinate stability is minor.

Path Instantiation. Our previous evaluation validates A3’s ability to support a wide
range of relay selection policies. Next, we examine the performance of path instan-
tiation, using onion routing as our benchmark. As described in Section 5, the A3Log
implementation of onion routing requires layered public-key cryptography for onion
assembly. To isolate the effects of CPU and communication overhead, we conducted
our evaluation in a local cluster in addition to the PlanetLab testbed.

Our local cluster consists of quad-core machines with Intel Xeon 2.4GHz CPUs
and 4GB RAM running Fedora 10 with kernel version 2.6, which are interconnected by
Gigabit Ethernet. The local cluster configuration allows us to isolate the computation
overhead of onion routing.

Figure 6 (top) shows the path instantiation times (measured from the initiator cre-
ating the onion to the establishment of the bidirectional onion path) as the number of
relays increases. For each relay size, we measured approximately 40 path instantiations
and computed the median. We make the following observations: First, as expected,
the path instantiation time increases linearly with the number of relays. Second, our
RapidNet-based implementation (A3) significantly outperforms our previous P2-based
system (P2) [61] – for example, the cost of constructing the path decreases by more
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than half when using the new implementation. Finally, even for large five-relay paths,
the overhead of our system (approximately 75ms) is low.

Figure 6 (bottom) shows a similar experimental evaluation on the PlanetLab testbed,
where we again measure the median path instantiation times as the number of relays
increases. For each path size, we produce 75 paths with different sender and receiver
pairs. Error bars indicate the 10th and 90th percentiles. As before, the RapidNet-based
implementation (A3) offers a significantly reduced overhead when compared against
our existing P2-based system (P2). We also observe that path instantiation times are
significantly higher on PlanetLab than in our local cluster, which is expected given the
high loads and congestion present on the network. Nevertheless, the majority of path
instantiations complete within one second, even for five-relay anonymous circuits.

7.3. Case Study: High-Performance Anonymous VoIP Communication
To demonstrate how investigators can use A3 to customize relay selection policies

for applications with real-time communication requirements, we present a case study
of anonymous voice-over-IP (VoIP) communication. To maintain the communicants’
sense of transparent interactivity, VoIP communication channels must exhibit sufficient
bandwidth to support the voice codec and low latency and jitter to eliminate the per-
ception of delay and echo. (For example, the ITU-T requires latencies less than 400ms
and recommends delays less than 150ms for telephony [68].)

SIP Benchmarks. We first conducted VoIP benchmarks using the SIPp traffic gener-
ator [17] for the SIP protocol [54]. As a testbed, we constructed an A3 network using
75 geographically diverse nodes on PlanetLab. We selected a fixed sender and receiver,
and configured the sender to place 300 calls to the receiver using SIPp with the Random
and Constraint relay selection strategies. The latter strategy imposed a maximum esti-
mated e2e path latency of 120ms. Each “call” required the selection, construction, and
teardown of an anonymous A3 channel. During a call, the sender transmitted dummy
packets at a rate of 64 kbps (the required bandwidth for the G.711 voice codec).

Figure 7 shows the cumulative distribution of jitter rates measured by SIPp for the
two relay selection strategies. Here, the x-axis plots the average jitter rate experienced
over the duration of a call. Indicating that latency is a good predictor of jitter, the
graph shows a decrease in jitter when confining relay selection to low-latency paths.
For example, 20% of the anonymized calls that used Random experienced average jitter
above 10ms, while less than 9% of calls established using Constraint exhibited such
average jitter.

SIP Softphone. To highlight A3’s practicality, we additionally placed live and anony-
mous VoIP calls using the Linphone [24] SIP softphone. We did not modify Linphone,
and all application traffic was transparently tunneled through anonymous A3 paths via
our implementation’s tunneling service. Our network consisted of 75 PlanetLab nodes
and two desktops running in our lab. The desktops served as the caller and callee, and
calls persisted for approximately 10 minutes. Additionally, we recorded all packets on
the receiver node and applied the Wireshark protocol analyzer to the packet dump to
measure the jitter of the calls.

Figure 8 (left) shows the measured jitter over the duration of a call when the Random
relay selection algorithm was applied. (We conducted several such calls, all of which
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Figure 8: Observed jitter during VoIP calls when Random (left) and Weighted (right) relay selection strate-
gies are applied. Circles along the x-axis indicate lost VoIP frames.

exhibited similar performance.) Circles along the x-axis of the graph indicate VoIP
packets that were either lost or delivered too late to be played. Using the Random
strategy, the call experienced frequent and substantial jitter and had a loss rate of 5%.
Additionally, there was a noticeable degradation in voice quality, making it difficult to
carry a conversation using the softphone.

In contrast, Figure 8 (right) plots the resulting jitter when we applied the Weighted
(with s = 9) strategy. When paths are weighted in favor of low latency, the linphone
call quality is substantially improved: non-negligible jitter is infrequent and the loss
rate is a tolerable 0.3%. With Weighted, we were able to converse with little discernible
lag or sound loss using the softphones on our two communication endpoints.

8. Integrating A3 into Tor

The flexibility to rapidly prototype and evaluate relay selection and path instantia-
tion policies, both under simulation and deployment modes, makes A3 a useful research
tool. As a practical demonstration of A3 “in the wild”, we describe a modified version
of Tor which we call RapTor that interprets A3Log relay selection policies, enabling
flexible path selection while inheriting Tor’s maturity and userbase. RapTor is thus
useful for transitioning relay selection policies that have been tested under A3 to de-
ployable policies on the live Tor network. RapTor has the additional advantage of ben-
efiting from Tor’s strong anonymity mechanisms, and performance optimizations (e.g.
flow and congestion control, although such features could in be encoded in declarative
policies [36]).

Figure 9 shows the architecture of our RapTor system [65]. As with A3, relay se-
lection strategies are specified in A3Log (as .olg files). A RapidNet toolkit translates
the policies into C++ source files. At runtime, Tor passes router descriptors to a Tor-
RapidNet interface, which in turn translates this information into tuples for use with the
RapidNet engine. These router descriptors describe the state of each router (for exam-
ple, their observed bandwidth capacity) as reported by the Tor directory servers. The
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Figure 9: RapTor architecture. (1) The modified Tor binary sends router descriptors to Tor-RapidNet inter-
face. (2) The interface converts router information to RapidNet tuples. (3) The RapidNet engine generates a
path based on the compiled selection strategy. (4) The interface transmits the chosen path to Tor, where it is
instantiated.

engine applies the (now compiled) relay selection policy and outputs a path of Tor re-
lays that conforms to the policy. Finally, the Tor-RapidNet interface communicates this
path to the Tor runtime, where it is instantiated using Tor’s standard path instantiation
mechanism.

RapTor policies may utilize any field available in the relay descriptors. For exam-
ple, the following short (and perhaps ill-advised) Euro relay selection strategy selects a
path of three relays such that each relay is constrained to be in Europe (specified using
the country code (“CO”) parameter).5

euro path(@N,c_RANDK(3)<OR>) :-

newPath(@N), link(@N, Dst, OR, BW, CO), (CO >= 12 && CO <= 21).

We implemented such a policy on the live Tor network. Since this is running on the
actual Tor network, this precludes the use of A3’s coordinate systems (which must be
deployed globally on all participating Tor nodes). However, RapTor can still leverage
A3’s declarative interface to select along Tor’s existing relay descriptor fields. Fig-
ure 10 shows a visualization of a constructed path that used this strategy, using Tor’s
Vidalia visualizer [69]. Refer to our website [51] for more videos on additional policy
examples showcasing RapTor running on the actual live Tor network.

Overhead. Relative to unmodified Tor, RapTor incurs a modest overhead due to the
inclusion of the RapidNet declarative engine. To minimize measurement artifacts (for
example, traffic spikes), we measure overheads using private and isolated deployments
of RapTor and Tor within our local cluster environment.

Table 4 summarizes our results obtained from one RapTor client running on a Dell
Optiplex machine with 8GB memory, Intel quad-core processors (3.40GHz), and Linux
version 2.6. We observe that RapTor consumes a modest 20MB of additional memory
and incurs a 65ms average increase in path selection time as compared to Tor. Most

5Tor provides coarse-grained location data for routers, resolved using the GeoIP [37] mapping service.
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Figure 10: A Vidalia screenshot of relays selected using the euro selection strategy with RapTor. The
instantiated paths are shown as yellow lines.

Unmodified Tor RapTor
Resident memory usage 15MB 35.5MB

Path selection time 4ms 69ms

Table 4: RapTor performance overheads.

of the additional overhead is due to the use of A3’s runtime engine for executing the
policy rules. We note that the additional memory usage is modest for a commodity
PC, and the increase in latency is small relative to the actual latency for the constructed
path itself.

Importantly, path selection is a relatively rare event: by default, Tor paths remain in
effect for several minutes even if they are not used. As a straightforward optimization,
we can entirely eliminate the latency overhead due to A3Log-based relay selection by
periodically running relay selection in the background and caching the result until new
paths are needed. (Such an approach could also be applied to the vanilla version of
Tor.) We anticipate adopting this strategy for future releases of A3 and RapTor.

Transition plan. RapTor enhances Tor by providing flexible and customizable relay
selection policies. However, because RapTor relies on Tor for all other functionality, it
is less suitable for developing, prototyping, and evaluating novel anonymity protocols.
In particular, RapTor lacks the ability to experiment with different path instantiation
policies (Section 5). Since Tor is a deployed system, changes to the path instantiation
logic would make the modified version incompatible with the existing live network.

Similarly, to maintain interoperability with the live network, RapTor cannot add
additional fields to Tor relay descriptors (for example, to support virtual coordinates).
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Conversely, however, if new fields are added by the operators of the network, then
RapTor can use these new fields in customizable relay selection policies.

Finally, RapTor cannot operate in simulation mode, unless combined with a net-
work emulator [3, 71]. As noted in existing work [3, 64], conducting experiments on
the live Tor network is discouraged as it could inadvertently degrade the anonymity
of the network’s users. Nonetheless, our RapTor validates the effective use of A3’s
declarative policy engine for selecting paths on Tor.

Moving forward, we envision a workflow in which researchers prototype and eval-
uate anonymity protocols using A3, either under simulation (to evaluate the protocol
against a large number of possible configurations) or an isolated deployment (to as-
sess performance in the presence of real-network effects). If the tested policies become
widely accepted by the Tor user community, RapTor can instantiate these new policies
on the live Tor network.

9. Conclusion

This paper presents the design and implementation of A3, an anonymity platform
that enables researchers to rapidly prototype and deploy relay selection and path in-
stantiation strategies. We demonstrate that A3 provides sufficient flexibility to encode
the relay selection algorithms used by Tor, Snader and Borisov’s refinement to Tor,
and link-based approaches in only a few lines of A3Log. Results from simulations over
trace-driven datasets and our deployment on PlanetLab show that A3 produces paths
that conform to the specified policies with little computational overhead.

In addition to providing flexible relay selection, A3 also enables initiators to cus-
tomize both the manner in which anonymous paths are constructed as well as the mech-
anisms used to transport data over such paths. For example, we show how the setup
and data transmission phases of Onion Routing can be compactly specified in the A3Log
policy language.

A3’s flexibility makes it well-suited for research in anonymity networks. The plat-
form permits experimentation using a wide variety of policies, enabling investigators to
construct application-specific anonymous routing strategies. Additionally, A3’s mod-
ular design and declarative techniques permit the platform to be easily extended to
support additional metrics. By constructing small adapters that interface with Infor-
mation Providers, A3 can be adapted to support policies that reference a diverse set of
routing criteria.
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