
Accountable Internet Protocol (AIP)

David G. Andersen1, Hari Balakrishnan2, Nick Feamster3,
Teemu Koponen4, Daekyeong Moon5, and Scott Shenker5

1 Carnegie Mellon University, 2 MIT, 3 Georgia Tech, 4 ICSI & HIIT, 5 University of California, Berkeley

ABSTRACT

This paper presents AIP (Accountable Internet Protocol), a network
architecture that provides accountability as a first-order property.
AIP uses a hierarchy of self-certifying addresses, in which each
component is derived from the public key of the corresponding
entity. We discuss how AIP enables simple solutions to source
spoofing, denial-of-service, route hijacking, and route forgery. We
also discuss how AIP’s design meets the challenges of scaling, key
management, and traffic engineering.
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1 Introduction

We begin by belaboring, with a short list of examples, the trite but
true observation that the Internet is rife with vulnerabilities at the IP
layer. As amply demonstrated by recent events [7, 27, 37], even a
single misconfigured router can wreak widespread havoc on packet
delivery. Hijacked routes are routinely used to send untraceable
spam [32]. Denial-of-service attacks are so commonplace that they
hardly make the news any more. Malicious or compromised hosts
spoof their source addresses with impunity, because there is little
chance of their being detected.

There is no shortage of proposed fixes to these well-known prob-
lems. These solutions, however, often come with one or more of the
following problematic requirements:

• Complicated mechanisms: e.g., the “capabilities” approach
to denial-of-service involves fairly intricate mechanisms that
fundamentally change the free-access model of the Internet.

• External sources of trust: e.g., S-BGP [19] and similar ap-
proaches to BGP security require a trusted certificate authority
and a trusted address registry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 . . . $5.00.

• Operator vigilance: e.g., using filtering to prevent spoofing
requires network operators to keep filters properly configured.

The fact that addressing core vulnerabilities requires significant
additional mechanism, external support, or both, suggests that per-
haps we are trying to build castles on quicksand. That is, the problem
lies not with these proposals in themselves, which represent the best
our field has to offer, but with the foundation upon which they were
built. In this paper we ask: what changes to the architecture would
provide a firmer foundation for IP-layer security?

We believe that many of the vulnerabilities listed above are due
to the lack of accountability: the Internet architecture has no fun-
damental ability to associate an action with the responsible entity.
Real-world security depends on accountability (imagine, if you will,
a world where all actions could be taken anonymously), and we
think the same applies to the Internet. We thus propose the Account-
able Internet Protocol (AIP) as a replacement for the current IP. Our
proposal retains the simplicity of the current Internet; in fact, our
addressing structure (two or more levels of flat addressing) is much
closer to the Internet’s original incarnation than today’s CIDR-based
reliance on aggregation. Where our proposal differs from both the
current and past Internet is our use of self-certifying addresses for
both domains and hosts. This approach, which we first proposed in
a position paper [2], allows hosts and domains to prove they have
the address they claim to have without relying on any global trusted
authority. We present the basic AIP design in Section 2. In Section
3, we show how this foundation enables us to deal with the prob-
lems of source spoofing, route spoofing, and denial-of-service (DoS)
without extensive additional mechanisms, external sources of trust,
or extreme operator vigilance.

The AIP approach is not without its challenges. Significant con-
cern has been expressed in the IRTF and elsewhere about the scala-
bility of the current addressing structure [28]. AIP appears to make
the problem worse, in that its reliance on flat addresses makes CIDR-
like aggregation impossible. In Section 4 we argue that AIP poses
no threat to the long-term scalability of the Internet. It may be true
that AIP could not be deployed on the current router infrastructure,
but here we are more concerned with long-term technology trends
than short-term infrastructure realities. We realize that our carefree
attitude towards scaling is likely to be controversial, but we hope it
represents the beginning of a dialogue on this matter.

Any design that relies heavily on public key cryptography must
provide mechanisms to protect against, detect, and deal with key
compromise. It turns out that the most subtle issue here is how hosts
and domains can detect the presence of an imposter, and we describe
this problem and our solution in Section 5.

Finally, any change to addressing must be amenable to traffic
engineering. We describe in Section 6 how AIP provides operators
(of both transit ISPs and stub networks alike) sufficient tools to
accomplish their traffic engineering goals.
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2 AIP Design

This section describes the salient features of AIP, starting with the
structure of AIP addresses. We then discuss how AIP interacts with
the rest of the internetwork architecture, including forwarding and
routing, end-to-end (TCP) connections, and DNS.

2.1 Basic Structure and Function

AIP eschews the use of prefixes and CIDR-style addresses, returning
to a hierarchical addressing format with two or more components.
AIP may thus be viewed as a simple generalization of the Internet’s
original two-level hierarchical addressing structure where each ad-
dress had a network and a host component and routers inspected only
the (flat) network portion until the packet reached the destination
network.

Unfortunately, addressing has become more complicated with
the advent of autonomous systems (used in BGP routing) and class-
less routing (CIDR), with no clean mechanism to map autonomous
systems to prefixes. To redress this shortcoming, AIP removes the
distinction between an autonomous system identifier and the set of
routes (prefixes) it can advertise, using the same handle to name
both.

The AIP design assumes there are some number of independently
administered networks (as is the case today), operated by distinct
administrative units. Each administrative unit decomposes its net-
work into one or more accountability domains (ADs), each with a
unique identifier. Each host is also assigned a globally unique end-
point identifier (EID). Analogous to the original Internet addressing
structure, the AIP address of a host currently homed in some AD
would have an address of the form AD:EID.

To handle the case of a host that attaches multiple times to the
same AD (e.g., with both a wireless and a wired Ethernet connec-
tion), the final eight bits of the EID are interface bits that give each
interface a unique identifier: EIDif1, EIDif2, etc.

Each AD is visible in the wide-area routing protocol, so one might
think of each AD as corresponding to a BGP prefix in the current
Internet. Some ADs might be quite large, preferring to organize
themselves hierarchically internally. To support this requirement,
AIP supports multiple levels in the hierarchy, so in general an AIP
address would have the form AD1:AD2:...:ADk:EID.

Eliminating structure in the AD and EID allows us to make them
self-certifying [26]. The notion of a self-certifying name is straight-
forward: the name of an object is the public key (or, for convenience,
the hash of the public key) that corresponds to that object. In AIP,
the AD is the hash of the public key of the domain, while the EID
is the hash of the public key of the corresponding host. Although
higher layers have used self-certifying naming (e.g., hosts, data, and
services) [26, 43], and HIP [29] uses such addresses in a shim layer
between the IP and transport layer, AIP is the first architecture to
our knowledge that uses fully self-certifying addresses at the in-
ternetwork layer itself. One result of self-certification is that each
hierarchical component in an AIP address is 160 bits long (Figure 1).

Our use of self-certifying addresses follows from a simple line
of reasoning. Accountability requires a verifiable identity, and in
a network setting the only practical method of verification uses
cryptographic signatures. To use such signatures, identifiers must
be bound to their public key. Security, however, should not rely on
extensive manual configuration or globally trusted authorities, so the
keys must be intrinsic to the identifiers. Thus, we believe that self-
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Figure 1: The structure of an AIP address. For AD addresses,
the interface bits are set to zero.
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Figure 2: The AIP packet header.

certification is an indispensable aspect of providing accountability
at the network layer.

Existing schemes (e.g., S-BGP [19]) implement this binding be-
tween identifiers and their public keys using registries that map iden-
tifiers to their public keys (a PKI). Unfortunately, these registries
must be both up-to-date (via manual configuration) and globally
trusted. Unfortunately, experience with Internet address registries
suggests that one cannot rely on manual configuration to keep reg-
istries accurate and up-to-date [13, 16, 36]. Self-certifying address-
ing frees security mechanisms from undesirable trust relationships
or manual configuration. Existing IP and transport security mecha-
nisms (e.g., IPsec [18]) could also use AIP’s self-certifying address
structure to securely establish the identity of a remote host without
relying on an external infrastructure.

Because AIP uses cryptographic primitives whose strength may
degrade over time, each AIP address (Figure 1) contains a version
number that indicates what signature scheme incarnation was used
to generate the address. In Section 5, we discuss how this field
may be used to accommodate the gradual evolution of the digital
signatures used in AIP to cope with the (inevitable) weakening of
earlier schemes.

2.2 Forwarding and Routing

Packets contain the destination’s AD:EID, as shown in Figure 2.
Until the packet reaches the destination AD, routers use only the
destination AD to forward the packet. Upon reaching the destination
AD, routers forward the packet using only its EID.

Forwarding to a destination that has more than one AD proceeds
identically to reach the first AD in the destination AD stack: interme-
diate domains examine only the next hop destination AD. The desti-
nation AD’s border router examines the additional destination ADs
fields and replaces the next hop destination AD with that pointed to
in the destination ADs stack by the next-dest field, and increments
the next-dest pointer. Most routers therefore examine only the dest
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AD field (placing the burden of hierarchical routing only on those
domains with an internal hierarchy), but the entire destination stack
is preserved for the recipient to examine.

Interdomain routing: In AIP, interdomain routing occurs in much
the same way that it does today (and can benefit from any future
improvements to BGP or use a different inter-domain routing proto-
col). Today’s Internet uses prefixes as the routing objects; in contrast,
AIP’s routing objects are AD identifiers, so interdomain routing oc-
curs entirely at the AD granularity. BGP advertisements are for the
ADs. Routers in an AD maintain routing information on a per-AD
basis; i.e., an AIP routing table maps AD numbers to “next hop”
locations but does not maintain any information about EIDs in other
ADs. Each router also participates in an interior routing protocol
(e.g., OSPF) to maintain routing information to the EIDs within the
AD. We expect the internal routing protocols to handle at most a
few tens of thousands of flat entries, a capability well in line with
modern switches.

Although routing is done on a per-AD basis, path descriptions
might be done on a larger granularity. AIP continues to support
the notion of an autonomous system (AS) because an organization
may not wish to advertise its internal AD structure through its BGP
routes for various reasons, including: (1) describing paths on such a
fine granularity might increase routing churn; (2) peering with an
AS (e.g., AT&T) is simpler than peering with five sub-ASes (AT&T-
chicago, AT&T-nyc, etc.); (3) configuring policy may be easier at
the granularity of an AS; etc. The path descriptors in BGP could use
a separate set of self-certifying identifiers that would identify the
organizational entity (such as an AS) but not the smaller AD. These
path descriptors are also 160-bit self-certifying AIP addresses, but
they have no EIDs contained within them as an AD would—they are
used purely for routing to the destination AD.

2.3 DNS and Mobility

The domain name system would include an AIP-record containing
the AIP address(es) for a hostname. A host might have multiple
addresses if it had direct upstream connectivity to multiple domains
ADi; the host would then have addresses ADi:EID in its AIP-record
for each domain. If a host had multiple interfaces, an entry would
appear as AIP addresses returned in the AIP-record.1

Mobility support is based on the self-certifying endpoint identifier
(EID) part of the addresses and the use of an end-to-end mobility
protocol. Transport protocols on top of the AIP layer bind to the
source and destination EIDs, which remain unchanged while hosts
roam from one AD to another, even though the AD part of the ad-
dresses changes. Thus, to keep traffic flowing it is sufficient for a
roaming host to instruct its remote hosts to migrate their traffic from
an old address to the new one. For that purpose, AIP adopts the
mechanisms of TCP Migrate [38] and HIP [29].

For initial rendezvous, mobile AIP hosts maintain their current
location (AD) in DNS. AIP’s self-certifying structure again simplifies
handling dynamic DNS: the DNS server can be configured to allow
an EID to update an existing host → AD:EID binding that currently
points to that EID. The server and DNS operators do not need to
maintain a separate update key to control dynamic updates. The
same keying advantages apply to a faster-moving host that wished
to use a “home agent” to relay traffic to it.

1To achieve the full benefits of AIP, the DNS records would best be served using a
secure DNS variant to prevent an attacker from directing clients to alternate destinations
by modifying DNS responses. Most of AIP’s other advantages, including anti-spoofing,
secure BGP, and shut-off techniques, do not depend at all on DNS.

3 Uses of Accountability

Given AIP’s basic design, we now describe how this accountability
foundation can be used to provide better network-layer security.

3.1 Source Accountability: Detecting & Preventing
Source Spoofing

Source address spoofing refers to the problem of a host using a source
address that has been assigned to another host. If a source uses a
spoofed address at which it cannot receive packets, then higher-layer
protocols that use a three-way handshake before instantiating any
state or expending computation will not be significantly affected.
Not all higher-layer protocols use such a mechanism, so detecting
this situation will be useful. A harder-to-detect form of spoofing
occurs when a malicious or compromised host uses a source address
at which it can to receive packets. Such attacks have been observed
in the Internet [39] and are used, e.g., to send spam [33]. These
attacks can arise because of spurious route propagation or because
the spoofing host is on a shared network (e.g., wireless). We are
interested in detecting both forms of spoofing. We are also interested
in limiting the damage that can be caused by address minting, in
which a host can create a large number of distinct (unused) addresses
for itself.

One approach to coping with spoofing is to use ingress filters,
but the success of this approach has been rather limited in prac-
tice [6, 10]. We believe that this lack of success has less to do with
the mechanism itself (routers implement it at line rates), but reflects
our more general thesis that schemes that depend on correct operator
action are often only marginally effective. AIP’s source account-
ability, in contrast, uses self-certifying addresses to develop simple
mechanisms that verify the source of packets, dropping the packets
if the source addresses are spoofed. Our mechanism requires no
configuration or interaction by operators or end-users. Its goal is to
prevent spoofing by entities not on the direct path from the source
to the destination—a router on-path from A to B could still spoof
packets from A, though it could not sign them to prove authenticity.

AIP’s source accountability mechanism extends (and renders more
widely useful) “unicast reverse path forwarding” (uRPF) [11]. uRPF
is an automatic filtering mechanism that accepts packets only if the
route to the packet’s source address points to the same interface
on which the packet arrived. uRPF is currently useful in an edge
network to prevent spoofing by single-homed clients, but it cannot
cope with multi-homed customers and, because of route asymmetry,
it does not work in the core. AIP’s source accountability mechanism
essentially combines uRPF with a second mechanism to automati-
cally verify if packets are valid even if they arrived on an interface
other than the reverse route to the destination.

Recall that the AD and EID components of an address are hashes
of public keys. We use these public keys to validate the source
address of a packet in two places. First, each first-hop router2

verifies that its directly-connected hosts are not spoofing. Next, each
AD through which a packet passes verifies that the previous hop is a
“valid” previous-hop for the specified source address. The process
for verifying a packet’s source address, AD:EID, summarized in
Figure 3, is as follows:

EID verification: If the first-hop router or switch, R, has not re-
cently verified the source host, it drops the packet and sends a
verification packet, V , to the source. R avoids maintaining state for

2By first-hop router, we mean the first router trusted by the network operator of the
stub network to which the host in question belongs.
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Figure 3: Process for verifying a packet’s source address.

Let:
rs = Per-router secret, rotated once per minute

HMACkey 〈M〉 = Message authentication code of M

H 〈P〉 = Hash of P

iface = Interface on which packet arrived

Source SAD : SEID → Dest DAD : DEID
Packet P.

Router R1 → Source:
Verification packet V =

HMACrs 〈SAD : SEID → DAD : DEID,H 〈P〉 , iface〉
Source → R1:

{accept,KSEID ,V}K−1
SEID

Figure 4: Source address verification protocol.

each V using the protocol in Figure 4. V contains the source and
destination AIP addresses of the original packet, the packet’s hash,
and an encoded representation of the interface on which the packet
arrived. R signs V with a message authentication code (HMAC)
using a secret, rs, known only to R, which it rotates periodically
(e.g., once per minute). The sender must prove that it has identity
EID by signing V with the private key associated with EID. If the
host produces the correct signature, then R caches this information
and forwards subsequent packets as well. The host must re-send the
packet that generated the verification packet, because R drops all
unverified packets. For complete protection, this mechanism might
need to be implemented in network switches, or would need to be
linked to some switch-level ARP security mechanism.

The verification packet includes the hash of the packet that trig-
gered the exchange. Hosts must not respond affirmatively to verifica-
tion requests for packets they did not originate. Therefore, each host
maintains a small cache of the hashes of very recently sent packets.
The random packet ID in the AIP header ensures that each of these
hashes is highly likely to be unique.

AD verification: When a packet crosses an AD boundary, the in-
coming AD must decide if the source address is valid. For a packet
entering AD A from AD B, AD A performs the following checks:

1. If A trusts B to have performed the appropriate checks on the
packet’s source address (as might be the case between pairs of
tier-1 or mutually trusted ISPs), then A forwards the packet.

2. If A does not trust B, then A performs uRPF checks to determine

whether the packet arrived on the same interface that the return
route to its source would take. If uRPF succeeds, A forwards
the packet.

3. If these tests fail (e.g., in the case of route asymmetry), A drops
the packet and sends a verification packet to AD:EID using
the same protocol used for EID verification in Figure 4. If
EID replies affirmatively, the router adds an entry permitting
subsequent packets from AD:EID to pass when they arrive on
the verified interface.

Below, we discuss the properties this mechanism provides and
how routers can scalably handle large numbers of flows.

Accept cache management: When a router receives a signed re-
sponse to a verification packet, it adds an entry to its accept cache
that permits the passage of subsequent packets from AD:EID arriv-
ing on interface iface. To bound the size of the accept cache, a router
with more than a threshold number of entries T for a single AD will
upgrade the accept cache entry to an AD-wildcard accept: AD:* and
will remove the individual AD:EID entries.

This state required by this mechanism scales well with the number
of hosts because of the division of filtering responsibility in the
network. Routers need not maintain accept cache entries for any
ADs that pass uRPF checks, or for sources coming from trusted
domains. As a result, we view the tasks of routers in a network as
follows:

Border routers must verify the source addresses of packets ar-
riving from customers whose return path does not go directly to the
customer. Such customers are primarily those who use an ISP or
link for backup routing.

Interior routers can trust the verification decisions made by
border routers and need not perform any further actions.

Peering routers to large peers will likely be configured to trust
the peer’s verification based upon a bilateral contractual agreement.
Such agreements benefit both parties, reducing their filtering load.

An attacker, then, can only increase the number of accept cache
entries by T for each AD he controls. Below, we discuss how ISPs
can limit the number of ADs that a malicious customer can create.

Protecting those who protect themselves: The anti-spoofing pro-
tocol and accept cache management provides defenses for ADs that
protect themselves. The protocol as described admits the following
insider attack against a source AD:

DestAD

Spoofer

R
1) Spoofed

Packet

2) Nonce

4) Verify
Insider

3) Verify
    (tunneled to
      spoofer)

1. An attacker outside of AD sends a spoofed message:

AD : EIDinsider → Dst

2. A router along the path replies with the verification packet and
sends it to the colluding insider, AD : EIDinsider.

3. The insider creates a verification packet, and tunnels it to the
spoofer.
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4. The spoofer sends the response to the verification packet to R,
instructing the router to permit the communication.

If there are enough compromised hosts inside AD, they can create
enough verification packets to cause a target router to upgrade to a
wildcard entry allowing AD:* from the spoofing domain, and the
spoofer will then be able to spoof arbitrary EIDs within AD. This
number must exceed the upgrade threshold T . We discuss below
how ADs can prevent arbitrary address minting by their nodes.

The effect of this mechanism is that an AD that has few com-
promised nodes and that does not permit its nodes to spoof a large
number of EIDs cannot be spoofed, encouraging good Internet hy-
giene. An AD with many misbehaving hosts could be spoofed by a
sophisticated attacker. It is noteworthy that this mechanism ensures,
e.g., that an attacker can only mount a DoS reflector attack against a
victim that he has already extensively compromised. Note that such
spoofing does not affect security-critical traffic; such traffic can still
be unforgeably signed and encrypted using the EID’s key.

A remedy to this attack is to also require an AD domain signature
on the verification packet responses from AD and to have the router
verify that the interface on which the verification arrived matches
the interface of the packet that initially triggered the verification
packet. The verification packets would then be sent from the insider
to a designated domain signer inside AD, which would forward the
response to R. The cost of this mechanism is that it requires that the
path from the source node to the destination match the path from the
domain signing node to the router. Whether the increased security is
worth the increased complexity is an open question.

Limiting address minting: AIP detects address spoofing, but noth-
ing in the design prohibits a malicious host from creating an arbi-
trary set of EIDs, or a malicious domain from making up routing
announcements for an arbitrary number of fake ADs. Minting could
be used for DoS purposes or to circumvent filters that blocked a
particular host or domain.

We do not propose an architectural solution to this problem, but
rather note that AIP admits a straightforward engineering solution:
Because an attacker cannot claim the identity of another, an AD can
simply limit the number of new EIDs or ADs that each of its hosts
and customers are allowed to announce. The solution is similar in
both cases:

EID limiting: The first-hop router or switch places a unique
EIDs/second limit on each port. This mechanism already exists in
many switches as “Port Security” to guard against MAC spoofing.

AD limiting: Today, operators may or may not configure limits
on the set of prefixes and ASes their customers announce, either
manually or from databases such as the RADB. Using AIP, operators
instead merely limit the number of unique ADs that their customer
may announce. Using such a limit gives the customer flexibility
about how they run their network (and does not require them to
contact their ISP to add a few new ADs), but prevents gross abuse.

3.2 Shut-off Protocol

Although AIP’s source accountability directly eliminates some
classes of DoS attacks that rely on source address spoofing, other
attacks remain unaffected, such as flooding a victim with traffic
from compromised hosts. AIP’s self-verifying addressing enables a
natural way to throttle unwanted traffic, in which a victim host sends
an explicit “shut-off” message to a host sending such traffic. This
method uses an idea first suggested by Shaw to throttle DoS traffic
from “well-intentioned” hosts [35], but AIP enables a considerably

simpler and more general solution than the current IP architecture
does. The approach is also similar to the AITF mechanism [4],
except that we rely on network interface cards (NICs), not gate-
way filters, and again benefit from the properties of the addressing
scheme, to develop a new shut-off protocol.

Although the vulnerabilities caused by the complexity of mod-
ern software make it difficult for the owners to prevent compro-
mises, they are typically well-intentioned and do not launch attacks
of their own volition. We envision having these well-intentioned
owners equipping their hosts with a smart network interface card
(“smart-NIC”) that helps control the network behavior of the host
by selectively suppressing or rate-limiting packet transmission.3

Protocol: The smart-NIC records the hashes of recently sent packets
and accepts a special class of packets called shut-off packets (SOPs).
A SOP sent from host X to host Y includes a hash of a recent packet
sent to X from Y and a time-to-live (TTL), all signed by X :

Zombie → Victim: Packet P.

Victim → Zombie:{
key = Kvictim EID,TTL,hash = H

〈
P〉}K−1

victim EID

Upon receiving an SOP, the smart-NIC first checks to see if it
had sent a packet whose hash matches that in the SOP (discussed
below). If not, it disregards the SOP; if so, it installs a filter suppress-
ing further packets from Y to X for the duration of the TTL. The
mechanism is designed to “fail-open”: the TTL prevents permanent
shut-off and the filters are stored as soft state.

AIP’s combination of self-certifying addresses and spoof preven-
tion makes this approach feasible. X’s signature and its key assure Y
that X (or at least someone with X’s private key) has sent the request.
The hash of a recent packet proves that Y has recently sent a packet
to X . This proof is necessary to prevent replay attacks, to prevent
an attacker from exhausting the filter state in the NIC to allow them
to continue attacking a chosen victim, and to ensure that even if an
attacker circumvents AIP’s anti-spoofing, it cannot cause a remote
machine to block communication with the victim.

It is important that the shut-off process not require a three-way
handshake because a host under attack may not receive the return
packets.

We note that this mechanism will not stop particularly determined
attackers. Out-of-band mechanisms will undoubtedly still be needed
to cope with them. In Section 5, we discuss how AIP enables self-
certifying registry entries about domain ownership, etc., that can
facilitate out of band remediation.

Preventing bypassing: The smart-NIC must protect its firmware
and configuration by requiring physical access to modify it, e.g.,
by plugging it into a USB or serial interface. As a result, the shut-
off mechanism is unmodifiable from the host. Attackers cannot
circumvent the mechanism, as every packet goes through the NIC to
reach the host.

Preventing preemptive shut-off: An attacker might begin an
attack by sending a shut-off packet to the victim, to prevent the
victim from stopping the attack. To prevent this attack, the smart-
NIC permits the victim to send a low rate (e.g., 1 packet per 30
seconds) of shut-off packets to an already-blocked host.

Replay prevention: An attacker might try to spoof SOPs to a
victim to prevent it from communicating with a legitimate host. Our

3Note that we assume well-intentioned owners only for preventing botnet-style DoS
attacks; other protocols built using AIP, such as the anti-spoofing protocol, protect
against malicious host owners as well.

343



mechanism safeguards against this attack in two ways. (1) All pack-
ets must be signed by the victim’s private EID key. The legitimate
host would therefore have had to previously send a shut-off packet
to the victim. Spoofing a SOP is difficult under AIP because of
its address spoofing prevention, but it could happen if the attacker
subverted the address spoofing prevention at the victim or at the
legitimate host. (2) The SOP must include the hash of a previously
sent packet from the victim to the legitimate host. In addition to
whatever changing content is in packets (sequence numbers, nonces,
etc.), AIP uses its 32-bit random packet ID to ensure that previously
sent packets cannot be used as the basis of a SOP replay attack.

A replay attack can only be mounted when the attacker has al-
ready sniffed a legitimate shut-off packet between the two hosts in
question. This requirement already sets a high bar for attempting to
abuse SOP packets, and so we are willing to accept a very small false
positive rate for replay prevention to reduce memory requirements.
The smart-NIC therefore records the transmitted packet hashes using
a Bloom Filter, sized as follows:

Packets per second: The majority of current hosts transmit far
fewer than 50,000 packets per second. Because the shut-off protocol
targets the common case of well-intentioned end-hosts, servers that
generate an unusually high volume can simply disable the shut-
off protocol on their NICs with little impact: these machines are
comparatively few and are typically professionally managed.

False positive rate: The maximum shut-off duration is 5 minutes.
We size the false positive rate such that an attacker would have to
flood a victim with a high volume of packets for roughly this duration
before finding a filter collision. Each shut-off packet is roughly 550
bytes (most of which is a 2048-bit public key and signature). For
recency, we require the victim to send a packet received within 30
seconds to reduce the state that the NIC must maintain. We desire
for an attacker to have to send 100 Mbits/s of traffic for ≥ 5 minutes
(about seven million packets) to cause a 5 minute interruption. We
therefore use as Bloom filter parameters:

n elements = 1,500,000

m bits in table = 64×220 (8MBytes)

k hash functions = 12

The probability of a false positive is 2.9× 10−8, or about 1 in 35
million. The 12 hash functions can be computed as 26-bit sections
of a hash computation such as SHA-384. Note that this false positive
rate is quite conservative: the probability is much lower if the source
has been (as would be typical) transmitting at less than 50,000
packets per second.

Because this mechanism is designed to defend against high-
volume floods, the NIC can simply clear the Bloom filter every
30 seconds. If a victim is unlucky and responds to a packet sent just
before the filter is cleared, it can try again a few seconds later.

3.3 Securing BGP

AIP greatly simplifies the task of deploying mechanisms similar to
S-BGP [19] to secure the routing system against hijacking and route
forgery.

This task is difficult today because IP lacks a firm binding between
public keys, autonomous systems, and the prefixes announced in
routing messages. As a result, securing BGP requires external trusted
registries that bind, e.g., an owner’s public key to a prefix or to an
AS number. In part due to the difficulty of creating, maintaining, and
trusting these registries, the deployment of secure routing protocols

has languished despite considerable attention in both the research
and operational communities.

AIP eliminates the need for these databases: In AIP, the network
an AD (or AS) announces is the AD itself, which eliminates the need
for key-to-AS registries. Only a router or network in possession of
the private key corresponding to AD can generate authentic routing
messages. As a result, secure routing follows naturally from AIP,
using mechanisms nearly identical to S-BGP:

1. Operators configure a BGP peering session. By identifying the
peer AD, the session is automatically aware of the public keys
that should be used to verify announcements from the peer and
to negotiate an encrypted communication session with the peer.

2. BGP routers sign their routing announcements. A router re-
ceiving a routing update verifies the signature before applying
the changes or forwarding the announcement. We discuss the
resource requirements of the resulting load in Section 4.2.2.

3. Each router must be able to find the public key that corre-
sponds to an AD. These keys could be transmitted in-line with
BGP messages, or could be sent as an out-of-band, slowly
changing database, as in S-BGP. As discussed in Section 5,
this distribution is quite simple: because ADs are the hash
of the corresponding public key, the bindings are completely
self-certifying.

4 Routing Scalability with AIP

In this section, we examine the question of whether the combination
of AIP and the continued growth of the Internet will cause some
aspect of Internet routing, such as the forwarding and routing infor-
mation base (FIB and RIB) sizes, update rate, etc., to exceed the
capabilities of future hardware to support in a cost-effective manner.

We find through our analysis—using even conservative estimates
for future hardware capabilities—that neither the continued growth
of the Internet nor the introduction of AIP should impose an undue
scaling burden. ISPs may still find the effects of routing growth
undesirable, because they could be forced to upgrade routers, but
our analysis is strictly one of the possible: we argue that future
routers will be able to support the larger routing table sizes without
an increase in price relative to today’s routers.

Resources affected by routing growth: We begin by more pre-
cisely defining what we mean by “routing growth” and the physical
resources that would be affected by such growth:

Growth of Resource affected
Routing table size DRAM
FIB size DRAM/SRAM/CAM
Update processing CPU

To understand the effect of growth upon these resources, we
first examine current Internet growth curves and survey several
predictions for future routing table sizes and update rates. We then
estimate the effects of moving to AIP-style routing. Using the
estimates for routing table size, FIB size, and update rate, we then
explore whether semiconductor technology trends will be able to
meet these demands at constant cost.4

4In this analysis, we count “backbone” BGP announcements. Many providers have
significantly more prefixes de-aggregated internally or from layer-3 virtual private
networks (VPNs). Our focus here is on the change in the relative numbers of prefixes
more than on the absolute number. An assumption in this analysis, therefore, is that the
internal prefixes will scale at the same rate as the external prefixes.
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Figure 5: Routing table size growth in prefixes. The exponential
fit represents a 17% yearly table growth. The bump in 2001 is
most likely due to the dot-com boom and subsequent crash.

Year 17% Growth Fuller
2008 Observed: 247K
2011 396K 600K–1M
2020 1.6M 1.3M–2.3M

Table 1: Prediction of table sizes. The first column shows the
size if growth continues at 17% per year; the second column
reproduces the predictions from Fuller et al.

4.1 Routing Growth Estimates

Diameter of the Internet / AS path length: According to
Leskovec et al. [23], the AS-diameter of the Internet has been shrink-
ing. From November 1997 to January 2000, the average out-degree
of an AS increased from roughly 3.6 to 4.1, and the AS diameter
decreased slightly from nearly 4.8 to 4.6 AS hops. Our analysis
points to a slightly different conclusion: the average AS path length
received at Routeviews in December 2007 was 4.52 entries (2.3
billion announcements) while in December 2001 it was 4.30 (387
million announcements). Both results support the conclusion that, if
current trends continue, the increase in the AS-diameter in the future
is likely to be small.

Routing table size: Our best estimate for routing table growth is
that for the last ten years, the table size has been growing at roughly
17% per year. Figure 5 shows the table growth with both linear
and exponential regression lines.5 The exponential fit is size =
2.07 ·104 · e4.253·10−4·day with day 0 being June 30, 2008. The 17%
growth prediction is compatible with predictions from Fuller et
al. [12]; if past and current trends continue, the routing table is likely
to have about 1.6 million entries by 2020 (Table 1).

Churn: The amount of routing traffic appears to grow roughly lin-
early with the routing table size, but the picture is less clear than
the simple table scaling. Figure 6 shows the number of prefixes
announced and withdrawn per week by the AT&T RouteViews peer.
During 2002, the average daily volume was 122,966 updates per day.
During 2007, the number was 304,996, an increase of 248%. The
routing table grew from 107,424 prefixes (1.145 updates/prefix/day)
to 247,167 prefixes (1.234 updates/prefix/day) during the same pe-

5Data from Geoff Huston.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

2003 2004 2005 2006 2007 2008

B
G

P
 u

p
d

a
te

s
 p

e
r 

w
e

e
k

Year

# Updates (AT )

Figure 6: The number of prefixes announced and withdrawn
per week by the RouteViews AT&T peer router.

Year Growth to 1.5 up/prefix Fuller/Huston
2006/7 305K 700K
2011 593K -
2012 694K 2.8M
2020 2.4M -

Table 2: Predictions of total BGP update volume.

riod, an increase of 230%.6 The change in churn appears to be
affected by more factors than simply growth, as the rapid increase
and subsequent correction in 2005–2006 indicate. In the absence
of more information, we assume that per-prefix churn will remain
relatively stable or increase slightly in the coming years, using 1.5
updates per prefix per day as a conservative estimate.

Our resulting predictions (Table 2) are smaller than the
Fuller/Huston predictions; we believe this difference arises for two
reasons. First, one set of Huston’s measurements focused mostly on
2005, which appears in retrospect to have shown anomalously large
growth in routing volume (in fact, volume decreased markedly in the
following year). Second, the measurements may differ by a constant
factor simply because of the different vantage points—as Table 2
shows, the 2006-2007 measurements themselves differ by a factor of
two. Fuller’s caveat that these numbers represent a “cloudy crystal
ball” (low-confidence projections) holds for our churn analysis as
well.

The overall rate of updates with these predictions is small (1.6M
daily updates is only 28 updates/sec on average). The more impor-
tant update rate is therefore during full table updates. When a
BGP session resets, by 2020, the routers will have to exchange ≥ 1.6
million prefixes with each peer, ideally in a few seconds.

4.2 Effects of Moving to AIP

AIP will have several effects on routing, both positive and negative.
RIB and FIB size increase: The move to AIP will increase the

size of the RIB and FIB in two ways. First, the size of prefixes
and ASes will increase from their current 32 and 16 bits to 160
bits. Second, just as the move to S-BGP would require, a router
will need to store a copy of each AD’s public key. For domains that
use a two-level key hierarchy (Section 5), this requirement will be

6These numbers include session resets to the monitoring node.
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Component 2007 2011 2020
DRAM capacity (Gbits/cm2) 1.94 5.82 46.52
DRAM access time (ns) < 15 < 15 < 15
SRAM capacity (Gbits/cm2) As transistors
SRAM access time (ps) 400 - 70(2018)
109 Transistors/CPU 1.1 2.2 17.7
DRAM $/Gbit 9.6 2.4 0.3
High-perf CPU $/109 transistors 122 30 1.3

Table 3: ITRS projections for DRAM, DRAM, and CPU.

doubled. While the number of RIB entries is proportional to the
number of peers, each AD’s full key must only be stored once. For
this discussion, we assume 2048-bit RSA public keys.

An important change with AIP is that FIB lookups become flat.
The effects of this change are somewhat difficult to measure, and
so we deliberately leave this improvement out of our calculations
to ensure a worst-case estimate for AIP. In practice, we expect
flat lookups to require roughly 5× fewer memory accesses than
prefix-based lookups would using modern DRAM-based lookup
algorithms [40].

CPU costs for cryptographic operations: The cryptographic
costs of AIP are very similar to those for adopting S-BGP. Routers
must verify signatures on incoming routing announcements and sign
their own announcements.

Diameter changes: The move to AIP may result in some large
domains being split into multiple ADs. We envision, for instance,
that a large ISP might split itself into a transit AD and a number of
ADs from which it allocates direct customers. As a consequence, the
move to AIP might increase the diameter of the network, perhaps by
two or three AD-hops. This discussion is, of course, highly specu-
lative, as it depends on the reaction of the operational community
to AIP. As a result, we present scaling numbers with the diameter
unchanged and with it increased.

4.2.1 Semiconductor Growth Trends

The International Roadmap for Semiconductors (ITRS) is the semi-
conductor industry’s joint technology roadmap for semiconductor
technology development through 2020 [1]. Its predictions are an
engineering extension of Moore’s Law, for the last 20 years brought
to fruition by the resultant industry efforts to meet those predictions.
Whether they will continue to hold through 2020 is uncertain, but
past experience suggests that the roadmap is surprisingly accurate.
A noteworthy feature of the 2005 and 2006 ITRS updates is that
they reduce their doubling predictions from 1.5 years (historical) to
3 years.

In general, the roadmap predicts a continuation of the aggressive
growth observed thus far (Table 3). Both DRAM density and CPU
performance are expected to improve dramatically. While SRAM
access speeds will similarly increase, conventional DRAM access
and write times are expected to improve only modestly, unless a shift
to faster memory technologies such as MRAM occurs.

4.2.2 Resource Requirements

RIB storage (DRAM): The RIB must hold one copy of the routing
table from each peer, and requires that the DRAM be able to sustain
enough throughput to load this data from peers at high speeds.

System 2007 2011 2020
IP 0.386 ($30) 0.711 ($14) 2.9 ($7)
AIP 1.0 ($81) 1.7 ($34) 7 ($17)
AIP-Diam 1.3 ($103) 2.0 ($40) 8.2 ($21)

Table 4: RIB memory requirements projections in GBytes, and
the projected production costs of that memory. The actual cost
projections ignore scaling factors due to low volume or high
speed requirements, but the cost trend should apply to general
purpose as well as specialized memory. AIP-Diam shows the re-
quirements if AIP causes a 60% increase in the diameter of the
Internet.

In the worst case, the RIB is stored as separate entries for each IP
prefix (today) or AD (in AIP), with no compression of shared AS
paths. Today, each AS takes 16 bits; in the future, each AS will likely
require 32 bits [42]. With the diameter of the Internet not increasing
substantially, we assume the average AS path length will be 6 (today
it is slightly under 5). We conservatively assume that each router
may have up to 20 peers sending it a full table. As discussed above,
moving to AIP will increase RIB and FIB entries from 32 bits to
160 bits, with a corresponding increase in the next-hop and each
AD component of the path. In addition, for each AD entry (not
per-peer), the router will require roughly 512 bytes of memory to
store its public key.

Table 4 shows the required memory for both IP and AIP, with the
cost of that memory as projected from the ITRS roadmap. Unsurpris-
ingly, AIP increases the amount of memory required for RIB storage
by about a factor of three. With DRAM cost scaling, however, by
2020 the memory needed to store an AIP table will cost less than the
memory needed to store a standard IP routing table today.

FIB storage (DRAM, SRAM, or CAM): Router manufacturers ap-
pear to use all three common technologies for FIB storage: DRAM,
SRAM, and TCAM.7 As we have seen, the scaling trends for DRAM
exceed AIP’s growth rate. The results for SRAM are similar: SRAM
density is expected to grow 16×, and the FIB will grow only 5−9×
(Table 4), leaving adequate room to handle the larger but flat AD
entries. The same transistor density scaling affects TCAMs.8

Update processing (CPU): The major challenge for update pro-
cessing is the time required to load a full copy of the table from
every peer when a router comes online. This load scales directly
with the size of the routing table (Table 1).

Measurements of BGP table load times by Wu et al. show that
an older Cisco 3620 router (discontinued in 2003) could process
2,493 updates per second during bulk loads, using a single core
80 Mhz RISC processor [45]. This lower-end router would have
required about 48 seconds to load a 120,000 prefix table from each
peer, or about sixteen minutes for all peers. Scaling that router to a
single-core 3.0 GHz modern CPU would suggest a rough 30× speed
increase, suggesting that a modern router with a high-performance
routing CPU could load 20 peers tables of 240K routing table entries
in about 1 minute.

IPv4 routing tables are expected to grow by a factor of between 5
and 9 by 2020 (Table 1). In this period, the number of transistors per
CPU is expected to grow by a factor of 16 (Table 3). Disregarding

7http://www.firstpr.com.au/ip/sram-ip-forwarding/
router-fib/

8Such large SRAMs could become a “niche” product, resulting in a constant factor
increase in their cost relative to other products with the same density. The technology
would still be possible, albeit more expensive.
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cryptographic overhead for the moment, a future AIP router’s CPU
should be able to load its full tables in about 30 seconds.

Routing updates may also be constrained by the DRAM band-
width needed to process them. If an AIP routing table in 2020
requires 8.2 GBytes of memory, even modern DDR2-677 memory
(about 1.7 GBytes/s average write bandwidth) could handle the raw
load bandwidth requirements in a few seconds.

Cryptographic overhead: Receiving a routing update requires val-
idating an RSA signature. A 2.83 GHz modern quad-core CPU can
verify about 35,000 2048-bit RSA signatures/sec and can create 935
signatures/sec, a computation that is both easily parallelized and
optimized in hardware.9 By 2020, a commodity processor should be
able to verify 480K and create 13K signatures per second, respec-
tively. This scaling is quite favorable: today, verifying one signature
for each route announcement from each of 20 peers would require
164 seconds; by 2020, performing this same verification of entries in
an AIP-SBGP table would require about 1.6Mroutes∗20peers

480,000sigs/sec = 66
seconds. Unfortunately, neither of these numbers is quite as good
as one might like for table load times, so cryptographic acceleration
may still be necessary for either IP with S-BGP or for AIP.

In summary, though some of the modeling in this section is specu-
lative, technology trends suggest that routing scalability with respect
to memory consumption, CPU overhead, and network bandwidth
are all manageable.

5 Key Management

As with any system that relies heavily on key-based cryptography,
AIP faces three general problems in key management:

1. Key discovery: Sources must be able to discover the destina-
tion address (key).

2. Individual key compromise: Domains and hosts must cope
with the possibility that their key might be compromised.

3. Cryptographic algorithm compromise: In the long term,
AIP must be able to migrate to newer digital signature and
hash algorithms as earlier algorithms are weakened.

5.1 Key Discovery

Because a host’s key is simply its address, the key is obtained au-
tomatically once the address is known. Addresses can be obtained
as they are today (Section 2.3): manually, using secure or insecure
DNS, or using any other lookup service. As a network-layer proto-
col, AIP is agnostic to the particular lookup mechanism used, though
an insecure lookup mechanism presents an obvious avenue of attack.

We also assume that peering ADs can identify each other out-
of-band. This allows them to exchange public keys in a trusted
manner, and also ensure that a compromised key does not lead to
misidentified peers (i.e., if an attacker compromises a domain’s key,
it can’t fool another domain into peering with it).

5.2 Key Compromise

There are three issues related to key compromise that we must
consider: protecting against compromise, detecting compromise,
and dealing with compromise.

The first and third of these are relatively straightforward. To
minimize the chance of compromise, hosts and domains should

9Timing from OpenSSL 0.9.8g openssl speed -multi 4 rsa2048 on an
Intel Xeon E5440.

follow established key management practices, such as using time-
limited secondary keys for all online signings, and keeping the
primary key offline and under strict control. Advances in trusted
computing hardware may assist in keeping keys safe.

If a host key is compromised, then the host merely adopts a
new key and inserts it into its DNS record in the same manner it
inserted its previous key. That is, whatever (possibly out-of-band)
authentication and trust mechanisms established its identity with
DNS will allow it to change its key.

If a domain key is compromised, then the domain revokes its
key through the interdomain routing protocol, and via the public
registries discussed below. The only challenge in this scheme is that
key revocation must propagate down every path that carries a route
for the AD, because after the notice is processed, the route will be
withdrawn as invalid.

Beyond these straightforward problems lies a more insidious risk.
A very real danger of crypto-based systems such as AIP is one
of false confidence: with a compromised key, an attacker could
silently impersonate his victim for quite a while before a victim
noticed. Much like identity theft in the real world, recovering from
a compromise is a hassle, but having it go undetected for a long
period can be catastrophic. As a result, we devote the rest of this
section to exploring mechanisms to allow both hosts and domains
to rapidly detect how and where their identity (key) is being used.
While none of these mechanisms other than the domain public key to
ID registry are necessary for AIP’s operation, we believe that some
form of these mechanisms would substantially boost the security of
the resulting system.

Our answer to this challenge is to maintain a public registry of the
peers for each AD and the ADs to which each EID is bound. While
the reader may complain that such registries have failed before,
the crucial difference here is that these registries only store self-
certifying data which has the advantages that:

• There is no need for any central authority to verify the correct-
ness of the registry’s content. The registry merely verifies the
signature before storing data.

• The registry can be populated mechanistically by the entities
involved, with no need for human intervention or involvement.
Thus, this approach does not rely on operator vigilance, merely
protocol correctness.

We now describe these registries and their use in more detail.

Registries: We assume the existence of global registries where
principals can register various cryptographically signed assertions.
We also assume the existence of per-domain registries that can be
housed by the ISP itself.

Let KA represent the public key of A. The various classes of
assertions, each maintained in a table, are:

• Keys: {X ,KX}

This table connects a domain or host’s address (its public key
hash) to its actual public key. There is no need for a signature
since an AD or EID X is merely the hash of the corresponding
key KX .

• Revoked keys: {KX ,is revoked}K−1
X

To revoke a key, the key owner inserts an element into this
table. Once an entry is written, no further modifications of it
are permitted.
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• Peerings: {A,KA,B,KB}K−1
A

{A,KA,B,KB}K−1
B

If A and B are peering, they each sign such a statement and
both store it in the registry.

• ADs of EID X : {A,X}K−1
A ,K−1

X

When X enters an address AD : X in its DNS record, as dis-
cussed below, it must present a certificate from AD that AD is a
domain of X . When X asks A for this certificate, A also submits
this certificate to the global registry. This table has one entry
for each AD that X belongs to.

• First hop router of X : {Router,X ,MACX}K−1
Router ,K

−1
X

When a host registers with its first-hop router, the first-hop
router registers this fact in a domain-wide database (per-domain
registry). It also registers X’s MAC address.

Clients can do a lookup using the hash of the key to find the
relevant data.

Maintaining the domains registry: One challenge is keeping the
domains registry reasonably up to date. A compromised host has
no incentive to list itself, so this responsibilities lies with the AD
providing a home for the compromised EID. To encourage such
behavior, we propose forcing the domain to sign A : X entries before
the DNS servers and resolvers will accept them as the result of a
DNS resolution. Any client who performs a DNS lookup, then, can
with confidence insert the results in the domains registry. A DNS
entry thus must bind name → {AD : EID}K−1

AD ,K−1
EID

. A hierarchical
address must be signed by all domains in the address.

Using the registries: These registries are used by both domains and
hosts to check for compromise.

• Each host X periodically checks a global registry for which
domains are hosting it, and checks its domain-specific registry
for which first-hop routers are hosting it. If it sees an entry it
doesn’t recognize, it may assume there has been a compromise.

• Each domain A periodically checks the global registry to see
which domains claim to be peering with it. If it sees an entry it
doesn’t recognize, it may assume there has been a compromise.

Using these mechanisms, a domain can recognize whenever an
imposter has established a peering arrangement with some other
domain. Because we are assuming that out-of-band mechanism can
prevent an imposter from fooling a peer (that is, if A thinks it is
peering with B, it can verify the identify of the peering entity in
ways other than verifying B’s signature), then there is no way an
imposter can enter the interdomain routing system without the valid
domain being able to detect its presence.

Similarly, a host can recognize whenever an imposter has estab-
lished itself in another domain, or in the same domain with another
first-hop router, or at the same first-hop router with a different MAC
address. The only case these mechanisms don’t cover is when an
imposter registers with the same first-hop router with the same MAC
address. Dealing with this latter case would require L2 security
technologies, which are outside of our scope.

5.3 Cryptographic Algorithm Compromise

To cope with the inevitable compromise of existing cryptosystems
and hash functions, each AIP address (src, dst, every AD in the
stack, EID, and so on) and every registry entry (as described above)
contains its own crypto version field (Figure 1). Versioning each

address separately is necessary to support gradually phasing in new
algorithms. Because of the large number of stakeholders that must
agree on a shared set of signature algorithms and hash functions, a
particular crypto version represents one combination of a signature
scheme and hash function. For example, in our design, crypto
version 0 represents RSA signatures with SHA-1 hashes. The hash
function must be truncated or zero-filled, as appropriate, to fill the
144-bit hash space in the AIP address.

We envision that at most two or three crypto versions will be
present on the network at any given time: the “legacy” version that
the network is moving away from, and the newer algorithm that is
supplanting it over five or ten years.

6 Traffic Engineering and AD Size

The goal of traffic engineering is to map an offered load on to a set
of available paths. This operation happens in two ways in today’s
Internet: per-prefix, and per-service. Network operators remap load
by selectively advertising prefixes to control how traffic destined for
groups of hosts flows on various paths. Server administrators use
DNS mappings to direct traffic to individual hosts. By moving away
from prefixes, AIP forces a reconsideration of these issues.

A fundamental difference between AIP and IP is that ADs cannot
be split into sub-prefixes for finer control over routing. Because
of this limitation, we must answer three questions to assess how to
perform common traffic engineering functions and how debilitating
the elimination of prefixes might be.

1. What is the granularity of an AD?
2. Will operators want to “split” an AD in order to better perform

traffic engineering? How can AIP support this?
3. How does DNS-based load balancing work under AIP?

AD granularity: As an accountability domain, we envision an AD
as corresponding to a group of nodes that meets two criteria: they are
administered together, and they would fail together under common
network failures. For example, ADs might represent a campus, a
PoP, or a single non-geographically-distributed organization. This
assignment also helps reduce false churn, as this granularity cor-
responds roughly to the way in which connectivity to the network
changes.

Splitting ADs for TE: The PoP and customer site granularity of
ADs is a good match with ISPs’ typical traffic engineering goals,
where operators often wish to control traffic flow at the granularity
of PoP-to-PoP traffic across their core network (e.g., using MPLS).
Because ADs are assigned at the granularity of a single campus or
sub-network reachable via one connection, they are a good match
for existing inbound traffic engineering techniques.

To a first approximation, creating an AD from each prefix in the
wide-area BGP routing tables seems like a reasonable strategy. This
approach, however, prevents a network operator from unilaterally
advertising sub-prefixes of a prefix P to different upstream routers
all belonging to the same ISP, relying on that ISP to aggregate the
sub-prefixes to prevent them from reaching the “global” routing
tables. With AIP as presented thus far, accomplishing such traffic
engineering does not seem possible without increasing the number
of globally visible AD entries.

We believe, however, that splitting and then aggregating prefixes
for traffic engineering is not widely practiced today. We conducted
a measurement study by obtaining a /17 and advertising various
sub-prefixes of size /18 and /19 via BGP. Each sub-prefix had the
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same AS path and IP layer path, so an upstream AS could easily
aggregate these sub-prefix advertisements into a single one. We
found by examining BGP routing tables at many Internet vantage
points that no aggregation occurred, despite many different ISPs
having had the opportunity to do so. Private conversations with
some ISP operators confirmed our finding: such explicit aggregation
is almost never done today.

To explain why, we conducted a related experiment. We an-
nounced a /18 via two large Tier-1 ISPs, A and B, and the containing
/17 from just one of them (B) to emulate the case where an upstream
(the /17) owns a larger chunk and a stub is punching a hole to multi-
home. The /18 announced to the two upstream ISPs was seen by
all of the many BGP vantage points we checked. Using traceroute,
we found that some nodes in the Internet reached the /18 via A and
some via B. If A had aggregated the /18s into a single /17, then
longest-prefix matching would likely cause all of the traffic to arrive
via B. Such unilateral filtering and aggregation could be harmful and
violate the stub network’s traffic engineering goals.

We then withdrew the /18 through B, simulating the case when
the link between the stub and its primary fails. If some AS had
filtered the /18s earlier, it would not have seen the withdrawal of
the /18 through B, and hence continued to use that route to get
to destinations in the withdrawn /18. We found instead that all
subsequent traceroutes took the valid route through A. This result
suggests that ISPs today do not arbitrarily filter route advertisements
even when they might be redundant; one reason might be to avoid
failing in situations like the one just described. Thus, it appears
that a stub network’s BGP announcements remain invariant as they
propagate across the Internet. The simple approach of making each
of today’s prefixes an AD might well be adequate for interdomain
traffic engineering.

If, however, operators wish to use such load balancing in the
future, one can make use of the AIP address interface bits to sub-
divide an AD, so an operator could announce different routes for each
AD:interface bits combination. In particular, an administrator could
partition the EIDs belonging to the different subnetworks of an AD
to one of 255 possible “paths” (in practice, we expect the number of
paths to be a lot smaller) by setting a different value of the interface
field for each partition. Any upstream network can choose to zero
the interface bits in its wide-area advertisements as a way to reduce
the amount of global routing table state, in much the same way that it
aggregates prefixes today. Thus, most wide-area routers will forward
using AD lookups as before, but those near the destination that might
be obligated to pay attention to the interface bits of an AD address.
It is important to note here that BGP messages are still signed using
the AD’s private key, and that there remains only one key pair for the
entire AD. Finally, we note that AIP leaves unchanged an operator’s
ability to perform equal-cost multipath routing by hashing packet
header fields to direct traffic to one of k links.

DNS-based load balancing: Another component of traffic engi-
neering is a service-centric view: How to load balance traffic des-
tined for a particular service across machines in a cluster or across
data centers. In general, the move to AIP has only a small, positive
effect on this ability. DNS-based load balancing can still change the
AIP-record corresponding to a host or service name. AIP’s interface
bits might simplify cluster-based load-balancing by representing a
service as a single “host” connected to the network multiple times;
we leave the design of such specific mechanisms to future work.

7 Related Work

Many features of AIP have similar forerunners in the literature. We
do not have space to discuss each predecessor individually, but below
we list some of the major ideas that AIP draws upon.

Self-certifying names: Some forms of addressing are already self-
certifying: CGA [5] derives the “interface” portion of an IP address
from a public key, and HIP [29] derives a host identifier (EID) from
the hash of a public key. AIP extends self-certification to the entire
network-level address.

Separating identifiers and locators: Ever since the GSE/8+8 [30]
proposal, it has been widely acknowledged that addressing should
separate identification from location. The more recent LISP proposal
also suggests forwarding traffic based on routing locators that are sep-
arate from endpoint identifiers [9]. AIP provides a similar separation
of function: The AD provides location information, while the EID
is purely an identifier. Unlike LISP, AIP does not require tunneling
to route on locators, and AIP’s addresses are self-certifying.

Scalability: The scalability of Internet routing has been a long-
standing concern. CIDR has helped sustain the routing table and
control traffic load growth until increases in peering, but site-
multihoming, and preference for provider independent addresses
have combined to reduce CIDR’s effectiveness. A number of recent
proposals have tried to re-establish aggregation by introducing ad-
dress aggregates in the control plane to reduce its load (e.g., [17])
or in both the control and forwarding planes [41, 46] to limit the
growth of routing tables. The challenge of finding a mechanism for
aggregation in Internet has sparked theoretical interest as well [21].

Source accountability: Several mechanisms have been proposed to
improve source accountability. The simplest mechanism is to install
filters on the border routers of an AS [10, 20]: routers can prohibit
outbound traffic originating from source addresses that do not exist
on the local network (egress filtering) and can prohibit inbound traffic
from source addresses that should only exist inside the local network
(ingress filtering). To be effective, filtering requires near-complete
deployment by stub networks. Installing these filters in the middle
of the network is fundamentally difficult [8, 31]. Passport [25] uses
cryptography to prevent spoofing; it verifies each packet but only
at the domain granularity. Whereas AIP is based on a challenge-
response for an initial packet and operates on a per-host granularity,

As mentioned earlier, AIP’s shut-off packet is based on a sim-
ilar idea proposed by Shaw [35]. It also bears some similarity to
AITF [4]. Thus, we don’t claim credit for the basic idea, but merely
observe that AIP’s address structure facilitates its implementation.

Control-plane accountability: Various proposals augment the
routing protocol with cryptographic mechanisms to prevent routers
from originating false routes; the two most notable are S-BGP [19]
and secure origin BGP (soBGP) [44]. One of the major drawbacks
to these proposals is that they require the existence of a global PKI.
Although work is afoot to institute such a framework [15, 14, 3],
it may be difficult to maintain in practice, as has been the case
with routing registries [13, 36]. Other mechanisms for securing
BGP include online monitoring at global BGP routing repositories
to detect suspicious routing announcements [16, 22, 24, 34]. Al-
though detecting “suspicious” routing announcements in real-time
is operationally useful and is attractive due to its low deployment
barrier, these approaches are more effective for detecting accidental
misconfiguration than for preventing malicious attacks.
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8 Conclusion

AIP is our attempt to answer the question: “what might the Internet’s
network layer look like if accountability were a first-order goal?” By
using a simple hierarchical addressing scheme with self-certifying
components, AIP enables simple solutions to source spoofing, shut-
ting off certain kinds of DoS traffic, and securing BGP. The move
away from prefixes to flat addresses brings up concerns about route
scalability and traffic engineering, while the use of self-certification
raises questions of key management and compromise. Our discus-
sion of these issues leads us to conclude that, while hoping for a
near-term replacement to IP might be like building castles in the
air, these important concerns are not a show-stopper for AIP (or the
ideas contained therein) to be widely adopted.
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