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ABSTRACT
We argue that the biggest problem with the current Internet
architecture is not a particular functional deficiency, but its inability
to accommodate innovation. To address this problem we propose
a minimal architectural “framework” in which comprehensive
architectures can reside. The proposed Framework for Internet
Innovation (FII) — which is derived from the simple observation
that network interfaces should be extensible and abstract — allows
for a diversity of architectures to coexist, communicate, and evolve.
We demonstrate FII’s ability to accommodate diversity and evolution
with a detailed examination of how information flows through the
architecture and with a skeleton implementation of the relevant
interfaces.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-

ture and Design

General Terms
Design, Economics, Management

Keywords
Internet Architecture, Evolution, Innovation, Diversity

1 Introduction
Over the past few decades the Internet has unleashed an unprece-

dented wave of innovation. Below the IP layer, an amazing array

of new networking technologies — from wireless to optical — has

greatly expanded the Internet’s capacity and reach, while above the

IP layer a string of unforeseen applications — from the web to social

networks — has transformed our lives. Throughout this period,
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however, the basic Internet architecture (i.e., IP, TCP, DNS, and later

BGP) has remained relatively unchanged. This architectural stability

was crucial in fostering the development of new applications and

networking technologies by giving the former a stable base upon

which to build and giving the latter a fixed set of requirements to

support.

However, in recent years this architectural stability has become

a liability, as there are areas of increasing importance where the

original Internet architecture falls short. Most notably, the current

Internet does not provide the level of security or availability required

from such a critical infrastructure nor does it incorporate adequate

mechanisms for privacy, mobility, accountability, middleboxes, and

data-oriented functionality. Incremental changes to various Internet

protocols have not fixed these and other architectural deficiencies,

so in recent years there has been a focus on developing “clean slate”

redesigns of the Internet architecture that rectify one or more of

these aforementioned problems through non-incremental changes.

Clean slate redesigns typically propose architectures that would be

as static as our current one, presumably lasting relatively unchanged

for a generation or more.1 Therefore, these clean-slate designs must

not only meet current needs but also any future requirements that

might arise in the next few decades. Predicting these requirements

is a daunting challenge, one that our community has not fared well

at in the past.

We too are proposing a clean-slate redesign, but one that largely

avoids having to predict the future. Our approach is motivated by the

observation that the literature already contains many proposals that

would improve the Internet architecture; for instance, we know how

to design an Internet that would be more secure (e.g., [4, 41, 43]),

more data-oriented (e.g., [20, 23, 24]), and provide better support

for mobility and middleboxes (e.g., [7, 30]). Unfortunately, these

architectural changes have not been incorporated into the Internet

architecture because they face insurmountable deployment barriers,

barriers which (as we discuss later) are largely due to the current

Internet’s lack of architectural modularity. Thus, the persistence

of the Internet’s architectural deficiencies is not because they are

intellectually intractable, but because the current architecture puts

them beyond the reach of incrementally deployable changes.

In this paper we attempt to solve this problem of architectural

rigidity — the inability to solve problems through incrementally

deployable solutions. More specifically, our goal is to design an

Internet that supports architectural evolution (changes over time)

and diversity (variations over space, so not all portions of the

Internet must deploy exactly the same architecture) without massive

1See Dovrolis [33] for similar comments.



disruption in the infrastructure.2 Enabling this kind of architectural

innovation would allow us to address many current architectural

problems with known solutions, and address future requirements

as they arise with newly developed designs. Thus, the ability to

incrementally deploy would relieve us from the burden of predicting

precisely what these future requirements might be.

In addition, even for requirements we are already aware of,

the ability to accommodate innovation allows us to adopt better

solutions over time, rather than having to develop a near-perfect

solution that we think will last for a generation or more. This need

for a design to last for a generation turns the best into the enemy of

the good; when we can adopt new solutions as they arise, we need

only ask if the new solution is significantly better than our current

one, not whether it is almost perfect.

To support architectural innovation through incremental changes,

we propose that the core fixed design — the portion that the entire

Internet agrees upon and that is not expected to change much

over the next generation — not be a comprehensive architecture,

but only a minimal architectural framework. One can think of

frameworks and architectures as being akin to microkernels and

kernels, with the former being a simple and minimal design that

enables greater flexibility than the latter. To accomplish even the

most basic networking tasks, a framework must be augmented

with additional architectural components (just as a microkernel

needs additional user-space modules to function). For example,

a framework might not specify a particular naming or addressing

scheme, so these additional design decisions must be made for each

individual deployment.

This change in perspective from architecture to framework

alters the nature of our intellectual quest. We are not trying to

devise a comprehensive set of network components (i.e., particular

approaches to routing, addressing, naming, etc.) that provide

a checklist of necessary characteristics (e.g., security, reliability,

scalability); instead, we are trying to provide a framework within

which such comprehensive sets of components: (i) can operate as

fully functional architectures, satisfying their checklist of properties,

and (ii) need not be statically and uniformly deployed, but instead

can coexist, communicate, and evolve over time. Moreover, we

want to maximize the freedom to innovate with such components,

while still providing an adequate framework of support. The less the

framework specifies, the more freedom there is to innovate, so our

goal is to design as little as possible while still achieving our goal.

The core intellectual question is then: which architectural features
must be part of this fixed framework, and which architectural
components can be allowed to evolve over time and differ over
space?

We propose an answer to this question in the form of a framework

we call the Framework for Internet Innovation (FII). FII only

defines three core interfaces (or primitives): the interface for

communicating between domains (i.e., interdomain routing), the

interface between applications and the network (i.e., the network

API), and an interface hosts can use to protect themselves against

denial-of-service attacks.3 These are the only major design aspects

that we expect to remain fixed for a generation or more; we expect

2As we observe more precisely in Section 7, the ability to
accommodate diversity enables architectural evolution, because
diversity allows evolution to occur without lockstep adoption.
3As with any well-defined interfaces, FII’s core interfaces are
independent of their implementation; thus, while the syntax and
semantics of the core interfaces (or primitives) will remain fixed,
their implementations can change over time.

all other important design components (such as naming, intradomain

addressing, QoS, congestion control, etc.) to evolve as the need

arises.

We now briefly expand on these primitives — we describe them

more fully in Sections 4-6 — but we first note that there is nothing

novel in the design of these basic interfaces; the interdomain

interface leverages a recent interdomain routing proposal [21],

the denial-of-service interface is based on several previous works

[4, 27, 36], and the network API is merely the obvious way to build

an arbitrarily extensible interface. Thus, our contribution lies not in

the design of these primitives but in recognizing that these are the

only interfaces that must remain fixed.

Interdomain routing: As we argue later, FII requires an interdo-

main routing solution that: supports a degree of policy flexibility

and autonomy at least as great as BGP, is completely independent of

intradomain designs (so different domains — i.e., ASes — can adopt

different internal architectures without coordination), and provides

extensible functionality in areas such as QoS, congestion control,

and route computation. We are only aware of one such routing

solution (but are open to suggestions for others): pathlet routing [21],

which is a scalable policy-compliant source routing design. Pathlets

are policy-compliant segments of interdomain paths advertised by

domains, and users (or hosts or domains on their behalf) select a set

of pathlets to create an end-to-end path. FII specifies the syntax for

describing these pathlets, but not the semantics of these pathlets (i.e.,
FII does not constrain the quality-of-service or congestion control

mechanisms used along the path) or how pathlets are disseminated

or used in route computations; these aspects of interdomain routing

can evolve over time and vary across space.

Network API (netAPI): Rather than embracing one particular

set of netAPI semantics, FII supports a diversity of interface

schemas (each of which defines a set of interface calls and their

semantics) and only specifies the way in which the application

specifies to the network stack which of these interface schemas

the application wishes to use. As we discuss later, these interfaces

should refer to other entities by name (rather than address), so

naming plays an important role in the netAPI. Here, again, FII

does not choose a particular naming scheme but instead allows for

multiple namespaces and only requires that each name specify, in a

standard way, to which namespace it belongs. This approach allows

new network APIs and new naming systems to be introduced without

changing existing applications, while enabling new applications to

make use of these new features. This system extensibility allows

FII to support a wide variety of functionality, such as content-

centric networking, disruption- (and delay-) tolerant networking,

and mobility by introducing new netAPI schemas and namespaces

(along with the necessary support in the stack and domain).

Denial-of-Service: Network security requires the availability,

integrity, authenticity, provenance, and confidentiality of network

communications. All but availability can be addressed by crypto-

graphic techniques implemented on the end-hosts, so these do not

need to be mandated as part of FII. In addition, FII leverages the

multipath nature of pathlet routing to improve availability. However,

we find that dealing with interdomain denial-of-service requires an

additional design element in FII. For this, leveraging earlier work

in [4, 36] (see also [27] for a similar approach), we use a simple

primitive called a “shut-up-message” (SUM) that allows the victim

host to tell an attacking host in another domain to stop sending

packets to it.



The combination of these three major interfaces allows architec-

tural innovations without changing interdomain routing or existing

applications, thereby removing the two factors that (as we argue

in the next section) impose severe constraints on architectural

innovation in the current architecture. In addition, these interfaces

enable FII to retain the ability to combat interdomain DoS no matter

what other architectural innovations are adopted.

While FII does not remove all restrictions on architectural

evolution, it significantly increases the space of designs that could be

incrementally deployed. However, as we note later, FII’s ability to

support innovation should be measured in terms of the functionality
it allows to be incrementally deployed, not whether a particular

design can be incrementally deployed; many designs will, as

currently defined, be inconsistent with FII, but their functionality

can be incrementally deployed with an alternative design.

In the next section we motivate these design decisions by

introducing the notion of “architectural anchors”, portions of the

architecture that make incremental change difficult. In Section 3

we describe an example of how architectures operate within FII and

provide some general clarifications. We then discuss the design of

the three core FII primitives in Sections 4-6. In Sections 7 and 8 we

evaluate the degree to which FII supports architectural innovation

through a detailed analysis and a skeleton implementation of the

relevant interfaces4. We end in Section 9 with some concluding

comments. But before moving on to the rest of the paper, we first

state our assumptions about the structure of the future Internet,

mention our relationship to related work, and briefly clarify our

contribution.

Assumptions: The domain structure of the current Internet did

not arise for performance-driven or feature-driven reasons but is

instead a manifestation of infrastructure ownership and the need

for autonomous administrative control. Because these requirements

are driven by human rather than technological factors, we do not

expect them to change any time soon. We therefore assume that the

Internet will remain organized around autonomous domains, with

similar requirements for routing-policy autonomy, and that a global

interdomain routing system will continue to serve as the “glue” that

ties these domains together. In addition, we assume the existence

of an IANA-like body that assigns numbers to various protocols, so

they can be referenced in a uniform manner.

Related work: In the body of this paper we cite several sources of

inspiration, but we emphasize that our intellectual debt is far broader

and deeper than we can itemize. In particular, because architecture

is, by nature, a synthetic exercise, our ideas have been influenced by

the community’s entire literature about and experience with Internet

architecture.5

Contribution: We should make clear from the outset that we are

not proposing any novel algorithms or protocols, and the design

principles we articulate are standard lore for distributed systems. To

the contrary, the novelty of our proposal is not in the primitives we

include, but in what we do not include. Our contribution is simply

the observation that carefully selecting and crafting only a few fixed
components allows the rest of the architecture to evolve over time
and differ over space.

4By skeleton, we mean that we faithfully implemented the interfaces,
but used oversimplified mechanisms behind the interface.
5Of particular note are the insightful architectural papers by
Clark [13–16, 34] and Crowcroft [17, 37].

2 Motivating the Framework
Enabling architectural innovation is our primary goal in designing

FII; however, we must also ensure that FII allows architectures to

provide network security. We discuss how these two requirements

motivate the three core FII primitives, and then describe some

additional (but minor) FII primitives.

2.1 Removing Barriers to Innovation

We start by considering what prevents architectural innovation in

the current Internet. Change most naturally occurs when various

parties (domains, vendors, users, etc.) can independently modify

different parts of the system without large-scale coordination. The

Internet architecture enables this kind of independent innovation

in applications and network technologies, but not within the

architecture itself. To the contrary, many desirable design changes:

(i) require widespread agreement (among vendors and/or domains),

(ii) radiate throughout the architecture (i.e., require changes in many

protocols), and/or (iii) require changing substantial portions of

the physical infrastructure. Consider the simple example of what

should be a minor modification, increasing address sizes. This

requires a global standard for the new addressing format; changes in

network stacks, applications, and interdomain routing; and (in many

cases) new router hardware. This high degree of coupling between

architectural components greatly hinders innovation. To avoid this

coupling, architectural modularity should be the guiding principle

of any Internet redesign.

Modularity is a basic tenet of system design, calling for carefully

conceived abstractions implemented by well-designed interfaces.

One might think that the layered Internet architecture would be

the epitome of modularity. But architectural modularity requires

more than layering: it requires that interfaces be both extensible
and abstract. By “extensible” we mean that new functionality

can be added to a particular component, and utilized by other

components that are aware of this change, without rendering

unmodified components obsolete. By “abstract” we mean that the

interface deals with the appropriate level of abstraction, avoiding

implementation details. For instance, interfaces should not pass

network addresses or particular byte layouts, but instead should pass

names and structured data.

Making interfaces extensible and abstract is an obvious require-

ment in modern systems design, but it was not applied to the core

networking interfaces. As a result, the current Internet architecture

is hard to modify without significant disruption. While desirable

everywhere, architectural modularity is absolutely necessary when

interfacing with components of the architecture that are inherently

hard to change (i.e., that inherently resist innovation). We call

these inherently rigid components architectural anchors. In order

for these anchors to not tie down the components they interact

with, the interfaces to these anchors must be extensible and abstract.

Thus, enabling innovation requires identifying, and then designing

appropriate interfaces for, these architectural anchors. We believe

there are two architectural anchors: interdomain routing and

applications.

Interdomain Routing: We have explicitly assumed that the

Internet will continue to be organized around domains, with

interdomain routing serving as a universal “glue” that makes end-

to-end connectivity possible. Changing interdomain routing would

therefore require global agreement among the domains. This is a

very high barrier to innovation, so FII must enable architectural

innovation without requiring globally agreed upon changes to
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Figure 1: Consider the set of interfaces from an application, to
the network stack, to the domain, to the rest of the Internet. The
application-stack interface is the netAPI, and the domain-to-rest-of-
Internet interface is interdomain routing. In the current architecture
(left), the central protocol, IP, is embedded in both applications and
interdomain routing, so the entire architecture is tied to both anchors.
In FII (right), the network stack and the domain are shielded from
the two anchors by abstract and extensible interfaces, so there is
complete freedom to innovate in stacks and domains.

interdomain routing. As discussed above, this can occur only if

interdomain routing serves as an abstract and extensible interface to

other domains. Our interdomain routing solution qualifies as abstract

because it refers only to domain identifiers and path properties,

and is completely independent of domain internals; it qualifies

as extensible because (as we describe in Section 4) it supports

innovation in route computation, path QoS, and many other aspects

of interdomain routing.

Applications: Applications are the most innovative part of the

Internet; new and surprising applications are constantly being

introduced, arising from a wide variety of sources. Being so large

in number and diverse in provenance, it is not reasonable to require

that every application be modified (and every end user update her

copy of the application to include that modification) each time

the architecture is changed. Thus, FII must enable architectural

innovation without changing existing applications: this requires

an abstract and extensible interface between applications and the

network. Our netAPI qualifies as extensible because it allows new

interface semantics to be introduced without rendering old ones

obsolete, and it qualifies as abstract because these interfaces are

defined in terms of names and structured data. See Section 5 for

more details.

We have reviewed all the other architectural components, and

could not identify any that are extremely difficult to change. In

particular, below we argue why three natural candidates are indeed

not architectural anchors:

• IP or any other universal packet protocol: IP is not an

anchor because there is no reason why architectures built

within the FII framework require a universal packet protocol.

Interdomain addressing will be taken care of directly by

pathlet routing (as we discuss later), freeing domains to use

any peering technology they want (e.g., IP, Ethernet, MPLS,

etc.) because they no longer need IP’s global addressing to

guide packets along interdomain paths.

• Host network stacks: While deployed applications may

remain unchanged for long periods of time, recent experience

with major OS vendors suggest that widely deployed operat-

ing systems incorporate new networking features in a timely

fashion. Therefore users who choose to avail themselves of

new networking functionality will not be impeded (for long)

by their host’s networking stack.

• Hardware infrastructure: Because modern forwarding paths

typically involve IP-specific chips, the current hardware

infrastructure would be an anchor slowing down architectural

change. However, we believe that in the future this can

be avoided by using a newly emerging approach called

Software-Defined Networks (SDN), which enables forward-

ing hardware to support a wide variety of architectures, and

support multiple of them simultaneously.6 However, current

implementations of SDN do not support arbitrary forwarding

behaviors; until the SDN forwarding models are more general,

the hardware infrastructure will limit the forwarding behaviors

that can be incrementally deployed.

Thus, we believe applications and interdomain routing are the

two main architectural anchors, and the two nonsecurity primitives

in FII are designed to keep them from weighing down the rest of

the architecture. Figure 1 gives a pictorial comparison to today’s

architecture. In the current architecture, both anchors are tied to IP,

since IP is embedded in both applications and BGP. By tying the

central communication standard (IP) to both anchors, the current

Internet architecture is, in some sense, maximally rigid. In contrast,

in FII there is almost complete freedom to innovate with network

stacks and domain technologies because they are shielded from the

two anchors by abstract and extensible interfaces.

2.2 Security

FII’s role in security is subtle: it must enable security but need

not implement it. That is, FII does not have to, by itself, solve

any particular security problem (aside from securing its own

mechanisms), but one must be able to use the primitives supplied

by FII, and the freedom it allows in other components, to build the

mechanisms needed to create a more secure Internet. Here we do

not attempt to describe precisely what these mechanisms might be,

but rather ask: what additional primitives need to be included in FII
in order to allow the necessary security mechanisms to be built?

Security is a broad topic, and it is important to define the scope

of our task (our discussion is modeled somewhat on [10]). One can

succinctly state the goal of network security, narrowly construed, as

follows:

In the face of attacks, the network should ensure
that each participant in a communication can: reach
another willing participant (availability), determine if
they are communicating with the party they intended to
communicate with (identity), and verify the provenance

and authenticity of any data received.

Standard cryptographic techniques are sufficient to satisfy the

identity, provenance, and authenticity requirements [40, 41]. Thus,

the only remaining threat is to availability. Note that decoupling

authenticity and provenance from the path (see [41]) enables the

6By software-defined networking, we mean the approach
exemplified by OpenFlow and NOX. There are other realizations
of the SDN paradigm in progress, some of them destined for the
commercial market, and there is nothing in what follows that holds
specifically for OpenFlow and NOX. The SDN approach does
not support arbitrary packet processing, such as in deep packet
inspection, but in the short term this could be handled in software
(see [18]) until hardware support is available.



widespread use of opportunistic methods of delivery (through caches,

alternate paths, etc.), and this in turn makes it easier to protect

availability.

There are two forms of attacks against availability: (i) compromis-

ing individual routers (and other network elements) which can cause

failures and byzantine behavior and (ii) denial-of-service attacks.

We consider each case in turn.

Compromised routers: General reliability mechanisms (multipath,

etc.) can protect against router failures, so we focus on byzantine

behavior. In pathlet routing (which we review in Section 4), a

byzantine domain (i.e., a domain which has a byzantine router

speaking on its behalf, or a domain that is being run maliciously)

can lie only about its own delivery behavior (claiming that it will

deliver packets that it won’t), but the cryptographic protections

won’t allow it to advertise false pathlets; that is, it cannot advertise

pathlets that include other domains who are not willing to participate

in the pathlet. And this form of dataplane attack (claiming to deliver

packets it won’t) is of limited utility because once users notice that

their packets are not being delivered by a domain (either through

explicit in-network monitoring, or just end-to-end observation) they

can choose routes that avoid that domain. Intradomain routing

mechanisms can use similar approaches for byzantine resilience,

or rely on in-network monitoring to identify components that are

malfunctioning. Domains are free to choose whatever intradomain

mechanisms they choose, so these solutions can improve over time.

Thus, we see no reason to include a security primitive in FII to deal

with this form of attack.

Denial-of-service attacks: Each domain can implement their own

mechanisms to cope with intradomain DDoS attacks (such as [44]).

However, FII must provide a primitive to deal with interdomain

DDoS attacks. There have been many proposals for defending

against DDoS that involve detailed specification of the data path

(e.g., [43]), and this specification would have to become part of the

FII framework. To preserve interdomain datapath flexibility, we

advocate a quite different approach that was first discussed in [36]

and elaborated upon in [4] (see also [27]). Here, the victim can

send a “shut-up message” (SUM) to the attacker telling it to not

send any more packets to the victim. We describe the SUM design,

and discuss the tension between accountability and anonymity, in

Section 6.

2.3 Additional Primitives

There are three other minor primitives that must also be built into

FII, mainly to cope with the architectural heterogeneity that FII

enables.

Meta-negotiation: When two hosts communicate, they must

use compatible higher-level protocols (e.g., transport). With hosts

supporting a diverse set of such protocols, they must negotiate

which mutually compatible protocol to use (or determine that no

such protocol exists). There are various negotiation protocols (see,

for example, [19]), and we could have chosen one to include in FII.

Instead, however, we choose to standardize a “meta-negotiation”

protocol in which hosts decide which negotiation protocol to use.

This meta-negotiation protocol can be quite simple (e.g., A sends B

the list of negotiation protocols it supports, in some standard format,

and B chooses from that list), whereas the negotiation protocols

themselves can be quite complex (again, see [19]). We thus believe

the wiser choice is to let these negotiation protocols evolve and only

standardize the meta-negotiation protocol.

However, we expect that in the common case the supported

protocols will be returned in the name lookup (the process that

translates a name into a location), allowing the sender to identify

mutually supported protocols without any negotiation. Meta-

negotiation, and the ensuing negotiation, are merely fallbacks if

such hints are not available.

Bootstrap interface: When a host first arrives in a domain, it

must learn about the environment and determine where its local

resources are (a service typically delivered by DHCP today). FII

requires that each intradomain networking technology support a

method of bootstrap (such as anycast for a resource directory which

contains information about the location of name resolvers and other

local resources); the network stack on the host associated with

that technology will implement the necessary host actions. FII

standardizes a bootstrap interface that can be called by a user-

process; the host’s stack, having detected the local networking

technology (i.e., what kind of network is it plugged into), will

execute the appropriate bootstrap actions. The bootstrap interface

returns at least the following information: the domain identifier; an

intradomain address (IDA) that can be used to reach the host from

anywhere within the domain; the name of the default trusted third

party (defined in Section 6) and addresses for reaching the first-hop

router (or the equivalent in whatever domain technology is being

used), a resource directory, and a route computation agent.7 If the

host is multihomed, then it will invoke the bootstrap interface for

each network.

Interface query: The netAPI supports queries about which API

schemas are supported, so applications can decide which to invoke

(backward compatible applications will be able to use both new and

old schemas).

3 Example and Clarifications
We will describe the details of the three basic primitives in Sections

4-6, and then describe our “evaluation” of FII in Sections 7 and 8.

But before going into these detailed descriptions, we want to first

give a more global description of how all the pieces fit together via

an end-to-end example and then clarify a few aspects of our work.

3.1 End-to-End Example

To provide more information about how FII would work in practice,

we now describe an end-to-end example. But first, we introduce

some terminology: a route computation agent (RCA) is a virtual

entity — existing either at the end host, as a service in a domain

(perhaps at one of the domain’s routers), or as a third-party service

— that provides the host an appropriate end-to-end path to a given

destination; an address (or full address) means a domain identifier

plus the IDA; a forwarding directive means the set of pathlets

constituting a path plus the full address of the destination.

For the example, consider the case of an application on host A

in domain X trying to send a file to host B in domain Y, where

domain X supports a “next-generation Ethernet” (NGE) and domain

Y supports “newfangled IP” (NIP), while the pathlets between them

use end-to-end optical. The application calls the netAPI, selecting

the appropriate interface schema for file transfer, and passes the file

and the name of the host B to the netAPI. The network stack then

resolves B’s name by first determining the namespace to which the

name belongs and then sending the name to the appropriate name

7The bootstrap interface specification also includes interfaces to the
resource directory and route computation agent. We discuss route
computation agents in the next section. Also, when we use the term
address here, it could also, in general, be a forwarding directive as
defined in the next section.



resolver (whose location it determined from the resource directory).

The stack receives a response from the resolver containing B’s

full address (domain plus IDA). Note that the IDA need not be

understood by A, or X, or even B. It only needs to be understood by

the domain Y.

If A and B are in the same domain, A’s network stack would

recognize that fact and would use NGE to reach B using the IDA.

However, since we are assuming that B is in a different domain,

then A’s network stack would retrieve an appropriate set of pathlets

from the RCA (whose location was determined by bootstrap, and

could be on the host itself, on the first-hop router, or elsewhere).

A would construct packets appropriate for the first pathlet (i.e., in

the format specified by the pathlet, which we are assuming takes

in packets and carries the data via end-to-end optical), encapsulate

them in an NGE packet, and then send them to the first-hop router

which then forwards them on to the border router. At this point, the

border router transfers the payloads into optical signals (with the

appropriate framing). Once the optical signal reaches Y, Y’s border

router transfers the payloads into NIP packets and uses the IDA as

the destination address, causing the packets to be delivered to B.

What are the compatibility requirements in this example? The

hosts A and B need to use compatible application, session, and

transport protocols in order to communicate (also, if a router-based

congestion control algorithm is used along the path, the transport

protocols must be compatible with that). However, there are no
other compatibility requirements. The two domains are running

completely different internal architectures (NGE and NIP), with

different addressing and routing schemes. While we make this

argument more explicit in Section 7, this example indicates that

domains can adopt different architectures without causing any

disruption in service.

This is both similar to today, and very different. Today, domains

can adopt different L2 technologies without any coordination, much

like in the above example. What is different is that when domains

exchange packets with other domains, they must do so using IP

because that embodies the only globally understood addressing

scheme. Here, pathlet routing provides interdomain communication,

so domains need not all implement IP.

3.2 Clarifications

Does FII make architectural innovation easy? No! While FII

does not require universal agreement on architectural components,

some coordination is still needed to deploy a new architecture (e.g.,
OS vendors must update their networking stacks to accommodate

new technologies); we discuss this further in Section 7. However,

we think it fair to say that FII takes architectural innovation from

“essentially impossible” to “possible, but nontrivial”. Note, however,

that deploying FII itself will be quite difficult; once installed, FII

will ease innovation, but (as with any clean-slate design) there will

be significant barriers to its initial deployment.

Does FII place any limitations on the architectures the Internet
can adopt? Yes. FII can only support architectures that: (i) use

pathlets for interdomain routing, (ii) use FII’s netAPI syntax (which,

as discussed later, places essentially no limitations on the schema

semantics), and (iii) supports SUM. This would preclude almost

all architectures in the literature, since they have not been designed

with these constraints in mind. The question, then, is not whether

FII supports these particular architectures as currently defined,

but whether the functionality these architectures provide can be

supported by a FII-based architecture. We think, in most cases, the

answer to this is yes: based on our own previous work on designs

that support mobility, wireless, data-orientation, end-to-end optical,

and disruption/delay-tolerant networking, we believe all of these

functionalities and more can easily be implemented within the FII

framework.

Why not overlays or GENI-like virtualized testbeds? Overlays

allow one architecture to be deployed on top of another architecture.

While overlays are an essential technique in networking [5, 6,

38], they do not allow an architecture in wide use to change

without disrupting existing applications or other components in the

architecture. Similarly, virtualized testbed infrastructures like GENI

(and several others) enable many different architectural designs to

be deployed simultaneously on a single physical infrastructure, but

GENI does not describe how to evolve a currently used architecture

without widespread disruption. For example, neither overlays nor

GENI allow a domain using the traditional IP architecture to start

using, say, AIP [4] without significantly disrupting applications and

substantially reworking interdomain routing.8

Why not Active Networks? The active network paradigm provides

a flexible (and therefore evolvable) data path, but does not solve any

other aspect of architectural innovation, such as addressing, naming,

APIs, or interdomain routing. A flexible forwarding infrastructure

is indeed important for innovation, but here rather than adopt active

networks we suggest a far more feasible (but significantly less

flexible) approach, Software-Defined Networking, that is rapidly

gaining acceptance.

What about other related work? The previous work that is perhaps

the closest to what we propose here is Plutarch [17], and the earlier

MetaNet whitepaper [42]: these papers bravely articulated the

need for architectural heterogeneity in the face of the prevailing

monotheist IP model. However, they grappled with a somewhat

different problem: allowing hosts, each bound to one or more

static architectures (“contexts” in the Plutarch terminology), to

communicate with each other. Innovation, within this model, occurs

by introducing a completely separate architecture and providing

“interstitial functions” to translate between this new architecture and

the existing architectures. Moreover, the routing between domains

is left undefined, as are defenses against DDoS. In contrast, our

approach allows those architectures themselves to evolve, enables

hosts to operate within any of them, is built around a sophisticated

interdomain routing system, and provides protection against DDoS.9

Is this the end of the story? No. We view this as merely a

starting point in a much longer research program on architectural

evolution. We, and hopefully others, will be looking for superior

alternatives for each of the three basic primitives, and at the same

time questioning our basic line of reasoning to see if additional, or

different, primitives are needed to foster architectural innovation.

Further, we need to better understand what kinds of functionality

cannot be implemented in a FII-based architecture.

4 Routing
4.1 Overview of Pathlets

As described in Section 2, FII must have an interdomain routing

solution that is abstract (independent of domain internals) and

8The approach in [32] is essentially an automated way to deploy
overlays and, as such, does not address the kind of architectural
evolution we are discussing in this paper.
9The two approaches are complementary, in that one might use
Plutarch’s pairwise interstitial functions to “glue” some resource-
constrained networking technologies (such as sensornets) to the
broader Internet.



extensible (can accommodate future features in areas such as

route computation and QoS), while still retaining the BGP’s policy

flexibility and autonomy. We are aware of only one design satisfying

these requirements: pathlet routing [21, 22, 39].10 In this approach,

each domain advertises a set of path segments (called pathlets) over

which they are willing to carry traffic. Pathlets are specified in terms

of the “virtual nodes” (vnodes) they traverse, where for now think of

a vnode as synonymous with a domain (and all domains have self-

certifying identifiers). All domains involved in a particular pathlet

must be willing to support it (which they signify cryptographically),

so pathlets are inherently policy compliant and unforgeable.

Pathlets are then broadly disseminated in some fashion. One

approach would be to use a gossiping-style algorithm along the

physical topology (as described in [21]), which then allows domains

to withdraw routes when they fail (i.e., the pathlet withdrawal will

reach all sites that received the original pathlet announcement).

Another approach would be to have central repositories (hosted by

sites such as Google) where pathlets are registered and withdrawn

as needed.

Route computation consists of selecting, from all advertised

pathlets, a sequence of pairwise compatible pathlets that provide an

end-to-end path; this selection can be done using any criteria. To

send data, the selected pathlets are either listed in the packet header

or, for technologies that require path-setup, communicated on the

control plane. As in any source-routing protocol, this approach

trivially supports user-controlled multipath routing (i.e., users can

always select more than one path and send packets along each).

Pathlets scale well (see [21]), can provide intrinsic monitoring, and

are secure (in the sense that they are unforgeable). In addition,

the approach can be extended to support interdomain anycast and

multicast (similar to the approach in [31]).

While each packet-based pathlet can specify its own packet

format, in general these packet headers will have the following

organization: pathlet information (the series of pathlets to be

followed), path-visible information (header information needed for,

say, router-based congestion control, along with the accountability

field we describe in Section 6), destination IDA, and payload.

4.2 Extensibility

This interdomain routing design is clearly independent of domain

internals, so it satisfies the abstraction requirement. We now argue

that it is also sufficiently extensible; in addition to supporting fully

general route computation, it allows interdomain routing to evolve

in several important ways.

First, these pathlet descriptions can be augmented with extensible

metadata, allowing domains to advertise novel services (e.g., QoS or

middleboxes) or performance information (e.g., bandwidth or loss

rates). Second, these pathlets need not interconnect at the IP level;

one could have pathlets that interconnect with optical, L2, or any

newly developed technology interface. As long as two adjoining

pathlets have compatible transmission media at the relevant pathlet

endpoints, they can interconnect. Third, FII does not specify how the

pathlet information is disseminated. FII must have, initially, some

system that ensures that the pathlets can be scalably disseminated

(such as gossiping along the physical topology as described in [21]),

10We are interested in suggestions for other interdomain routing
approaches that satisfy these requirements. Our contribution is
not the design of interdomain routing (so we are open to using
other interdomain designs within FII), but in noting how an abstract
and extensible interdomain routing system would enable Internet
evolvability.

Schema ID Primitives Data Structure

Sockets open, connect, accept,

read, write, close

Bytes

PubSub publish, subscribe Publications

RPC send request,

receive request

Function call

and response

Multimedia play A/V frames

Table 1: Some examples of different interfaces, each with its own

set of primitives and data structures.

but new approaches can be developed to augment and/or replace the

original method.

Fourth, pathlet routing as defined above supports a wide range of

policies (a strict superset of BGP), but even more general policies

(such as in [35]) could be implemented using mechanisms like that

found in [30] (applied to the control plane, because FII should

not specify a particular realization of the data plane), so that a

spectrum of policies could be adopted, ranging from the standard

customer-provider-peer policies to more idiosyncratic per-user or

per-application policies, with widespread dissemination for the

former and explicit set-up for the latter. Fifth, the granularity of

pathlets is not specified. Transit service is represented in a virtual

topology whose nodes are vnodes and whose links are pathlets.

A vnode might represent an entire AS, a geographical region, a

physical router, or a slice of a router; similarly, a pathlet might

represent a physical link, a full end-to-end path, a path augmented

with some service (such as virus scanning), or (the most typical case

envisioned here) a path across several ASes with the pathlet length

just long enough to enforce the relevant domain policies. Sixth,

packet formats need not be globally specified; each pathlet can

specify its ingress and egress formats (the same applies to signaling

interfaces for non-packet technologies).

5 NetAPI
Enabling architectural innovation without changing legacy appli-

cations requires that the netAPI (or, rather, the set of netAPIs

offered by different operating systems) must be both extensible and

abstract. However, current netAPIs are not abstract because (among

other reasons) they pass addresses (a network-level concept) to

applications, unnecessarily coupling applications to the underlying

network architecture. In addition, current netAPIs are not adequately

extensible, being tied to Sockets-like semantics and not supporting,

for instance, a publication-subscribe network interface.11 We believe

that a fully extensible netAPI should support arbitrary interface

semantics by letting applications specify an identifier for an interface

schema and then issue calls associated with that interface schema.

See Table 1 for a depiction of our approach, where schemas as varied

as Sockets, Pub-Sub, and RPC could all be invoked through the same

netAPI. Applications would be programmed against one of these

schemas, and would invoke it using its identifier. This approach

defines almost nothing but the level of indirection necessary to

achieve arbitrary extensibility (i.e., by using a schema ID as the

initial construct in the netAPI). When new schema were introduced

(with new identifiers), operating systems would continue to support

11The selection of protocol families in the Sockets API allows
extensible selection of protocols, but the basic semantics of the
Sockets API are not extensible in typical implementations. However,
there is already movement towards more extensible interfaces. We
don’t view our advocacy of extensibility as novel, we merely note
that it is important for architectural innovation.



old schemas. Old applications would continue to use the schema

they were designed for, while new or updated applications could

use the new schema. For this to work, network stacks would need

to be updated to support these new schema, but there need not be

uniformity among all hosts before adoption occurs; applications

written for Linux can use any new schema in Linux without waiting

for Apple or Microsoft to follow suit.

While applications interact with the rest of their world through the

netAPI, they refer (within this netAPI) to entities in the world with

names. As such, the extensibility of the netAPI demands that the

names themselves be extensible, so that different naming schemes

(namespaces) can be introduced over time. Specifically, applications

must not be tied to particular name formats and should instead

treat names as opaque, semantic-free bags of bits, relying on the

network stack for resolution and other name-based functions. To

this end, names should have a well-known syntax that separates the

namespace from the name itself: for example, names could be of

the form 〈namespace : name〉, where namespace is an identifier

of the namespace. Name resolution (within the stack) would start

with a “meta-resolution” step where the network stack identifies

the appropriate namespace and then the stack would call the name

resolver appropriate for that namespace. This would allow a wide

variety of naming designs to flourish [2, 7–9].12 In passing, we note

that name resolution of a host would typically return a full address

(and, if the host were multihomed, multiple such full addresses

belonging to the same or different domains), along with metadata

describing which end-to-end protocols the host supports (which

would ease the negotiation process).

Thus, for both naming and the netAPI, FII merely inserts a

trivial level of indirection and then allows complete generality

in both interface and naming. We note, however, that different

operating systems can choose to either expose the netAPI directly to

applications (as the Sockets interface is today), or place the netAPI

deeper in the stack and hide network actions from the application

itself (such as in Plan 9 [29], where the application merely interacts

with a file system, and the stack determines if the object requested

is local or remote and invokes the netAPI in the latter case). Also,

a namespace can be served by several different name resolution

protocols. In the resource directory, a name resolver for a namespace

will list which name resolution protocols it supports, and the host

stack will invoke only those resolvers that support a compatible

resolution protocol.

6 Dealing with DoS
6.1 General Approach

FII deals with DoS by allowing the victim to tell an attacking

machine to stop sending packets to it via what we call a “shut-

up message” (SUM) [4, 27, 36].13 Similar to capability-based

12While DNS provides separate TLDs, with independent naming
control, they are all resolved using the same infrastructure.
Here, namespaces can use completely different name resolution
mechanisms.

13See [4, 27] for a description of how this can be done safely and
scalably; with the appropriate cryptographic techniques, one can
ensure that sources can identify valid SUMs, and SUMs can be used
to deal with large-scale attacks. In addition, the SUM semantics
of “stop sending packets to me” represents a statement of receiver
rights, not an indictment of the sending machine (in stark contrast to
taking a machine off the net entirely), so we find it attractive from a
policy viewpoint.

designs (e.g., [28, 43, 44]), this gives the receiver the power to

decide what traffic it is willing to receive but, in contrast to

capabilities, our approach does not alter the basic default-on nature

of the Internet nor does it require cryptographic operations on the

datapath. This primitive belongs in FII, rather than allowing each

domain to adopt its own DoS defense, because DoS attacks can

cross domain boundaries.14 Domains are still free to use whatever

internal mechanisms they want to deal with intradomain DoS, but

the inclusion of SUM in FII ensures that there is a way to prevent

cross-domain attacks.

SUM is only implementable if we assume that for every host there

is a secure networking control-point somewhere in the network that

can: (i) prevent the source from spoofing (see below) and (ii) enforce

the SUM message by preventing the source from sending packets

to a particular victim. For these simple functions, technologies for

secure control-points currently exist: middleboxes in a POP or a

hardware NIC could easily provide this functionality. Also, the

SUM approach can be used to protect links, domains, or other more

general targets of attacks (rather than just hosts) by allowing the

SUM to specify more generally which paths are not allowed (i.e.,
any that pass through a particular domain) rather than merely a

destination.

Note that before our security discussion, there was no need for

FII to require that signaling mechanisms (packet headers for packet-

based transport, signaling protocols for circuit-based transport) carry

any information about the sender. However, FII needs a mechanism

that enables the SUM to reach the sender. The natural way to do this

would be to include the source address in the packet header (which

the control-point could ensure was valid), but, for privacy reasons,

we do not want to reveal the identity of the sender to anyone who

can see the packet header.

There already exist approaches to achieving accountability while

preserving privacy in the literature that we could adopt in FII [3,11].

However, since FII is a general framework, we do not mandate a

mechanism, but instead specify an interface that the accountability

mechanism must support. Our interface uses two fields in a packet

header (or similar information in a signaling protocol) that describes

(i) who to contact (an entity we will call a trusted third party, TTP)

to shut up the source of that packet, and (ii) an accountability field

that allows the TTP to identify the source of the packet but hides

the identity from everyone else. Revealing only the TTP, not the

individual source, in the packet header provides some degree of

privacy. Of course, the TTP does know the identity, but they have

been contracted (by the sender) to keep that information private

and only forward SUMs as needed. There need not be any globally

trusted third party, but all trusted third parties must be globally

reachable and assigned an identifier. We assume domains provide

hosts with a default TTP, although hosts may choose to use another

TTP (which must be approved by the domain).

The challenge is in designing the accountability field that provides

the TTP with the appropriate information while not imposing

significant per-packet computational costs along the path. Below,

we sketch the design of one such protocol, but many others are

presumably possible.

14There are other architectural aspects that cross domain boundaries,
such as congestion control, but these all involve cooperating hosts
that can negotiate mutually supported protocols. With DoS, we are
dealing with malicious hosts that will use any such flexibility to
preserve their ability to attack. Thus, FII must include SUM as a
required primitive.



6.2 One Possible Accountability Protocol

The entities involved include a source host S, a destination host

D, the source host’s first-hop router RS , and the trusted third party

G. Via a pair of key exchanges S, RS , and G establish a shared

symmetric key ksrg (and G learns the address of RS) and RS and

G establish a shared symmetric key krg .15 G also assigns RS a set

of identifiers IDr1, . . . , IDrn (each a bag of bits) that it can use

to identify RS ; these IDs may be generated cryptographically as

well to avoid state. S and RS should use long-term well known

state about G (like G’s public key) to ensure the key exchanges are

authenticated, thereby helping to prevent a MITM attack.

When S sends a packet with payload P via RS , it must include

a tag T = MACksrg (P ||epoch #) where MAC is a message

authentication code such as HMAC [25] or PMAC [12]. The epoch

# is incremented on a timescale specified by G (and may vary

depending on S, to allow for delay-tolerant networks, etc.). The

purpose of T is to prove that S indeed vouches for this packet.

When RS forwards the packet along, it must generate an

encrypted source address value SAD = Ekrg,T (“S”). Here E
is a tweakable block cipher [26] keyed on krg with a tweak T (the

tag of the packet); “S” is some domain-specific identifier that can be

used by RS to identify S, such as its IDA. “S” must also be known

to G. The router includes in the packet T , SAD, G’s identifier,

the epoch, and IDri (chosen at random from IDr1, . . . , IDrn).

If we didn’t tweak the block cipher call on T , all packets from S
would be stamped with the same SAD, linking them; if T didn’t

include an epoch #, the same packet sent during two different time

periods would have the same SAD. By choosing the ID at random,

the router helps prevent intermediaries from determining that two

packets originated at the same router.

If D wants to shut up S, it sends a request, along with a packet

from S, to G. G can immediately determine the responsible

router/domain and source host — and can verify the accountability

field of the request from D itself by asking D’s TTP — and request

a shut-up. How the shut-up is handled is an administrative issue. A

more detailed discussion of the benefits and tradeoffs of this protocol

is forthcoming.

7 Evaluation: Analysis
Any meaningful evaluation of FII must assess its ability to support

architectural evolution and diversity. One cannot judge this using

typical performance metrics, so instead we seek more qualitative

methods. We evaluate FII in two steps: in this section we use

information flow diagrams to determine the changes required when

adopting new architectures; in the next section we describe a

skeleton implementation of the architectural interfaces that verifies

that FII enables packets to flow between different architectures. But

first we note that FII’s ability to support evolution flows almost

directly from its ability to support diversity; that is, one domain can

change its internal architecture without coordinating with another

domain precisely because in FII each domain is oblivious to the

architecture another domain is using. Thus, in what follows we

focus on diversity, because that leads to evolvability.

7.1 Information Flows

An architecture involves many interacting components, and without

understanding the interfaces between these components one cannot

15There exist numerous authenticated key exchange protocols that
these parties could engage in; we do not tie ourselves to a specific
one.
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Figure 2: Information flow in FII for a client host. Rectangles

represent pieces of information and ovals represent functions that

combine information to yield new information.

assess the impact of architectural diversity. One technique for

analyzing these interfaces is to trace how information flows through

the architecture (e.g., how does the client get the destination

address, how does a host know its own address); this will reveal

where architectural incompatibilities might arise when domain

architectures differ.

Figure 2 shows a portion of the information flow in FII, focusing

mainly on how a client interacts with the network from bootstrap

until a URL is fetched. Each box depicts a piece of information,

and each oval depicts a function. The initial information provided

through configuration or user input is at the top of the diagram.

For illustration, we describe a small portion of the diagram

starting at Technology Configuration, which depicts the process

of bootstrapping. The technology configuration (i.e., what kind of

network the host is attached to) is parsed by a function that extracts

an interface description (e.g., a MAC address from a NIC) and a

bootstrap primitive (e.g., a DHCP broadcast address) associated

with the network technology. These are used by a bootstrap function

(in the stack) that gets a forwarding directive for a resource directory.

The forwarding directive is used by three different functions that

produce information about the RCA, the default TTP, and various

name resolvers. This information is used by the left portion of the

diagram to perform the actual data request.

This is only a small portion of the diagram, and in turn

this diagram is merely a small part of the much larger flow of



information, but we hope the preceding illustrates the nature of these

diagrams. We pored over this and similar information flow diagrams,

determining where incompatibilities arise when architectures differ,

and then used this knowledge to determine what changes would be

needed to implement architectural changes within FII. Below we

briefly describe two such changes.

First, consider a domain that changes its technology from IP to

AIP. This would change the technology configuration, which in

turn would change the interface description (e.g., a new IDA) and

bootstrap specification (e.g., AIP may have a different bootstrap

procedure). However, once bootstrap has been called and the host’s

address and the resource directory forwarding directive are obtained,

the existence of this new technology is hidden from the rest of the

information flow (except for the value of the IDA, which is just seen

as an opaque bag-of-bits by the stack).16

Second, consider the case where the destination host upgrades

its OS and this version of the OS supports a new transport protocol.

This would become visible to the source when (toward the bottom

of the graph) the negotiation process reveals which protocols the

destination supports. As long as the destination host still supports

the old transport protocol, the negotiation process will either choose

the new protocol (if supported by both) or the old one.

Our point, here, is that neither of these changes penetrated deeply

into the information flow; the change in source domain technology

merely changed the bootstrap procedure, and the destination’s

change in transport protocol merely influenced the actions of the

negotiation protocol (but did not require any change in that protocol).

Contrast this with today’s architecture, where a domain can’t

change from IP to AIP and still communicate with other domains

(both because they can’t exchange packets and because interdomain

routing wouldn’t supply paths to this domain). However, today a

domain can change its L2 technology without coordination with

other domains. The difference is that L2 protocols never provided

internetworking, and thus local L2 changes were hidden from other

domains. In FII, internetworking is provided by the domain-based

interdomain routing solution, so all FII-based intradomain solutions

are more like today’s L2 than today’s L3.

7.2 Various Architectural Changes

For completeness we now walk through a much larger list of possible

architectural changes and briefly describe, for each such category,

what modifications are required.17 Note that deploying a clean-

slate architecture would typically require more than one category

of change (e.g., adopting DONA [24] encompasses, at minimum,

changes to name resolution, namespace, path properties, end-to-end

protocols, and domain technology).

Naming Changes: Introducing a new name resolution protocol

requires (i) modifying existing or supplying new name resolvers

to support the new protocol, (ii) adding OS stack support for the

protocol, and (iii) changing entries in the resource directories to

indicate support for the protocol. Domains and OS vendors can take

these actions independently, and hosts can take advantage of this

new protocol when both the OS and local name resolvers have been

modified.

16Note that in the case where the destination’s domain changes
its technology from IP to AIP, the change in the destination IDA
(obtained from the name resolver, and seen by the source as a bag-
of-bits) is the only sign of an architectural change!

17We omit, however, changes to the structure of interdomain routing,
as this would involve changing FII itself.

Introducing a new namespace typically requires a new name

resolution protocol, so all the changes required above pertain here

as well. Content providers must alias objects with names in the

new namespace. This latter step is presumably the biggest barrier to

adopting a new namespace.

Domain and Path Changes: For a domain to change its internal

architecture, it must change its networks (which may or may not

require new hardware), and the IDA entries (in the naming resolution

system) for hosts within the domain must be changed. If this

technology is new, the OS stacks must be upgraded to support

it.

Any set of domains supporting a particular pathlet can introduce

a new path property (such as a novel QoS). At the very least, this

requires the participating domains to take whatever measures are

required to deliver this new property (which might require new

router algorithms, or new network management algorithms). For

the other actors involved, there are two cases. If the property

is merely descriptive (i.e., it tells the RCA information that may

inform its decision about whether to use this pathlet, but otherwise

the communication over the pathlet is unchanged), then the only

modifications are that the RCA needs to understand the metadata

associated with this new property. If the property requires host

involvement (i.e., a new congestion control algorithm, or a new

packet header format), the OS stacks must be upgraded to include

support for these functions.

Some pathlets might require a host to “set up” the flow before

sending data (as in ATM). A change in such a setup protocol requires

changes in the OS stacks and in the domain infrastructure to support

it.

Any number of domains, or even other entities, can decide to

distribute their pathlets (or the pathlets of others) in any way they

choose. This requires the cooperation of the participating domains

and modifying RCAs so they can obtain pathlet information through

these new mechanisms.

End-to-end related changes: Introducing a new negotiation

protocol requires OS stack support. However, this support need

not be immediate, since the meta-negotiation protocol will allow

hosts to discover when they both support a new negotiation protocol;

otherwise, they can use an old one.

Similar to above, adding an end-to-end protocol (such as a new

transport protocol) requires OS stack support. However, this support

need not be immediate since the negotiation protocol will allow hosts

to discover when they both support the new protocol; otherwise,

they can use an old one.

Changes in network-based congestion control (and other changes

requiring both host and path involvement) require both OS stacks

and path elements to support the new feature. However, note that

two hosts can use such a feature as long as there is some path

between them that supports it (i.e., they can choose an appropriate

path, rather than waiting for all providers to adopt this change).

In some cases the originating and destination domains must also

support this feature.

For a TTP to change the protocol with which it exchanges keying

and other accountability information with hosts and domains, the

host stack and first-hop router must be upgraded to support the

changes (if this support is not already present).

The message here is that in none of the above categories did the

changes require global agreement, or lockstep adoption. Typically

new designs could be introduced alongside old ones, and then the

old ones slowly be phased out; thus, as mentioned earlier, the key
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placed the TTP in the second IP domain.

to FII’s ability to evolve is precisely its ability to accommodate

diversity and allow both the new and old designs to coexist. In

summary, this analysis suggests that changing architectures in FII,

while not trivial, is significantly easier than it is today.

8 Evaluation: Skeleton Implementation
Here we report on a skeleton implementation of FII’s interfaces and

on a few architectures that we implemented within FII (traditional

IP, CCN [23], and an all-optical design).18 Our implementation

focuses on the core FII interfaces, the interfaces needed to distribute

information through the architecture, and the main features of

implemented architectures. However, we do not implement the

detailed mechanisms behind these interfaces. For example, we don’t

implement recursive DNS queries, just the name resolution request

and reply between a host and a server. One of the architectures

we implemented within FII to test its support for diversity was

CCN, and for this we implemented interfaces for the main features

of name registration and name-based routing with oversimplified

mechanisms behind the interfaces. Since the purpose of our

implementation is to evaluate FII’s ability to support innovation,

not to evaluate the performance or scalability of any particular

architecture, we feel this degree of implementation is sufficient.

Implementation Details: The information flow in our working

implementation is very similar to that depicted in Figure 2 (and in the

other information flow diagrams) thus providing some validation of

the diagrams used in our previous architectural analysis. To capture

information flow more explicitly, we implemented FII entities

(hosts, routers, RCAs, etc.) in separate processes communicating

via protocols defined using Google protobufs [1]. We chose to

use protobufs for all of our messages to focus on the content

and structure of headers rather than their byte-level formatting.

Communication between processes happens over a topology whose

links are implemented as TCP connections.

For simplicity, and because intradomain routing is hidden from

FII, we connect all entities in a domain to a single router, which

also has a number of interdomain (peering) links to routers in other

domains. In all of our experiments, we create a single trusted

third party. We use Diffie-Hellman key exchange between a host, its

router, and the trusted third party to establish the keys needed; we use

AES as the block cipher and HMAC as the MAC algorithm. Finally,

our implementation is composed of 2k+ non-whitespace lines of

C++ and Python and uses standard networking, asynchronous I/O,

graph theory, and cryptography libraries.

18Because none of these architectures were designed with FII in
mind, we necessarily altered their designs to fit them into FII.

Basic experiment: We begin with a basic experiment — an end-

to-end ping — between two IP domains. Each domain has the

following entities: a host, a bootstrap server/resource directory, a

router, a name server, and an RCA. There is also a single trusted

third party located in the first domain.

Host1 sends a ping to Host2 by performing the following steps:

(1) an ARP-like message exchange with the router, (2) a DHCP-

like bootstrap to discover the RCA and the name server from the

bootstrap server, (3) a key exchange with the first-hop router and the

TTP, (4) name resolution to learn the domain and the intradomain

address (IDA) of Host2, (5) obtain a path to Host2 from the RCA,

(6) send a ping packet to Host2 with the appropriate accountability

tag. Host2 performs a similar sequence of steps to reply.

We can also look at this basic experiment from the perspective of

a packet; this helps to explain how entities along the path interact

with the abstractions used in FII. After Host1 sends a packet, its

first-hop router examines the accountability tag, adds accountability

information such as the encrypted IDA of Host1, and forwards the

packet using its intradomain routing system to the first vnode (the

entryway to the first pathlet). When the first vnode receives the

packet, it forwards the packet as described in [21] until it reaches

the next vnode. This process continues until all the pathlets have

been traversed, at which point the packet will be in its destination’s

domain. The router on which the last vnode resides uses its

intradomain routing system to forward the packet using Host2’s

IDA. Note that transit domains never look at the destination IDA

and thus are oblivious to its architecture. Similarly, the source and

destination domains don’t know about the architectures of transit

domains, all they care about is that the pathlet delivers the packet

(and that the incoming and outgoing interfaces of the first and last

pathlets are compatible with their respective domains, which is one

of the criteria for path selection).

Advanced features: To better understand some of the key features

that enable diversity in FII, we implemented mechanisms such

as (recursive) path setup. Some domains may require that all

communication over certain portions of their networks first obtain a

capability or include some other special headers. Others may require

dynamic path setup to establish path state before communication

can proceed.

In our implementation, to perform path setup, a host reads pathlet

metadata indicating the entities — middleboxes or routers — with

whom they must communicate regarding path state. By sending

a special path setup request to these parties, the host causes the

path state to be set up and receives the appropriate header and IDA

information to place in its end-to-end packets. The abstract nature

of FII’s path setup interface allows for a host to set up paths even

using remote technologies it has no knowledge of, thereby enabling

technology diversity across space, which we turn to next.

Diversity: To validate FII’s ability to support diversity, we set up

an experiment with four domains, two using IP, one using CCN,

and another using a hypothetical all-optical architecture (as shown

in Figure 3). We sent data transfer requests from the source host

(in the first IP domain) to hosts in each of the three other domains.

Despite the disparate architectures these domains use, interdomain

communication proceeds unimpeded; Figure 4 depicts summaries of

packet traces from all four domains, stretching over the five stages

of progress: bootstrap, key exchange, request to Optical, request to

IP, request to CCN.

In the first phase, all entities perform ordinary bootstrap opera-
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Figure 4: Packet traces for the four domain experiment. For each of the domains (listed along the y-axis), we categorize packets into seven
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end-to-end data transfer, and 7) interdomain transit. A dot appears if packet(s) were observed of that type, in that domain, at that time. Dot size

depicts packet count. We note the communication phases above the graph.

tions, except CCN, which also registers a name. In the key exchange

phase, all end hosts and their routers perform key exchange with the

TTP. Since the CCN domain and the TTP’s domain are not directly

connected, they use the other IP domain as transit in this phase. The

next three phases involve data retrieval. The first of these, from the

source host to a host in the all-optical domain, requires path setup

and subsequently more pathlet requests than other data retrieval

requests. Figure 4 shows that a CCN domain can serve as transit for

communication between IP and Optical domains, and that IP and

Optical can even talk, neither of which would be possible without

the right abstraction.

All of the many details above are irrelevant, except to provide

evidence that (a) we built a reasonably faithful skeleton implementa-

tion of FII and three resident architectures, and (b) we were able to

exchange packets between these architectures without any special

measures (i.e., the interoperability was intrinsic in FII). This ability

to accommodate diversity is the bottom line; everything else is just

commentary.

9 Conclusions
In the past decade the research community has devoted significant

effort to “clean-slate” redesigns of the Internet architecture. The

typical goal in such designs is to improve Internet functionality

along a number of dimensions (security, reliability, data-orientation,

etc.), and the resulting literature has taught us much about how to

build a better Internet. However, since the deployment of such clean

slate designs is so difficult, the resulting designs must not only meet

current needs (which is hard enough) but also anticipate future needs

(which is much harder, and impossible to know if we have gotten it

right).

To avoid this need for anticipating the unknowable, in this paper

we propose a different goal for clean slate design efforts: building a

more evolvable Internet, one that supports architectural innovation.

We described a microkernel-like approach to Internet architecture,

where fixing a minimal design allows the rest of the architecture

to evolve much more easily. We do not claim that our particular

design, FII, is right in all its details; in fact, we would be shocked

if subsequent discussions with the community left this design

unchanged. Instead, we merely offer it here to initiate a broader

discussion on how one achieves this goal of architectural innovation.

Does our emphasis on evolvability imply that the previous

emphasis on functionality was misguided? Not at all. We believe

that going forward, the community’s clean-slate design efforts

should have a dual focus: we need to understand how best to support

architectural innovation with a minimal framework (such as we

have proposed here), and we also need to understand how to best

support various functionalities with architectures that fit within such

frameworks. Both research agendas are essential for the future of

the Internet.
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