
Asynchronous Neighbor Discovery:

Finding Needles of Connectivity in Haystacks of Time

Prabal Dutta, David Culler, and Scott Shenker
fprabal,culler,shenkerg@cs.berkeley.edu

Computer Science Division

University of California, Berkeley

Berkeley, California 94720

1 Introduction

We present Disco, an asynchronous neighbor discovery
and rendezvous protocol that allows two or more nodes
operating their radios at low duty cycles (e.g. 1%) to dis-
cover and communicate with each other during oppor-
tunistic encounters and without any prior synchroniza-
tion information. The key challenge is to operate the
radio at a low duty cycle but still ensure that discovery
is fast, reliable, and predictable over a range of operat-
ing conditions. Disco nodes pick a pair of prime num-
bers such that the sum of their reciprocals is equal to the
desired radio duty cycle. Each node increments a local
counter with a globally-�xed period. If a node's local
counter value is divisible by either of its primes, then
the node turns on its radio for one period. This protocol
ensures that two nodes will have some overlapping ra-
dio on-time within a bounded number of periods, even if
nodes independently set their own duty cycle.

2 The Discovery Algorithm

The idea behind the discovery algorithm is simple. Two
nodes, i and j, pick two numbers, mi and mj , such that
mi and mj are relatively prime and 1=mi and 1=mj are
approximately equal to i and j's desired duty cycles, re-
spectively. Time is divided into �xed-width reference pe-
riods and consecutive periods are labeled with consecu-
tive integers. Nodes i and j start counting the passage
of these periods at times ai and aj , with their respective
counters, ci and cj , initialized to zero, and with i and j
counts synchronized to the reference period (we will re-
lax this last assumption in later sections). If cijmi (ci is
divisible by mi), then i turns on its radio for one period
and beacons. Similarly, if cj jmj , then j turns on its radio
for one period and beacons. When both i and j turn on
their radios during the same period, they can exchange
beacons and discover each other.

Let us consider a concrete example. Let node i select

mi = 3 (so i's duty cycle is 33%), start counting at refer-
ence period x = 2 (so that ai = 2), with counter values
ci. Similarly, let node j select mj = 5 (so j's duty cycle
is 20%), start counting at reference period x = 1 (so that
aj = 1), with counter values cj . Table 1 illustrates these
timelines and counter values.

Table 1: Example discovery timeline.

x 0 1 2 3 4 5 6 7 8 9 10 11
ci - - 0 1 2 3 4 5 6 7 8 9
cj - 0 1 2 3 4 5 6 7 8 9 10

Italicized values of ci indicate cijmi and italicized val-
ues of cj indicate cj jmj . Columns where both ci and cj
are italicized indicate values of xwhere both i and j have
their radios turned on and can communication with each
other. In this example, when x = 11, we see that both i
and j are turned on, and are able to discover each other.

It is easy to show that there is exactly one such over-
lapping period every m = mimj periods. Letting x rep-
resent the reference period number, we have

ci = x� ai

cj = x� aj

Our goal is to �nd an x such that cijmi and cj jmj . We
can express this as a pair of simultaneous congruences

x � ai (mod mi)

x � aj (mod mj)

Such a set of congruences are known to have a com-
mon solution by the Chinese remainder theorem. This
theorem states that if x0 is one such solution, then an in-
teger x satis�es the congruences if and only if x is of the
form x = x0 + km for some integer k. One x0 is

x0 = aibimj + ajbjmi

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.60

531

where the solution is unique (mod m) for m = mimj ,
and where bi and bj must satisfy the following congru-
ences

bimj � 1 (mod mi)

bjmi � 1 (mod mj)

We can express our earlier example as the following
simultaneous congruences

x � 2 (mod 3)

x � 1 (mod 5)

and see that when x = 11, both congruences are solved

(2� 11)j3

(1� 11)j5

An analytic solution requires �nding bi and bj

5bi � 1 (mod 3)

3bj � 1 (mod 5)

We see that values of bi = 2 and bj = 2 satisfy these
congruences and hence one solution x0 is

x0 = aibimj + ajbjmi

x0 = 2 � 2 � 5 + 1 � 2 � 3

x0 = 26

Since all solutions are unique (mod 15), we have

x0 = 26 (mod 15) = 11

which agrees with our earlier solution from Table 1 and
gives x = 11 + 15k, for all k 2 Z+.

The preceding analysis sidesteps a number of practical
considerations. Since, for example, the Chinese remain-
der theorem requires the modulimi andmj be relatively
prime to guarantee a solution to the simultaneous con-
gruences, these values cannot be independently chosen
by the nodes, which is limiting. We also required that
nodes be able to express their desired duty cycle as the re-
ciprocal of a positive integer (e.g. 1; 1=2; 1=3; : : : ; 1=k,
where k 2 Z

+), which is restrictive. We assumed that
nodes i and j synchronized their counting with the refer-
ence phase, which aids analysis but is unlikely to hold in
practice. The preceding analysis also fails to explore the
effect of clock drift and counter over�ow on discovery,
ignores radio startup time and energy overhead, and as-
sumes that communications jitter is negligible. Our work
relaxes these assumptions but space constraints do not
permit inclusion in this paper.

Figure 1 shows radio power state (green line), ra-
dio transmissions (blue line), and the system current (in

Figure 1: The timing and current draw details of a slot.
Tcount = 25 ms.

mA/mV) during a radio �on slot� with a Tperiod of 25 ms.
Note that 5 ms of inactivity occurs prior to a packet trans-
mission.

Figure 2 shows the discovery rate for two different
Tcount values (10 ms and 25 ms) using prime pair values
of 100 and 101. The expected discovery time is 10100
slots, and with our slot durations, the worst-case discov-
ery latency is 101 seconds.

Figure 2: The discovery rate for two different Tcount val-
ues.

3 Demonstration

We will demonstrate several nodes running the Disco
protocol, asynchronously discovering each other, and
sharing neighbor table information with new nodes to
speed up discovery as more nodes are added to the the
neighborhood.

532

