
Attested Append-Only Memory:
Making Adversaries Stick to their Word

Byung-Gon Chun† Petros Maniatis⋆ Scott Shenker†‡ John Kubiatowicz†

†UC Berkeley ⋆Intel Research Berkeley ‡ICSI

ABSTRACT
Researchers have made great strides in improving the fault toler-
ance of both centralized and replicated systems against arbitrary
(Byzantine) faults. However, there are hard limits to how much can
be done with entirely untrusted components; for example, repli-
cated state machines cannot tolerate more than a third of their
replica population being Byzantine. In this paper, we investigate
how minimal trusted abstractions can push through these hard lim-
its in practical ways. We propose Attested Append-Only Memory
(A2M), a trusted system facility that is small, easy to implement
and easy to verify formally. A2M provides the programming ab-
straction of a trusted log, which leads to protocol designs immune
to equivocation– the ability of a faulty host to lie in different ways
to different clients or servers – which is a common source of Byzan-
tine headaches. Using A2M, we improve upon the state of the
art in Byzantine-fault tolerant replicated state machines, produc-
ing A2M-enabled protocols (variants of Castro and Liskov’s PBFT)
that remain correct (linearizable) and keep making progress (live)
even when half the replicas are faulty, in contrast to the previous up-
per bound. We also present an A2M-enabled single-server shared
storage protocol that guarantees linearizability despite server faults.
We implement A2M and our protocols, evaluate them experimen-
tally through micro- and macro-benchmarks, and argue that the im-
proved fault tolerance is cost-effective for a broad range of uses,
opening up new avenues for practical, more reliable services.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.4.5 [Operating Systems]: Reliability

General Terms
Algorithms, Design, Reliability, Security

Keywords
Equivocation, Attested append-only memory, Byzantine-fault tol-
erance, Replicated state machines, Shared storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

1. INTRODUCTION
In the distributed systems literature, it has long been a goal

to offer clients the illusion of interacting with a single, reliable,
fail-stop server, despite the occurrence of Byzantine server faults.
While the initial results along these lines were largely theoretical,
in recent years there has been an increasing interest in produc-
ing practical Byzantine-fault tolerant systems, as exemplified by
PBFT [13], Q/U [6], Ivy [33], Plutus [20], SUNDR [26], HQ [14],
and Zyzzyva [22].

The fault-tolerance properties of such systems can be divided
into safetyguarantees, properties that must be true at all times, and
livenessguarantees, properties that must become true within finite
time from all execution states of the system. For replicated state
machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target safety
guarantee islinearizability [17]: completed client requests appear
to have been processed in a single, totally ordered, serial schedule
that is consistent with the order in which clients submitted their
requests and received their responses. The corresponding liveness
guarantee is that a correct client’s request is eventually processed. It
is well established that if servers have no trusted components, then
no replicated system can provide these safety and liveness guaran-
tees when more than a third of its replicas are faulty [25].

To improve on these results, some researchers have explored re-
laxed correctness properties. For instance,fork* consistency[27]
is a weaker safety property than linearizability, but can be achieved
when less than two thirds of the replica population are faulty. In
single-server systems, the choice is only between 0% “replica”
faults (the server is non-faulty) and 100% “replica” faults (the server
is faulty). SUNDR showed how to achievefork consistency(slightly
stronger than fork*, but still weaker than linearizability) in the pres-
ence of a faulty server and non-faulty clients.

In this paper, our goal is to understand how the fault tolerance of
such systems might be improved through the use of realistic trusted
abstractions. Of course, placing the entire application (operating
system, application software, hardware, intervening network) into
the trusted computing base trivially solves the problem, but this
is totally impractical. Our focus here is on small-footprint trusted
primitives that have simple interfaces, are broadly applicable, and
can be implemented easily and cost effectively. We argue that a
trusted logabstraction, which we call Attested Append-Only Mem-
ory or A2M for short, is such a primitive. The power of A2M lies in
its ability to eliminateequivocation– telling different stories to dif-
ferent entities – from the possible failure modes of untrusted com-
ponents; for example, a faulty replica in a replicated system cannot
undetectably answer the same question with different answers to
different clients.

Section 2 motivates our choice of trusted abstraction, through
examples from both replicated and single-server systems. Section 3

presents our first contribution, A2M, in more detail, describing its
interface, typical usage patterns, and implementation alternatives
that trade off efficiency for the size and complexity of the trusted
computing base.

Next, we delve deeper into our second contribution: specific
system designs for replicated state machines and shared storage
that use A2M to improve their fault tolerance, in the context of
agreement-based replicated state machines (Section 4) and other
centralized and distributed protocols (Section 5). These include:

• A2M-PBFT-E is an A2M variant of Castro and Liskov’s
Practical Byzantine Fault Tolerance (PBFT) protocol. Sim-
ilar to PBFT, A2M-PBFT-E guarantees safety and liveness
with up to ⌊N−1

3
⌋ faulty replicas out ofN total; how-

ever, whereas PBFT offers no guarantees whatsoever when
this upper bound of faulty replicas is crossed, A2M-PBFT-
E can still guarantee safety without liveness when the num-
ber of faulty replicas is more than⌊N−1

3
⌋ but no more than

2⌊N−1

3
⌋. This is an important advantage for applications,

such as high-volume banking, in which correctness (captured
by safety) under heavy faults is desirable, even if it is not
accompanied by availability (captured by the liveness prop-
erty).

• A2M-PBFT-EA is an extension of PBFT that can guaran-
tee both safety and liveness with up to⌊N−1

2
⌋ replica faults:

whereas PBFT needs a three-fold replication to tolerate a
given number of faults, A2M-PBFT-EA needs only two-fold
replication. The additional complexity of A2M-PBFT-EA
may be justifiable in applications that require both low repli-
cationandhigh fault tolerance, as might be the case for crit-
ical applications with very high replication costs, such as de-
pendable software for space missions.

• A2M-Storage is an A2M-enabled single-server storage ser-
vice similar to SUNDR [26]. A2M-Storage leverages A2M
to guarantee linearizability whereas SUNDR, without help
from trusted components, can only provide fork consistency.

Section 6 presents an experimental evaluation of the A2M ap-
proach, using microbenchmarks on our implementation of A2M
and two of our A2M-enabled protocols, A2M-PBFT-E and A2M-
PBFT-EA. We also show macrobenchmarks on NFS running on top
of A2M-PBFT-E and A2M-PBFT-EA, which suggest that the cost
of using A2M to increase fault tolerance (or, conversely, reduced
redundancy) is minimal: using an A2M module through a system
call-like interface, the overhead of NFS on top of A2M-PBFT-EA
is about 4% compared to that of NFS on top of traditional PBFT,
or about 24% compared to NFS on top of an untrusted NFS server,
for the benefit of reducing replication factor from 3 to 2.

We discuss the appropriate level for a trusted abstraction in Sec-
tion 7, describe related work in Section 8, and then conclude in
Section 9.

2. MOTIVATION
In this section, we detail the fundamental motivation behind our

work, starting with our basic assumptions and target system en-
vironments, and continuing with specific illustrations of an adver-
sary’s power against existing systems, which will motivate our A2M
design in Section 3, and A2M-related protocols in Sections 4 and 5.

2.1 Setup
We consider client-server systems where a service is accessed

and shared by multiple clients connected over a public network.

The service can be implemented as a single server (e.g., a file server)
or multiple servers (e.g., replicated state machines). Clients re-
questauthenticatedoperations from the service, the service exe-
cutes those operations, which may change the service state, and
returns responses to the requesting clients.

2.2 Assumptions
We use standard assumptions about the network model and about

cryptography. In the network, packet drops, reorderings, and du-
plications can occur but retransmissions of a message eventually
deliver it. However, though finite upper bounds exist for mes-
sage delivery and operation execution times, those bounds are not
known to protocol entities. A faulty node cannot violate intractabil-
ity assumptions about standard cryptography. Therefore, the ad-
versary cannot produce pre-images or collisions for cryptographic
hash functions1 or forge previously unseen signatures for private
signing keys he does not possess.

In this paper, we consider fault models that depend on the cause
of the node’s misbehavior. In particular, we distinguish between
two cases: (i) the node’s owner is well-intentioned but unaware
the node’s software has been compromised by a third-party (faulty
application model), and (ii) the node’s Byzantine behavior is be-
cause of a malicious owner instructing it to do so (faulty operator
model). The nature of the trusted computing base is quite different
in the two cases. In the first model, the trusted computing base is
set up by the service owner; for instance, a bank owns all nodes
and ensures, through physical security and other means, that only
its nodes can provide the service. Our concern here is to combat
software attacks such as worms and viruses against those centrally
administered nodes. In the second model, we do not trust owners
but trust a third party (e.g., a special service provider or a trusted
hardware manufacturer) to set up the trusted computing base; for
instance, a malicious storage server can manipulate all aspects of
its node except what lies within the trusted device, which is the
purview of the device provider.

In the traditional Byzantine-fault model, the cause of Byzantine
behavior is not of immediate consequence – that is, tolerant proto-
cols work well regardless of whether the operator or a virus writer
are doing the misbehaving. Nevertheless, the practical decision to
apply or not a solution to a target environment depends exactly on
whether the designer can explain why the Byzantine-fault bound
will not be violated; the justification is dependent on whether that
environment consists of a single administrative domain (benign op-
erator, potential software attacks) or multiple administrative do-
mains (potentially malicious operators, potential software attacks).

2.3 Notation
For conciseness, throughout the paper we use the authentica-

tion notation of Yin et al. [39], according to which we denote by
〈X〉S,D,k an authentication certificate that any node in a setD can
regard as proof thatk distinct nodes inS saidX. For example, a
traditional digital signature onX from p that is verifiable by the en-
tire replica populationR would be〈X〉p,R,1, two signatures from
p andq put together would be〈X〉{p,q},R,2, and a MAC fromp

to q with a shared key would be〈X〉p,q,1. As a convention, we
usep to denote the singleton set{p}, and∞ as shorthand for the
universal set of all principals. When we use this notation to de-
scribe collective certificates made up of individual signatures, as

1A one-way – or pre-image resistant – hash functionh is one for
which there is no polynomial-time algorithm that, givenα, can find
a previously unknownβ such thatα = h(β). A collision-resistant
hash functionh is one for which there is no polynomial-time algo-
rithm that can find two valuesα andβ for whichh(α) = h(β).

client a

time

{r
e
q
1
a
,

re
q
1
b
} re

q
2
a {r

e
q
1
a
,

re
q
1
b
,

re
q
2
a
}

{re
q
1
a ,

re
q
1
b } re

q
2
b

{re
q
1
a ,

re
q
1
b
,

re
q
2
b }

server

client b

Figure 1: A forking attack example of two clients and one ma-
licious server. The server convinces clientsa and b of different
system states.

for the second example above, we usually remove any signer iden-
tification from the collective certificate format: for example, the
certificate〈X〉{p,q},R,2 above could correspond to the individually
signed messages〈p, X〉p,R,1 and〈q, X〉q,R,1.

We useh() to denote a one-way collision-resistant hash func-
tion such as SHA-256, and‖ to denote the bit-string concatenation
operator.

2.4 Equivocation
In deterministic systems that aim to guarantee linearizability, ly-

ing is bad enough, but lying in different ways to different people
is even worse. The “prototype” problem behind Byzantine-fault
tolerant agreement, the “Byzantine generals problem,” has been
demonstrated unsolvable in a population of three parties when one
is faulty [25], precisely because of equivocation. Beyond agree-
ment, especially when there is a single server to contend with,
equivocation can wreak just as much havoc: a server can feign ig-
norance to clientA for data that it has promised clientB it would
broadcast to all. Even when it does not drop information, a faulty
server can order sequential requests – think about two concurrent
writesa andb to the same shared variable – in different ways when
responding to different clients, potentially changing the presumed
state of the system substantially: one client seesa as the dominat-
ing write whereas the other client seesb instead.

In what follows, we present two detailed examples of equivoca-
tion attacks against single-server and replicated systems, to moti-
vate our focus on eliminating equivocation through trusted system
abstractions.

2.4.1 Servers Equivocating to Clients
We consider a log-structured storage server shared by multiple

clients as an illustrative example. For example, in a straw-man de-
sign for SUNDR [26], to request an operation, a client first acquires
a lock at the server and downloads the entire operation log, a time-
ordered collection of signed client operations. The client checks
whether the log is correct by verifying the signatures and by check-
ing that the log contains all of its own operations in order; it then
creates what must be the server’s current state by starting with an
initial state and then applying the logged operations in order, as a
correct server would have in a linearized system. It executes its op-
eration based on the constructed state, thus finding out the result of
this operation. It then appends its signed operation to the end of the
log, sends the updated log back to the server, and releases the lock.

A faulty server can mount a forking attack [26] by concealing
operations, which causes the system’s state to diverge into multi-
ple possibilities for different clients. Suppose two clients access
a server as shown in Figure 1. Clienta performsreq1a, client b
performsreq1b, and clienta performsreq2a. The latest state of
the server becomes{req1a, req1b, req2a} as far as clienta is con-
cerned. Now, clientb retrieves the log of the server to perform a

client
r3

r2

r1

r0

r3

r2

r1

r0
faulty

non-
faulty X

X

time

a

<
1,
re
q a
>

b

<
1,
re
q b
>

Figure 2: An example that shows the violation of linearizabil-
ity in PBFT when two replicas are faulty out of four replicas.
Faulty serversr1 and r2 convince non-faulty serversr0 and r3

to commit different requests.

new operationreq2b. The faulty server dropsreq2a off the tail of
the log, only returning{req1a, req1b}. Clientb executes its opera-
tion and has the log state{req1a, req1b, req2b}. The system state is
now forked with regards to these two clients. The cause of the prob-
lem is the ability of the faulty server to misrepresent its operation
log to the two clients, equivocating on what its state is according to
who is asking.

Systems vulnerable to this kind of equivocation attacks are
shared file systems such as Plutus [20], SUNDR [26], and Ivy [33],
quorum-based replicated state machines such as Q/U [6], and
timestamping systems such as Timeweave [30]. SUNDR and Time-
weave alleviate the effects of equivocation, offering fork consis-
tency, a weaker property than linearizability. For example, SUNDR
maintains state about the server’s timeline at individual clients;
once forked, all clients within the same fork enjoy a linearized view
of the system, but do not see state changes in another fork. Unfor-
tunately, even then, unless two clients on different forks compare
their notes, they cannot know that the server maintains multiple
versions of its state and history.

2.4.2 Servers Equivocating to Servers
To demonstrate equivocation problems among servers, we con-

sider BFT replicated state machines. In particular, we choose Prac-
tical Byzantine Fault Tolerance (PBFT) [13] since it has had a pro-
found impact on the systems literature. Though we give more de-
tailed background on PBFT in Section 4.1, for the purposes of this
illustration, a PBFT client is satisfied with a result to its request if
it receives at least⌊N−1

3
⌋ + 1 replies from distinct replicas out of

the N total replicas, all with a matching result; a PBFT replica
can commit a request to its local state as long as a quorum of
2⌊N−1

3
⌋ + 1 replicas agree on the request’s ordering in history.

Given this behavior, PBFT guarantees safety (linearizability) and
liveness, as long as no more than⌊N−1

3
⌋ replicas are faulty; if more

than ⌊N−1

3
⌋ replicas are faulty, PBFT does not guarantee safety

(and liveness is meaningless without safety): faulty replicas can
fool non-faulty replicas to commit different request histories, and
different clients may accept replies corresponding to different re-
quest histories, violating linearizability.

To illustrate, considerN = 4; replicasr1 andr2 are faulty, and
non-faulty replicasr0 andr3 cannot temporarily communicate with
each other (Figure 2). Clienta sendsreqa to the system. The two
faulty replicas convincer0 to commit and executereqa first, since
the three of them form a quorum of3 = 2⌊N−1

3
⌋ + 1. Later client

b sendsreqb to the system. The two faulty replicas convincer3

to commit and executereqb first, sincer3 never sawreqa. Faulty
serversr1 andr2 equivocate to non-faulty serversr0 andr3.

Furthermore, the ability of faulty servers to equivocate to non-
faulty servers also allows the service to equivocate to clients, as
in the previous section. For example, clientsa andb experience

via their accepted replies two different histories, in whichreqa and
reqb are, respectively, the single, first committed request, violat-
ing linearizability. The problem arises because of the faulty repli-
cas equivocating to clients. The faulty replicas are allowed to tell
client a, with r0’s help, thatreqa is committed in their history at
sequence number1, and also to tell clientb, with r3’s help, that
reqb is committed in their history at the same sequence number.

Systems vulnerable to servers equivocating to servers are
agreement-based Byzantine-fault tolerant state machine replication
protocols such as PBFT [12] and BFT2F [27]. BFT2F supports
fork* consistency by maintaining state at clients.

3. ATTESTED APPEND-ONLY MEMORY
In the previous section, we argued that the adversary’s ability

to equivocate undetected – e.g., to claim to have two different his-
tories depending on which host it is talking to – is a fundamental
weapon against safety, both in single-server and replicated services.
Here we describe anattested append-only memory(A2M), a sim-
ple attestation-based abstraction that, when trusted, can remove the
ability of adversarial replicas to equivocate without detection. Us-
ing an A2M implementation within the trusted computing base, a
protocol can assume that a seemingly correct host can give only a
single response to every distinct protocol request – for some proto-
col specific definition of “distinct” request –, even when that same
request is retransmitted multiple times by different clients or repli-
cas, and even if that response is undetectably faulty.

Informally, an A2M equips a host with a set of trusted, undeni-
able, ordered logs (illustrated in Figure 3). Each such log has an
identifierq (unique within the same computer) and consists of a se-
quence of values, each annotated with (1) a log-specific sequence
number that is incremented from 0 with every new value appended
to the log, and (2) an incremental cryptographic digest of all log
entries up to itself. Only a suffix of the log is stored in A2M, start-
ing with the slot in the “low” positionL ≥ 0 and ending with the
last slot in the “high” positionH ≥ L.

A2M essentially offers reliable services a bit-commitment
scheme [34] for sequential logs, placed within the trusted comput-
ing base. Section 3.1 describes the A2M interface, Section 3.2
presents simple usage scenarios illustrating how A2M can help
a service to remove equivocation from the arsenal of Byzantine-
faulty parties, and Section 3.3 explores the implementation options
for A2M, along with the trust-efficiency trade-off for each.

3.1 Interface
An A2M log offers methods toappend values, tolookup val-

ues within the log or to obtain theend of the log, as well as to
truncate and toadvance the log suffix stored in memory. There
are no methods to replace values that have already been assigned.

• append(q, x) takes a valuex, appends it to the log with iden-
tifier q, increments the highest assigned sequence numberH
by 1, populates the slot at that position withx, and computes
the cumulative digestdH = h(H‖x‖dH−1), whered0 = 0.
This method does not cause any values to be forgotten, i.e.,
it does not affectL; if the log is unable to allocate storage to
the new entry, the method fails.

• lookup(q, n, z) → 〈LOOKUP, q, n, z, x, w, n′, d〉A2Mq,∞,1

takes log identifierq, a sequence numbern and a noncez
(for freshness), and returns aLOOKUP attestation.w is the
type of the attestation: if sequence numbern has not been
assigned yet (i.e.,n > H) thenw is UNASSIGNED andn′ =
H; if n was assigned once but has now been forgotten (i.e.,

q3

L

H

L
,x

L
,d

L

L
+
1,
x

L
+
1,
d

L
+
1

L
+
2,
x

L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

q2

L

H

L
,x

L
,d

L

L
+
1,
x L
+
1,
d

L
+
1

L
+
2,
x L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

A
2
M

Digital
signing

Secure
hashing

q1

L

H

L
,x

L
,d

L

L
+
1,
x

L
+
1,
d

L
+
1

L
+
2,
x

L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

Figure 3: Structure of an attested append-only memory (A2M).
An A2M contains a set of distinct logs (qi) that map sequence
numbers (in the range ofLi to Hi) to values.

n < L), thenw is FORGOTTENandn′ = L; if slot n has been
skipped over via theadvance method (see below) thenw is
SKIPPED andn′ is the sequence number of theadvance call
that caused the skip; finally, ifn is a slot that was filled via
append or advance (see below), thenw is ASSIGNED and
n′ = n. x andd are the assigned log value and digest when
w is ASSIGNED) and0 otherwise.

• end(q, z) is similar tolookup, but returns the last entry of
the given log (currently in positionH). Attestations from
lookup andend have the same format except for the request
nameEND in the beginning.

• truncate(q, n), wheren ∈ (L,H], forgets all log entries
with sequence numbers lower thann, settingL to n. All sub-
sequentlookup requests for entries belown will be hence-
forth of typew = FORGOTTEN.

• advance(q, n, d, x) allows log q to skip ahead by multi-
ple sequence numbers. It takes a sequence numbern >

H, a digestd, and a valuex. It operates similarly to
append, but instead of usingdH−1 in the digest com-
putation, it uses the givend; skipped sequence numbers
are reported asSKIPPED in lookups. Any subsequent
lookup(q, n′′, z) request for a sequence numbern′′ that was
skipped by thisadvance will return an attestation of the
form 〈LOOKUP, q, n′′, z, x, SKIPPED, n′, d〉A2Mq,∞,1, which
contains information about theadvance method that caused
the skip, until the slot is finallyFORGOTTEN.

3.2 A2M Usage
Equipped with A2M in its trusted computing base, a reliable ser-

vice can mitigate the effects of Byzantine faults in its untrusted
components, by being able to rely on some small fallback infor-
mation about individual operations or histories of operations that
cannot be tampered with.

During setup, the untrusted component (e.g., a server) must make
known to all possible verifiers (e.g., clients or other servers) the
authentication keys for its A2M module and the identifier of the
A2M log used for each distinct purpose. As far as a verifier is
concerned, the A2M authentication key and log identifier are part of
the untrusted component’s identity. Therefore, a particular A2M-
enabled component is allowed to use only its associated A2M.

An untrusted componentC can commit individual data items or
operations byappending them to an A2M log. For example, to
prove that it has committed to a data itemD, the component can

(a) (c) (d) (e)

H/W

Guest OS

A2M-App

A2MH/W

OS

A2M-

App

H/W

OS

A2M

H/W

Guest

OS

A2M-

App

VMM

Mini

OS

A2M

H/W

Guest OS

A2M-App

VMM A2M

(b)

H/W

A2M-App

OS

A2M

Figure 4: A2M implementation scenarios. Thick boxes delineate the trusted computing base. (a) trusted service, (b) trusted software
isolation, (c) trusted VM, (d) trusted VMM, and (e) trusted hardware.

executeappend(q, h(D)). The data item is hashed before append-
ing to facilitate A2M implementations in which every log slot has
a fixed length.

An interested verifier can establish that the data item is, indeed,
in the untrusted component’s committed state by demanding the
attestation〈LOOKUP, q, n, z, x, ASSIGNED, n, d〉A2MC ,∞,1 for some
sequence numbern and noncez, wherex = h(D) 2. This conclu-
sively establishes that the untrusted component indeed put the data
itemD somewhere into its committed log. The sequence numbern

can be further constrained (e.g., it can be associated with individual
protocol steps) to ensure that the untrusted component only com-
mits a single data item for that protocol step; in this sense, multi-
ple verifiers who are mutually disconnected can be assured that the
component cannot equivocate on the contents of itsn-th slot.

To ensure that the untrusted component has a particular data
item as the last element in its log, a verifier can provide the un-
trusted component with a random noncez and demand the attes-
tation 〈END, q, n, z, x, ASSIGNED, n, d〉A2MC ,∞,1. As long as the
request type isEND, the nonce is the verifier-supplied nonce, and
the valuex = h(D), the verifier can establish that as of the time
of nonce transmission to the component, the last entry in the log
was that containingD, and thus no trailing entries were spuriously
chopped off by the untrusted component.

The untrusted component is not bound to committing to indi-
vidual data items in sequential log slots; it can useadvance to
skip some sequence numbers. For example, if it only needs to
commit to a value for everyk-th sequence number, instead of
append(q, h(D)) as above, it can useadvance(q, n, 0, h(D)) for
n = ik. Invocation ofadvance does not “unprove” things that the
A2M has attested to before. It merely gives up the ability to attest
to a real value for the skipped sequence numbers, and disassoci-
ates the newly appended request’s digest from the log’s cumulative
history digest thus far, which is not required when committing to
individual data items.

When interested in entire histories of data items (e.g., request
logs), verifiers can make use of not only the committed data item
itself, but also the cumulative digestd. Thanks to the collision-
resistant properties of the hash function used, there is a single se-
quence of data items appended to logq for which the cumulative
digest isd. Therefore, by comparing the digests in twoLOOKUP at-
testations from two different untrusted servers, a verifier can estab-
lish conclusively that the two servers have committed to the same
history up to the looked up sequence number.advance can be
used, as above, to disassociate two portions of the log, for example,
when part of the log is missing during a node’s recovery.3

2Note that we useA2M p to denote the authentication principal
corresponding to hostp’s A2M module. Trusting A2M means that
hostp cannot forge authenticators byA2M p without A2M’s co-
operation, and that even then, it can only coerce A2M to generate
such authenticators as per the A2M interface.
3It is important to point out that agreement of two A2M logs on the

To revisit the scenario of a storage server that maintains a log
for committed client requests but maliciously drops some off the
end when talking to a victim client (Section 2.4.1), consider forc-
ing the server to maintain that log in A2M. Clientb can demand
a freshEND attestation from the server’s A2M log, along with the
history itself, and ensure that the included digest is indeed the cu-
mulative digest of the history; this guarantees tob that the server
has not omitted any requests from the end of its committed log in
its response, eliminating this particular problem. Similarly, to re-
visit the replicated scenario in which malicious replicas profess to
different committed requests to different non-faulty replicas, con-
vincing them to commit divergent requests (Section 2.4.2), consider
requiring replicas to place such messages into an A2M message
log before transmitting them. Now a non-faulty replica, before it
allows itself to be convinced by another replica’s message, ensures
that the message is attested in aLOOKUP attestation drawn from the
message sender’s A2M message log. In this way, the faulty replica
cannot equivocate to two different non-faulty replicas to effect the
scenario.

These simple illustrations miss many finer details. We present
detailed A2M-enabled protocol designs that achieve fault tolerance
that they did not possess before, or increase their fault tolerance, in
Sections 4 and 5.

3.3 Implementation Considerations
The fundamental premise behind an implementation of A2M

is that it is harder to subvert than the main application. Differ-
ent implementation scenarios (illustrated in Figure 4) lead to dif-
ferent threat models and degrees of trust in the resulting system,
and are appropriate for different applications. Our contribution
is a novel division of functionality between trusted and untrusted
components, not a specific implementation of it – our experimental
evaluation in Section 6 is a proof of concept, but other implementa-
tion scenarios are possible, some of which we characterize below.

The implementation scenarios we present are a separate service
offered by a trusted provider or a hardened component (Figure 4(a)),
a software-isolated module (Figure 4(b)), a trusted virtual machine
(Figure 4(c)), a trusted virtual machine monitor (Figure 4(d)), and
trusted hardware (Figure 4(e)). These implementations are viable
in the face of different threats. All five implementations work under
the faulty application model (external attacks against server soft-
ware) but only (a) and (e) work under the faulty operator model
(malicious operators that own, operate, and can manipulate entire
servers).

In the simplest case, A2M can be a software abstraction imple-
mented as a service visible to applications via an RPC-like interface

same sequence number and digestdoes not implynecessarily that
the two logs must also agree on attestations about all preceding
sequence numbers and digests; the use ofadvance legitimately
contradicts this implication. It is possible to change the interface
so as to guarantee this implication, but this is not required for our
case studies in this paper.

(Figure 4(a)). For instance, it could be a service offered by a trusted
provider, such as Amazon’s S3 [1], or by a separate, hardened com-
ponent with significantly greater assurances in the face of software
errors than the main application software and hardware. This is
similar to notarization-like approaches [15, 30, 40] that rely on a
trusted write-once medium external to the main system. Though
the entire application stack can fail (application, operating system,
and hardware), as long as the A2M is running on a trusted system
the application can be protected. The big drawback with this imple-
mentation scenario is its network-bound nature – in fact, many of
its prior instances in practice use this external write-once medium
once a day or so – as well as the requirement that everyone needs
on-line access to the trusted A2M service provider. Applications
with fairly slow request rates such as shared backup services, long-
term digital preservation, or certificate authorities may be able to
absorb the high-latency interaction with A2M in their relatively in-
frequent state changes.

Figure 4(b) presents a more decentralized approach, in which
the A2M implementation relies on the software-based isolation be-
tween A2M and an A2M-enabled application. This approach takes
advantage of programming language type and memory safety for
isolation. Therefore, A2M can be implemented as a library. For in-
stance, in the Singularity [19] operating system, the A2M module
would be a program that runs as a separate software-isolated pro-
cess in the same address space. If the Singularity isolation mecha-
nism is trusted, it is possible to trust A2M even if the A2M-enabled
application is untrusted. Similarly, in the Java Virtual Machine
(JVM) [3], an application using A2M runs in a sandbox, which
constitutes a safe execution environment. The assumption is that
if the JVM interpreter, JVM core classes, and an operating system
that runs the JVM can be trusted, A2M can be trusted, even if the
A2M-enabled Java application is not. Though the isolation is no
longer physical as with the scenario of Figure 4(a), communication
between the application and A2M is fast since they are both in the
same address space.

Figure 4(c) presents the A2M implementation that relies on the
inherent fault isolation properties of a virtual machine monitor
(VMM). In the figure, the A2M module is a user-space program
running on a small, verifiable operating system on top of a VMM.
As long as the VMM and the mini-operating system are trusted to
be exploit-free, it is possible to trust the A2M abstraction, even
if the application and its general-purpose operating system are
compromised. For instance, the virtual Trusted Platform Module
(vTPM) [11] has this architecture. Communication between the ap-
plication and A2M is only subject to VMM-optimized RPCs, which
systems such as Xen [10] make very efficient.

Further reducing the trusted footprint, the A2M implementation
could be placed within the VMM, as in Figure 4(d). Here, the as-
sumption is that a small VMM (or, indeed, a microkernel) can be
carefully implemented (or formally verified) as bug-free, isolating
the correctness of the A2M implementation from potential oper-
ating system or application errors above the VMM. For instance,
Xen’s trusted hypervisor interfaces [10] could host such an imple-
mentation scenario. Both VMM approaches reduce the cost of con-
tacting A2M and can yield efficient, interactive performance for
applications such as file systems or transaction processing systems.

Finally, Figure 4(e) places the A2M within the hardware itself.
Since it tends to be much harder to coerce a hardware module
to operate against its specification than it is for software mod-
ules, especially without physical access to the hardware, this sce-
nario provides the greatest level of trust in A2M. Hardware im-
plementation options might be to extend a standard Trusted Plat-
form Module (TPM) with some additional non-volatile RAM or an

Intel Active Management Technology (AMT) chip [2], or to use
a programmable secure coprocessor such as IBM’s commercially
available PCIXCC [8] board, a programmable PCI-X card with
cryptographic primitives as well as physical and electrical tamper-
resistance. Tamper resistance offers increasedphysical security:
even a malicious host operator armed with electrical probes can-
not coerce A2M to give responses that are inconsistent with its
specification or to reveal its authentication key material, except for
extremely expensive physical cryptanalytic attacks that are unreal-
istic for most practical situations. Moreover, whereas in the past
tamper resistance implied low performance, products such as the
PCIXCC coprocessor make a hardware A2M implementation po-
tentially the best performing one – albeit most expensive – among
our scenarios. Nevertheless, pervasive hardware implementations
of new programming abstractions tend to be slow to arrive, slow
to change, and slow to turn into commodities, making this a more
tenuous scenario, except for the most sensitive applications.

In this paper, we experiment with a software A2M implementa-
tion. Values stored within A2M logs can have a configurable fixed
size, e.g., 32 bytes. The A2M sequence number field needs to have
a size large enough to hold sequence numbers of long-running ap-
plications (e.g., 160 bits). We implement authentication based on
both digital signatures and MACs (with a slightly modified inter-
face from that in Section 3.1), though we describe the digital sig-
nature version of all protocol designs for simplicity.

4. A2M STATE MACHINE REPLICATION
PROTOCOLS

In this section, we present state machine replication protocols
through the use of A2M, improve their fault tolerance by rendering
equivocation extinct or evident. First, in Section 4.1, we present a
brief overview of the salient features of Castro and Liskov’s PBFT
protocol for replicated state machines. Second, in Section 4.2, we
present a simple extension of PBFT, in which A2M protects clients
from the replicas’ misbehavior, retaining PBFT’s safety and live-
ness for up to⌊N−1

3
⌋ faulty replicas out ofN , but also guaran-

teeing safety without liveness for up to2⌊N−1

3
⌋ faulty replicas.

Second, Section 4.3 goes further to protect not only clients from
replica misbehavior in PBFT, but also replicas from each other, al-
lowing the fault tolerance of the protocol to go up to⌊N−1

2
⌋ with

bothsafety and liveness.

4.1 Background: PBFT
Castro and Liskov’s PBFT protocol [13] is a replicated, fault-

tolerant mechanism for implementing astate machine[37]: an ab-
straction that represents a deterministic service, in which a starting
state (e.g., an empty database) and the sequence of read-compute-
write operations at the service determine precisely the state of that
service at the end of the operation sequence. Such state machines
are relatively straightforward to implement on a single, single-
threaded server at an individual computer, though any faults at that
computer always cause a service failure. For fault-tolerance rea-
sons, it often makes sense to implement the state machine abstrac-
tion over a population of such potentially faulty computers inter-
connected via a potentially faulty network, hoping that even if some
computers fail, the service as a whole can continue functioning cor-
rectly. Unfortunately, implementing the state machine abstraction
over such a population and network is no simple task. In PBFT,
each participating computer implements the entire state machine
on its local replica of the service state, and replicas communicate
with each other to ensure that they all execute the same sequence
of operations, and mask individual computers’ faults. We describe

Client

Primary

Replica 1

Replica 2

Replica 3

(a) PBFT

request
pre-

prepare
prepare commit reply

(b) A2M-PBFT-E

request
pre-

prepare
prepare commit reply

(c) A2M-PBFT-EA

Message attested by A2M

request
pre-

prepare
prepare commit reply

Figure 5: Three-phase agreement protocol. Thicker lines denote messages that are attested to using A2M.

the protocol in more detail below.
In PBFT, a client c multicasts a request message

〈REQUEST, o, t, c〉c,R,1 to the N service replicas in replica set
R, whereo is the operation requested, andt is the timestamp. The
client accepts a reply for its request (and only then can submit an-
other) when it receives⌊N−1

3
⌋+1 valid matchingREPLY messages,

forming the reply certificate 〈REPLY, v, n, t, c, r〉
R,c,⌊ N−1

3
⌋+1

,

wherev is the view number,n is the assigned sequence number,
andr is the result of the request. Aview is a particular assignment
of roles to replicas: the single activeprimary vs. the passive
backups; when the primary changes, so does the view numberv.

Replicas linearize requests via a three-phase agreement proto-
col (Figure 5(a)), starting when the primary (chosen to be the
replica with identifierp ≡ v mod N) multicasts toR a newly
received request messagereq , encapsulated within a message
〈PREPREPARE, v, n, req〉p,R,1. When backup replicai receives this
PREPREPARE, it multicasts toR a 〈PREPARE, v, n, req〉i,R,1 mes-
sage. Once replicaj has collected2⌊N−1

3
⌋ + 1 PREPREPARE

or PREPARE messages from distinct replicas for this request
(which constitute theprepared certificatefor this request of the
form 〈PREPARE, v, n, req〉

R,R,2⌊ N−1

3
⌋+1

), the request becomes

prepared. To complete the protocol, a replica with a pre-
pared request then multicasts toR a 〈COMMIT , v, n, req〉j,R,1

message. When replicak collects 2⌊N−1

3
⌋ + 1 such mes-

sages (which constitute thecommitted certificateof the form
〈COMMIT , v, n, req〉

R,R,2⌊ N−1

3
⌋+1

), the replica has established the

linearized sequence for this request, committing to execute it as
soon as it can; this concludes theagreementportion of the PBFT
protocol for this request, whose purpose is to ensure that the repli-
cas agree on a single operation sequence for the service, as more
clients submit requests for further operations.

A replica can execute the request in its local state as soon as it has
finished executing the committed requests for all sequence numbers
lower thann. It packages the result in aREPLY message, which it
sends to the client directly. When the client has received a quorum
of such matching replies – the reply certificate described above –
theexecutionportion of the protocol concludes; the purpose of the
execution portion is to represent to the client accurately the service
state (and reply to the client’s request accordingly), as determined
by executing the sequence of operations that the agreement proto-
col portion maintains.

Though the request log can itself represent the service state,
replicas periodically garbage-collect their operation log to reduce
storage consumption: they create a checkpoint of their local state
at a particular sequence numbern and a cryptographic hashs of
that state. When replicai creates such a checkpoint, it multi-
casts toR a 〈CHECKPOINT, n, s, i〉i,R,1 message. Once it has col-
lected a checkpoint certificate〈CHECKPOINT, n, s〉

R,R,2⌊ N−1

3
⌋+1

,

the replica deems that checkpoint “stable,” and truncates its opera-
tion log up to sequence numbern.

When replicai has out-of-date service state (e.g., due to tran-
sient network partitions or because it is slow), it can catch up with
the rest by retrieving missing committed requests, along with their
committed certificates, from another, more up-to-date replica. If
other replicas no longer have those certificates in their logs due to
garbage collection, the lagging replica can fetch the latest stable
checkpoint and certificate, and then any subsequent committed re-
quests after that checkpoint.

Finally, PBFT has a view-change protocol that changes the sys-
tem’s primary when the primary is suspected faulty. When backup
replicai in view v times out waiting for a request to commit, it sus-
pects the primary as faulty, and multicasts toR a〈V IEWCHANGE, v+
1, n, s, C, P 〉i,R,1 message, wheren is the sequence number for
the latest stable checkpoint,s is the digest of the stable checkpoint,
C is a stable checkpoint certificate, andP is a set of prepared cer-
tificates whose sequence number is higher thann.

When a new primary (p = v+1 modN) collects a new view cer-
tificateV that consists of2⌊N−1

3
⌋+1 valid V IEWCHANGE messages

containing correctC andP , it multicasts toR a 〈NEWV IEW, v +
1, V, O〉p,R,1 message, whereO is a set ofPREPREPAREmessages
in the new view. To determineO, let ℓ be the sequence number of
the latest stable checkpoint inV , and letu be the highest sequence
number inP . For each sequence number betweenℓ + 1 andu, the
primary creates aPREPREPAREmessage if a prepared certificate ex-
ists inV , or aPREPREPAREmessage for a no-op operation otherwise
(to skip that sequence number in the new view).

When a backup replica receives aNEWV IEW message, it verifies
O is correctly computed by performing the same procedure as the
primary. If the message is valid, the replica adds the new infor-
mation to its log, logs and multicasts toR PREPARE messages for
each message inO, and enters viewv + 1. The backup processes
messages with a view numberv′ higher than the current view only
after it receives a validNEWV IEW message forv′.

4.2 A2M-PBFT-E
In this section, we describe A2M-PBFT-E, a simple extension

of PBFT that uses A2M logs to protect the execution portion of
PBFT (hence the “E” suffix of the acronym); that is, it ensures that
replicas cannot equivocate about their locally computed results for
a particular requested client operation when replying to that or any
other client (Figure 5(b)). As before, we consider a populationR

of N replicas.

4.2.1 Design
Replicas: An A2M-PBFT-E replicai maintains all state main-

tained by a PBFT replica, as well as an A2M log for what it believes
as the agreed request sequence; that log has identifierqi. Other
replicas and clients identify this replica as a pair〈i,A2M i〉 of prin-
cipals,i for the replica node itself, andA2M i for the replica’s A2M
module. As a convenience, we useA2M R to mean the set of all
A2M principals used by replicas inR.

An A2M-PBFT-E replica is functionally identical to a PBFT
replica with regards to agreement, but differs on protocol aspects
that involve execution, namely client interaction and checkpoint
management.

Once replicai collects a committed certificate for sequence num-
bern, it executes the requestreq on its local application state ob-
taining resultr, it appends the associated request to its logqi with
append(qi, h(req)), and useslookup(qi, n, n) to obtain the A2M
attestation 〈LOOKUP, qi, n, n, h(req), ASSIGNED, n, d〉A2M i,R,1.
Finally, it packages the regular PBFT reply message and the
attestation into a single message, which it sends back to the client.

As per PBFT, replica i performs garbage collec-
tion on its log and A2M request history by exchanging
CHECKPOINT messages. When replicai creates a check-
point, it multicasts to R a 〈〈CHECKPOINT, n, s, d′, i〉i,R,1,

〈LOOKUP, qi, n, n, x, ASSIGNED, n, d〉A2M i,R,1〉 message
where n is the sequence number of the last executed re-
quest to produce the checkpoint state,s is the state digest,
d′ is the A2M digest for sequencen − 1 (need not be at-
tested), andx is the hash of then-th committed request.
The checkpoint becomes stable when a replica collects a
checkpoint certificate 〈〈CHECKPOINT, n, s, d′〉

R,R,2⌊ N−1

3
⌋+1

,

〈LOOKUP, n, n, x, ASSIGNED, n, d〉
A2MR,R,2⌊ N−1

3
⌋+1

〉. The

replica adds this information to its log, removes all messages
with sequence number up ton from the log, and performs
truncate(qi, n).

When replicai performs a state transfer, it performs the regular-
PBFT process of fetching and installing a state with a stable check-
point certificate and subsequent agreement messages into its mes-
sage log. In addition to this, an A2M-PBFT-E replica must also up-
date its A2M request log, by performingadvance(qi, n, d′, x), and
thenappending all subsequently committed requests in ascending
sequence order.

Clients: In A2M-PBFT-E, a client c is identical to
a PBFT client, except it expects from replicai re-
ply messages of the form 〈〈REPLY, v, n, t, c, r〉i,c,1,
〈LOOKUP, qi, n, n, h(req), ASSIGNED, n, d〉A2M i,R,1〉 for its
pending requestreq . This is the PBFTREPLY along with the A2M-
attested content of then-th A2M log entry at the sender. To con-
sider its request completed and accept the result, a client waits until
it collects a reply certificate〈〈REPLY, v, n, t, c, r〉

R,c,2⌊ N−1

3
⌋+1

,

〈LOOKUP, n, n, h(req), ASSIGNED, n, d〉
A2MR,R,2⌊ N−1

3
⌋+1

〉.

Note that the size of the reply certificate is2⌊N−1

3
⌋+1 in A2M-

PBFT-E, as opposed to⌊N−1

3
⌋ + 1 in PBFT. However, the popu-

lar read-only optimization in PBFT – in which read-only requests
can be answered by replicas immediately upon reception without
a three-phase commit – also requires replies of size2⌊N−1

3
⌋ + 1,

making this difference moot in practice.4

4.2.2 Correctness
At a high level, we show that if at most⌊N−1

3
⌋ replicas are

faulty, A2M-PBFT-E does not cause clients to accept more replies
than they would under PBFT (therefore does not violate safety)
and does not block operations that would have proceeded in PBFT

4A2M-PBFT-E supports this read-only optimization by replacing
LOOKUP attestations withEND attestations in the client reply, and
using a client-supplied nonce in the attestation, when handling a
read-only request; this proves to the client that the result provided
is drawn from the latest state of the service, rather than an ear-
lier state (in which case, faulty up-to-date replicas would have ad-
vanced their committed request log beyond the attestation they are
required to return freshly).

(i.e., does not remove liveness). When the number of faulty repli-
cas ranges between⌊N−1

3
⌋ + 1 and2⌊N−1

3
⌋, we show that A2M-

PBFT-E can only assign to any sequence number a unique client
request, and that the reply delivered to clients for any sequence
number is that which a non-faulty replica would have produced
processing the sequence requests in order.

Case 1:When no more than⌊N−1

3
⌋ replicas are faulty, the safety

of A2M-PBFT-E follows from PBFT’s safety: A2M-PBFT-E at-
testations in replies at worstpreventa client from accepting a re-
ply that PBFT would otherwise accept (if theREPLY portion of the
message matches but the A2M portion does not); A2M-PBFT-E at-
testations never cause what would have been an unacceptable set
of REPLY messages in PBFT to be acceptable. The same holds for
liveness, since the addition of the A2M log attestation inREPLY

messages cannot hinder progress: there exist at least2⌊N−1

3
⌋ + 1

non-faulty replicas that maintain their A2M request logs correctly,
and as a result, there always exists a quorum of2⌊N−1

3
⌋ + 1 repli-

cas that can provide clients with aREPLY certificate. Replicas can
also create a stable checkpoint since there always exists a quorum
of 2⌊N−1

3
⌋ + 1 non-faulty replicas to produce aCHECKPOINT cer-

tificate.
Case 2:When faulty replicas are more than⌊N−1

3
⌋ and no more

than2⌊N−1

3
⌋, we argue inductively that for every sequence num-

ber, any non-faulty client can only accept a unique request – which
establishes that there exists a single linearized schedule of requests
– and can only accept the correct result value for that linearized
schedule. In the base case, consider a client acceptingreq1 for se-
quencen = 1. Since the correspondingREPLY certificate (of size
2⌊N−1

3
⌋+1) includes at least one non-faulty replica, the reply and

result certainly correspond to what that non-faulty replica would
do with a singleton schedule containing onlyreq1 . Suppose an-
other non-faulty client accepts a different requestreq2 and result
for the same sequence numbern = 1. Such a client would also
possess a validREPLY certificate of the same size; the two certifi-
cates contain at least one replica in common. However, since that
replica is bound by A2M to supply the same A2M log entry to both
clients, the A2M attestation of that replica present in the two certifi-
cates must be identical, which means that the two certificates must
match; this meansreq1 = req2 , since the request hashes using a
collision-resistant hash function also match. This is a contradiction,
so there can be no suchreq2 .

The inductive step for sequence numbern+1 given a linearized
schedule up ton is similar. Any two clients accepting a reply for
n+1 will have matching requests for that sequence number (as wit-
nessed by the matching request hashes in the two log attestations),
andmatching request histories up to that sequence number (as wit-
nessed by the digestd in the A2M log attestations). Therefore, the
result computed by the non-faulty replica in each of the two reply
certificates must correspond to the same request history and, due
to the deterministic nature of the state machines we consider here,
must produce the same result.

Replicas participating in a reply that have used the state transfer
mechanism at some point in their history do not affect this correct-
ness argument. After accepting a stable checkpoint certificate, a
replica has ann-th A2M log entry that is identical to all the replicas
in the checkpoint certificate, including at least another non-faulty
replica. Furthermore, the state described in the checkpoint is that
held by at least another non-faulty replica.

4.2.3 Discussion
In the A2M-PBFT-E presentation above, A2M is used to protect

only the sequence of committed requests, as they are presented to
clients in REPLY messages. However, when faulty replicas are at

least⌊N−1

3
⌋ + 1, they can confuse non-faulty replicas by equivo-

cating during agreement. For example, in Figure 2, the use of A2M
will not prevent the faulty replicas from causing non-faulty replica
r0 to place requestreqa in its A2M position1 and, at the same time,
causing non-faulty replicar3 to placereqb in its A2M at the same
position. Though no client will accept inconsistent replies (since
reply messages contain A2M attestations), the replicas themselves
are not protected. For the purposes of the protocol, one of the two
non-faulty replicas effectively becomes faulty when convinced to
adopt a fork in the request history.

The great benefit of A2M-PBFT-E is that such misbehavior
causes the system to stop making progress but not to violate its cor-
rectness breaking linearizability. In the simplest scenario, an oper-
ator who notices lack of forward progress can take the system off-
line, identify the history fork (where committed histories diverged),
repair the divergent replicas, change their A2M log identifiers, ad-
vance their new A2M logs to an earlier correct sequence number
from which A2M-PBFT-E can do state transfers, and restart the
system with no loss beyond transient unavailability and human ef-
fort.

However, a natural next step is to remove this denial-of-service
attack from the arsenal of the adversary, by ensuring that the agree-
ment portion of the protocol is itself also protected from equivo-
cation. In the next section, we describe A2M-PBFT-EA, a PBFT
extension that protects not only the execution portion (i.e., client-
facing messages) against equivocation, but also the agreement por-
tion (i.e., replica-facing messages), thereby increasing the fault tol-
erance of PBFT with both safetyand liveness.

4.3 A2M-PBFT-EA
To protect against equivocation during agreement, A2M-PBFT-

EA (the “EA” suffix stands forExecution+Agreement) requires repli-
cas to append to A2M logs all protocol messages before sending
them to their peers (Figure 5(c)). Unlike the history log, message
logs need not protect a sequence of entries, but only an individual
message; therefore, A2M’sadvance is used to place a message
into an A2M message log, as opposed toappend. Unlike A2M-
PBFT-E and PBFT, which can have multiple requests in flight at
the same time, in A2M-PBFT-EA we require that non-faulty repli-
cas handle one request at a time, in increasing sequence-number or-
der.5 This ensures that messages are appended to their correspond-
ing A2M logs in the order of their corresponding sequence number.
By protecting protocol steps from equivocation, A2M-PBFT-EA
requires only one – potentially faulty – replica in the intersection
of two quorums. Note, in comparison, that PBFT requires at least
onenon-faultyreplica in the intersection of two quorums.

When configured with A2M-PBFT-E’s quorum sizes, A2M-
PBFT-EA has the same safety and liveness properties as A2M-
PBFT-E. In what follows, we instead present A2M-PBFT-EA with
quorum sizes that allow it to tolerate up to⌊N−1

2
⌋ faults with both

safety and liveness.

4.3.1 Design
Clients: An A2M-PBFT-EA client is similar to an A2M-PBFT-

E client, but it expects reply certificates of size⌊N−1

2
⌋ + 1 instead

of 2⌊N−1

3
⌋ + 1.

Replicas: All certificates (for prepared and committed requests,
for view changes, and for checkpoints) in A2M-PBFT-EA have size
⌊N−1

2
⌋ + 1, as opposed to2⌊N−1

3
⌋ + 1 in A2M-PBFT-E.

In addition to a committed request history log, an A2M-PBFT-
EA replica i maintains five message logs:PREPARE (which also
5PBFT offers a runtime setting (the high- and low-watermark val-
ues) that can be configured to guarantee this requirement.

containsPREPREPAREs) and COMMIT for the three-phase agree-
ment, CHECKPOINT for garbage collection, andV IEWCHANGE and
NEWV IEW for view changes. Before sending any such PBFT mes-
sage〈M〉, an A2M-PBFT-EA replica inserts that message to the
corresponding message logmM,i (via an advance call), uses
lookup to obtain an attestation〈E〉A2M i,R,1 for that message, and
sends〈〈M〉, 〈E〉A2M i,R,1〉 to the intended destination. Conve-
niently, a message that has been committed to A2M in this way
need not itself be authenticated to its destination principal; the
A2M attestation of the message hash is enough to protect that mes-
sage from integrity attacks and to make it non-repudiable. Non-
attested messages still need to be authenticated as before. Since
message logs are typically used for individual attestations and not
for message histories, anadvance call is sufficient, as opposed to
anappend.

A non-faulty replica might have to send multiple versions of a
PREPREPARE/PREPARE or a COMMIT message for a given sequence
numbern, but for different views. The protocolflattensthe〈v, n〉
identifier of such messages to fit them in the A2M log entry se-
quence space, by partitioning log sequence numbers into two parts:
the x most significant bits (e.g., 64 bits) represent a view num-
ber while the remainingy bits (e.g., 96 bits) represent a PBFT
request sequence number. The log entry number for aPREPRE-
PARE/PREPAREor COMMIT message about viewv and sequence num-
bern is thenn + v2y; we use[v|n] to denote this flattened number
in what follows. Note that the A2M module is oblivious to this
“overloading” of its sequence number space; no changes are re-
quired to the A2M interface.

To illustrate the concepts of message attestation and iden-
tifier flattening, we present as an example the prepare phase
of A2M-PBFT-EA. Where a PBFT replicai would send the
PREPARE messageprep = 〈PREPARE, v, n, req〉, an A2M-
PBFT-EA replica commits the message to its correspond-
ing log mp by invoking advance(mp, [v|n], 0, h(prep)),
extracts the correspondingLOOKUP attestation att =
〈LOOKUP, mp, [v|n], [v|n], h(prep), ASSIGNED, [v|n], d′〉A2M i,R,1,
and then bundles and sends〈prep, att〉. When an A2M-PBFT-EA
replica receives such an attestedPREPARE message, it verifies the
A2M authentication, and then checks that the value attested is the
hash of the includedPREPARE message. When a replica collects
⌊N−1

2
⌋ + 1 such messages that matchreq for the same sequence

numbern and viewv, the request is prepared. The commit phase
is similar to the prepare phase described. The checkpoints, state
transfer, and execution portions of A2M-PBFT-EA are the same as
with A2M-PBFT-E, except for the addition of message attestations
in certificates and the different quorum sizes.

View Change:View changes are different from PBFT and A2M-
PBFT-E. In PBFT, the quorum forming aNEWV IEW certificate is
guaranteed to contain at least one non-faulty replica with the latest
committed requests, thanks to the quorum size and the maximum
number of faulty replicas. In contrast, the A2M-PBFT-EA quo-
rum size can guarantee, in the worst case, that a single potentially-
faulty replica with the latest committed requests will participate
in the view change. To address the challenge, an A2M-PBFT-EA
replica must be forced to give its latest A2M-committed informa-
tion, which requires a fresh, shared nonce in the associatedlookup
A2M operations. To accomplish this, the protocol requires an ex-
tra phase before the normal view-change protocol, which enables
replicas to construct a fresh nonce for the subsequent phases (via
WANTV IEWCHANGE messages). For similar reasons, the protocol
must ensure that replicas committed to a view change (as evidenced
by their issuance of an attestedV IEWCHANGE message) cannot sub-
sequently help commit requests in the previous view. Therefore,

a V IEWCHANGE message in A2M-PBFT-EA requires the sending
replica to explicitlyabandonthe previous view: a replica does this
by advanceing its COMMIT message log to the end of the old view
and attesting to this advancement within itsV IEWCHANGE message.
We present the detailed A2M-PBFT-EA view change protocol in
Appendix A.

4.3.2 Correctness
At a high level, A2M-PBFT-E and A2M-PBFT-EA differ in two

fundamental ways: on one hand A2M-PBFT-EA has smaller quo-
rum sizes, but on the other hand, it requires all protocol messages
to be attested to from an appropriate A2M log before use. How-
ever, the argument presented in the case 2 of Section 4.2.2 also
applies to the safety of A2M-PBFT-EA. It guarantees safety with
up to ⌊N−1

2
⌋ faults since clients acceptREPLY certificates of size

⌊N−1

2
⌋ + 1.

To show that A2M-PBFT-EA is live despite up to⌊N−1

2
⌋ faults,

we show a new safety invariant that is not necessary for lineariz-
ability: all non-faulty replicas agree on a single committed request
sequence. That is, a faulty replica cannot convince two non-faulty
replicas to commit to their respective A2M request logs different
requests for the same sequence number. The argument is split into a
same-view case and a different-view case. For the same-view case,
it follows backwards the agreement process from appending a re-
quest to the log, to emitting aCOMMIT message, to emitting aPRE-
PARE message, showing that for two different requests to be placed
in two non-faulty replicas’ request logs, some A2M must be faulty,
which is incompatible with our fault model. For the different-view
case, the argument is similar, but must also traverseNEWV IEW cer-
tificates; view abandonment in such certificates helps show that it
is not possible for a single replica (faulty or not) to have an attested
COMMIT message for one request in one view, and at the same time
support a view change feigning ignorance for that message, leading
to a contradiction. The argument is highly technical, so we defer it
to Appendix B.

5. OTHER A2M PROTOCOLS
In this section, we describe A2M-Storage, an A2M-enabled stor-

age system on a single untrusted server shared by multiple clients.
Thanks to the use of a trusted A2M module, A2M-Storage provides
linearizability in contrast to SUNDR’s weaker fork consistency and
is simpler than SUNDR. We then briefly sketch how A2M can be
used with Q/U to improve its fault tolerance.

5.1 A2M-Storage

5.1.1 Background: SUNDR
SUNDR targets the same problem as PBFT: linearize client re-

quests and ensure that the service state used to respond to each
request corresponds to a correct system having executed this lin-
ear request history. In PBFT, agreement is used among replicas
to obtain a linearized request order. The presence of at least one
non-faulty replica corroborating a reply to the client ensures that
the agreed upon linearized order has been executed correctly pro-
ducing the result in the reply. Unfortunately, in a single-server en-
vironment such as SUNDR’s, there is no non-faulty replica trusted
to execute linearized requests; instead, the clients must trust each
other and cooperate to check themselves that requests are properly
linearized and execution is performed correctly at the server.

A SUNDR server maintains the current service state (a snapshot
of a shared file system), which is represented by Merkle trees [32].6

6We omit the details of how files and directories are organized.

The state is captured by a set of version structures, each of which is
owned by a client (principal) and contains a hash that summarizes
the whole state on which the client operates.

To perform an operation (read/write on a file), a SUNDR client
submits to the server its intended request, called anupdate certifi-
cate. The server assigns an order to the request relative to pending
operations that have not committed yet, and returns the latest com-
mitted version structures and ordered pending update certificates.
The client ensures that the state transits correctly forward from its
last committed version the server gives via a sequence of pending
operations. The client can then perform its operation locally, poten-
tially fetching missing blocks by following digests of the hash tree,
compute and sign a new state digest creating a new version struc-
ture, and return it along with changed blocks to the server. The
server stores the new version structure and modified blocks.

As described in simpler terms in Section 2.4.1, a SUNDR client
cannot ensure that the server sends it the latest state resulting from
the committed history of requests; though it cannot remove requests
from the middle, the server can still chop off the tail of history
past the last request known to that client, and start a new “fork”
in that history, specific to the client. Until two clients on different
history forks compare their notes, they cannot know the system is
not linearized. This is what makes SUNDR only fork-consistent
but not linearizable.

5.1.2 Design
A2M-Storage can be simpler than SUNDR, and guarantees lin-

earizability instead of only fork consistency, thanks to the use of
the trusted A2M module, which affords clients the ability to de-
mand the latest committed request on a history, via a freshEND

attestation.
The server maintains a version block, a snapshot of a file system

captured by a Merkle tree, and two A2M logs. A version block
holds a state digest (i.e., the root hash of a snapshot) computed as
for SUNDR and a sequence number that tracks the latest A2M log
sequence number with a signature signed by the latest writer. A2M
has logqh for the write request history, and logqs for digests of ver-
sion blocks, one for each state version generated by the application
of writes to the state. Each write/read request is associated with a
logical timestamp, of the form〈seq , atth,seq , atts,seq〉, containing
the request sequence number, the A2M attestation from the request
history logqh when that request was appended, and the A2M attes-
tation from the state version logqs when that request was executed.
The client remembers the latest timestamp it has seen.

An A2M-Storage client performs write operations optimistically,
assuming the timestamp it knows is the latest. When it submits a
write requestreq for sequence numbern, it also submits a nonce
(for freshness), its known timestamp on whichreq is conditioned,
and a new version block with sequence numbern obtained after
executingreq . If the conditioned-on timestamp has not changed,
the server modifies the state accordingly, stores the new version
block that the client sends, and appends the request and state ver-
sion digests to A2M logsqh andqs, respectively. In other words,
execution of the request is conditioned on the latest timestamp at
the server being the same as that known by the client. The server
then forms its response, containing a success code,END attestations
from the two logs, and a proof that the operation was committed to
the service state using the state digest function. The client accepts
the response if the attestations and stage digest proofs are valid.
If however the client had a stale timestamp, indicated by a failure
code in the response, it updates its timestamp with the one returned

What is important is that an entire file system can be cryptographi-
cally digested and verified against a set of digests efficiently.

by the server, and tries again potentially after fetching fresher state
blocks and potentially backing off in case of write contention.

An A2M-Storage client performs read operations that include
nonces. The server returnsEND attestations from the two A2M logs
whose freshness is proven by a nonce, the version block to which
the last A2Mqs entry points, and a proof that the read content is
the valid part of the current snapshot. Note that the version block
should include the same sequence number as the A2M attestation
sequence number to be valid.

Instead of the optimistic, one-phase version of the protocol, a
pessimistic two-phase version is straightforward as well, in which
clients always fetch a “grant” to perform their operation at a par-
ticular sequence number, and then submit their operation with a
guarantee of success, as per SUNDR.

In terms of its software architecture, A2M-Storage is similar to
a version of SUNDR that entrusts the task of ordering requests
and maintaining version structures to a separate, trusted compo-
nent called a consistency server. In A2M-Storage, this task is “em-
ulated” with the help of A2M, a general-purpose abstraction that
works not only for SUNDR but also for other systems as we have
demonstrated in other sections.

5.1.3 Correctness
A2M-Storage clients and server need maintain far less state than

is necessary for SUNDR: clients only require a single global times-
tamp, instead of per-client version structures. Yet, A2M-Storage
provides linearizability, because a client accepts a write operation
as complete only when the server proves that the request is com-
mitted to its A2M logs – and A2M logs are trusted not to violate
linearization. Similarly, a client accepts a read operation response
as complete only when the response carries the latest timestamp,
whose freshness is attested by the A2M module.

We show informally that there exists a sequential history of ac-
cepted writes, and that each read is partially ordered to the cor-
rect immediately preceding write. When a write operation is ac-
cepted by a client, we know that the operation is committed to A2M
right after the conditioned-on timestamp. By following a chain of
conditioned-on timestamps backwards, we can construct a single
history of accepted client write operations. In addition, when a
read is accepted by a client, we know that the read response car-
ries the latest committed state version. The read operation can be
placed right after the write that produces a state version attested
by A2M and on which the read depends. Therefore, there exists a
linearizable history of accepted write and read operations.

Since there is only one server, there is no guarantee on liveness
when the server fails. Moreover, due to the nature of optimistic pro-
tocols, A2M-Storage does not provide any guarantees on fairness
among clients; a greedy client can overuse the system.

5.2 A2M-Q/U
The Query/Update protocol (Q/U) [6] is a quorum-based BFT

replicated state machine. It offers an optimistic protocol that com-
pletes client requests in a single round-trip message exchange be-
tween a client and the replicas, in the absence of faults and write
contention. At a very high level, Q/U is similar to A2M-Storage
(with more than a single server): the client sends a request along
with its view of all replicas’ latest timestamps, each of which con-
tains a replica’s history. Each replica commits the request if its lo-
cal timestamp is compatible with the client’s view; otherwise, e.g.,
if another client has already advanced that replica’s state with an-
other conflicting update request, the replica refuses to execute the
request and sends back its latest replica history. A client is satis-
fied about its request’s linearization if a quorum of replicas (4f +1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4

P
ro

ce
ss

in
g

tim
e

(m
s)

Request size (KB)

 0 1 2 3 4

Response size (KB)

A2M-PBFT-EA(sig)
A2M-PBFT-E(sig)

A2M-PBFT-EA(MAC)
A2M-PBFT-E(MAC)

PBFT

Figure 6: Microbenchmark results varying request (left) and
response (right) sizes, measured in KBytes.

out of5f + 1 total replicas) accept its request, making itcomplete.
If fewer than2f + 1 replicas have accepted the client’s request,
then it isincompleteand the client tries again after some back-off.
When a client receives matching replies from between2f + 1 and
4f replicas, the request isrepairable. A client attempts to repair
a repairable request, by trying to see if enough other replicas exist
to make it complete, or by trying to convince other replicas to ac-
cept it. If a client’s operation is complete, the protocol guarantees
that, in any other quorum in the system, that operation would be
repairable, a fundamental invariant for Q/U’s linearizability guar-
antee.

Q/U’s linearizability properties stem from the sizes of the pop-
ulation N , quorumsQ, and repairable setsR, given the number
f of tolerable faults. A quorum must be always available even if
all faulty replicas remain silent – implyingN ≥ Q + f (1) – all
quorums must intersect over a repairable set, excluding all faulty
replicas – implying2Q − N ≥ R + f (2) – and all quorums must
intersect over at least one non-faulty replica of all repairable sets of
other quorums – implyingQ + R − N > f (3).

A2M’s contribution to Q/U is that, by having replicas place ac-
cepted requests into A2M logs and having clients require anEND

attestation before accepting a replica’s response, the sizes of quo-
rum and repairable set intersections can be reduced. Essentially,
f + 1 replicas form a repairable set since faulty replicas commit to
one history with A2M and they cannot form a repairable set with
non-faulty replicas with an old history. Therefore, the above con-
dition (3) changes toQ + R − N ≥ 1. An A2M-enabled Q/U
protocol can toleratef faults withN = 4f + 1, Q = 3f + 1, and
R = f + 1, reducing the replication factor required from5 to 4.
We defer the full details to an extended version of this paper.

6. EVALUATION
In this section, we evaluate the overhead of applying A2M to

BFT state machine replication. We have implemented A2M-PBFT-
E and A2M-PBFT-EA (without its view change algorithm) in C/C++
with a BFT library [13,36] ported to Fedora Core 6 and the SFSlite
library [4]. The A2M protocols have versions that use signatures or
MACs for authentication.

We ran our experiments with four replica nodes for A2M-PBFT-
E and one client node. For A2M-PBFT-EA experiments, we use
three replica nodes to tolerate one fault. The replica nodes are
1.8GHz Pentium 4 machines and the client node is a 3.2GHz Pen-
tium 4 machine. All machines are equipped with 1GB RAM and
3Com 3C905C Ethernet cards, and are connected over a dual speed
10/100Mbps 3Com switch.

A2M uses SHA-1 as its digest function (also used for MACs),
and NTT’s ESIGN with 2048-bit keys for signatures. On a 1.8GHz
machine, signature creation and verification of 20 bytes take on
average256µs and194µs, respectively.

NFS -S -PBFT -A2M-PBFT-E -A2M-PBFT-E -A2M-PBFT-EA -A2M-PBFT-EA
Phase (sig) (MAC) (sig) (MAC)

Copy 0.219 0.709 1.026 0.728 2.141 0.763
Uncompress 1.015 3.027 4.378 3.103 8.601 3.236
Untar 2.322 4.448 6.826 4.553 12.896 4.669
Configure 12.748 12.412 19.173 12.659 26.181 13.040
Make 7.241 7.461 9.778 7.500 11.379 7.510
Clean 0.180 0.298 0.640 0.312 0.742 0.311

Total 23.725 28.355 41.821 28.854 61.940 29.528

Table 1: Mean time to complete the six macrobenchmark phases in seconds.

Additional NFS- A2M-PBFT-E A2M-PBFT-E A2M-PBFT-EA A2M-PBFT-EA
latency (µs) (MAC) (MAC) with batching (MAC) (MAC) with batching

1 28.854 28.763 29.528 29.505
10 29.598 29.025 31.299 30.188
50 32.735 30.232 36.242 32.214
250 48.784 37.237 66.441 45.199
1000 117.59 65.813 192.53 101.62

Table 2: Mean time to complete the six macrobenchmark phases in seconds for different A2M additional latency costs.

All experiments used A2M as a library in the same address space
as the PBFT protocol and the user application. However, depending
on the A2M implementation scenario (see Section 3.3), A2M oper-
ations will experience a different additional interface latency cost.
To account for the costs in accessing A2M, we impose by default
1µs of delay, which is a conservative system call latency7 (Fig-
ure 4(d)) or a cross-SIP communication latency [18] (Figure 4(b)),
to each A2M request using the Pentium RDTSC instruction.

In our experiments, we compare PBFT to A2M-PBFT-E and
A2M-PBFT-EA, using two A2M implementations: one using sig-
natures for authentication (denoted “sig”) and one using MACs (de-
noted “MAC”). Shown PBFT measurements used MACs.

6.1 Microbenchmarks
We use a simple microbenchmark program, which is a part of

the PBFT library. A simple client sends 100,000 null operation re-
quests of sizea bytes to replicas, which elicit replies of sizeb bytes
from replicas. We ran experiments witha’s andb’s varying between
0 and4000. Figure 6 plots the results. In all cases, operation turn-
around times grow at the same pace with request/response sizes
as in PBFT, with an additive overhead due to the additional A2M
authentication operations (MACs or signatures) required. A2M-
PBFT-E (MAC) and A2M-PBFT-EA (MAC) add a small extra cost
because of the relative efficiency of MAC computation compared
to the network delays. The signature-based versions of the protocol
add significant computational overheads, and only become justifi-
able for very large replica populations, in which the cost of carrying
MAC-based authenticators becomes comparatively expensive.

6.2 Macrobenchmarks: NFS
To understand the implications of using A2M-enabled protocols

in real applications, we use PBFT’s NFS front end on a PBFT (or
A2M protocol) back end. As with BFS [13], we use a local NFS
loop-back server and an NFS kernel client at the client side.

The workload we use consists of compiling a software package
(nano-2.0.3.tar.gz) in six phases: 1) copy the file to the
NFS file system (copy), 2) uncompress the file (uncompress), 3)
untar the uncompressed file (untar), 4) run a configure script (con-

7On a 1.8GHz Pentium 4 machine running Fedora Core 6, we ran
lmbench [31] to measure the time to perform nontrivial entry into
the operating system. The system call takes 0.87µs in average.

figure), 5) compile the package by running make (make), and 6)
clean up the built object and execution files (clean). The workload
includes 8790 read-only BFT operations out of a total of 14500
operations invoked.

We compare six NFS-X protocols, whereX is the name of the
back-end protocol implementing the NFS interface. In addition
to PBFT and our four A2M-enabled variants, we also run NFS-S,
which uses a single server without replication. Table 1 shows the
average time to complete each phase, out of 10 runs. The standard
deviations of all results are within 4% of the mean. NFS-PBFT is
19.5% slower than NFS-S. NFS-A2M-PBFT-E (MAC) and NFS-
A2M-PBFT-EA (MAC) are 1.8% and 4.1% slower than NFS-
PBFT, respectively, whereas NFS-A2M-PBFT-E (sig) and NFS-
A2M-PBFT-EA (sig) are 47.5% and 118.4% slower than NFS-
PBFT, respectively. Overall, NFS-A2M-PBFT-E (MAC) and NFS-
A2M-PBFT-EA (MAC) achieve significantly better fault tolerance
at a slight increase in cost over PBFT.

6.3 Effects of A2M Placement
To explore the associated costs of other A2M implementation

scenarios, we impose delays to each A2M request, varying delay
duration from10µs (for the order of magnitude of typical inter-
process communication) to1ms (for the order of magnitude of
RPC on the same LAN).

Table 2 shows the average time to complete the macrobench-
mark, out of 10 runs when the additional A2M interface latencies
are 10, 50, 250, and1000µs. The mean times of NFS-A2M-PBFT-
E (MAC) are 2.6, 13.5, 68.0, and 307.5% slower than the base NFS-
A2M-PBFT-E (MAC) with 1µs delay; the slowdown corresponds
to two delayed A2M operations and three A2M MAC verifications
per BFT operation. For NFS-A2M-PBFT-EA (MAC), the mean
times are 6.0, 22.7, 125.0, 552.0% slower than the base NFS-A2M-
PBFT-EA (MAC) with1µs delay; the slowdown is greater because
of the greater number of A2M operations invoked during agreement
steps.

To amortize the effect of this A2M access latency, we explore a
multiple-operation batching optimization. In A2M-PBFT-E repli-
cas bundle anappend with its subsequentlookup when they send
replies. In A2M-PBFT-EA replicas also bundle anadvance with
their subsequentlookup during agreement steps. Furthermore, the
client batches A2M MAC verifications. When additional latencies

are 1 and 10µs, this batching effect is negligible. However, when
additional latencies are 50, 250, and1000µs, A2M-PBFT-E with
batching improves mean times by 7.6, 23.5, and 44.0% respectively
and A2M-PBFT-EA with batching improves mean times by 11.1,
32.0, and 47.2% respectively.

7. THE RIGHT ABSTRACTION
In the previous sections, we have argued and experimentally

demonstrated that systems incorporating in their design a small,
trusted abstraction, A2M in our examples, can improve their fault
tolerance at certainly tolerable cost. However, an interesting open
question remains: is A2M theright trusted abstraction, for the
types of applications we demonstrated here – state machines, repli-
cated or centralized? Furthermore, is it the right trusted abstraction
for other reliable applications that are more loosely organized than
replicated state machines?

In systems that strive for linearizability, such as those forming
the focus of our work here, the notion of a common event (i.e., re-
quest) history is central. Therefore, being able to commit to and
compare histories seems, at a minimum, a required trusted func-
tion, which is exactly what A2M’s log abstraction offers. Arguably,
when histories need not be compared, as is the case when ensuring
A2M-PBFT-EA replicas commit to their messages before sending
them, it is sufficient to be able to commit to individual key-value
pairs that are independent of all others, which is a narrower spec-
ification than what A2M offers. However, given that the differ-
ence between attested key-value pairs and attested logs is small (the
computation of an incremental digest with every append), we opted
to make a trusted log the basic, common abstraction that covers
both replicated and single-server systems.

Would a larger trusted abstraction be preferable? Arguably, one
could push an entire replicated state machine protocol, such as
PBFT, into the trusted computing base. The application interface
exported – an invocation method, and an execution callback [13]
– is certainly simple, and applies to any deterministic application
state machine. For example, one could imagine a trusted imple-
mentation of a fail-stop replicated state machine protocol, such as
Paxos [24]. However, a replicated state machine abstraction, even
one that is trusted not to be Byzantine, remains fairly complex to
implement; it requires transmission and reception of network mes-
sages and several sets of local variables per request per remote
replica. In contrast, A2M requires no network interactions, and
only a circular buffer that tends to be short; although a hardware
implementation of A2M appears trivial, a hardware implementa-
tion of Paxos might not be.

Beyond linearizable replicated state machines, an interesting
question might be what other, orthogonal, trusted abstractions
might make sense under different consistency requirements. For
instance, when dispensing session guarantees weaker than lineariz-
ability (such as “read your writes” [35] or fork consistency [26]),
simple trusted logical clocks [23] might be sufficient compared to
an abstraction such as A2M.

8. RELATED WORK
Beyond related work we have presented as background, we ad-

dress the following categories:
Trusted Devices: Trusted hardware, such as today’s commod-

ity Trusted Platform Module (TPM) hardware developed by the
Trusted Computing Group [5], has been previously proposed, im-
plemented, and marketed as a way to securely boot a sensitive host
with approved software. Operations performed by the TPM are au-
thenticated using a private signing key that resides on the module

and cannot be retrieved or modified without physically destroying
the module. Unfortunately, software is not bug-free, and even if
correctly loaded at secure boot time, it can be overcome by ex-
ploits such as buffer overflows. As a result, while existing secure
hardware can make machines strictly harder to compromise, it does
not obviate the need for Byzantine-fault tolerant systems, nor does
it improve their safety and liveness properties: it makes the likeli-
hood of faults smaller, but does not improve fault bounds.

Shared Servers: Ivy [33] is a read/write peer-to-peer file sys-
tem shared by multiple clients. A file system consists of a set of
logs, each of which is owned by a participant who has a public-
private key pair. A log is a list of immutable log records. Each
log has a log-head that points to the most recent log record and the
log-head is signed by the private key. A write appends a new log
record and modifies the log-head to point to it. A read scans all
log records owned by all participants of the file system to find ap-
propriate information. A malicious server hosting the log-head can
easily mount forking attacks by concealing log records depending
on clients. With A2M, we can ensure that a malicious server tells
the same sequence of log records including the most recent one.
Note, however, that Ivy depends on a distributed hash table under-
neath, and any “strengthening” of the protocol must be predicated
on a DHT with provable routing guarantees.

Plutus [20] is a shared storage system that enables file sharing
without placing much trust in the file servers. All data is stored
in an encrypted form, and key distribution is decentralized. A file
system is represented by a hash tree, and the root hash of the tree
is signed. Plutus is also vulnerable to forking attacks wherein a
malicious server can show different file system states to different
clients.

Replicated State Machines:Byzantine-fault tolerant state ma-
chine replication has received much attention since PBFT [12]
added the word “practical” in its title. Researchers have proposed
several improvements on PBFT such as proactive recovery (PBFT-
PR [13]), abstraction to tolerate non-determinism [36], and an ar-
chitecture that separates execution from agreement to improve per-
formance and confidentiality [39]. In all cases, however, no im-
provement can offer liveness and safety beyond the uniform⌊N−1

3
⌋

fault bound. In Yin et al. [39], the architecture uses two groups
of replicas –N agreement andM execution replicas – by divid-
ing functionalities. This architecture can tolerate⌊N−1

3
⌋ faults and

⌊M−1

2
⌋ faults. A2M-enabled protocols divide functionalities into

committing a sequence of protocol steps to A2M and performing
an original protocol. A2M-PBFT-EA can tolerate⌊N−1

2
⌋ faults

out of N total replicas since A2M is in a trusted computing base.
Compared to agreement replicas, A2M is a small, general-purpose
mechanism that is applicable to various protocols to defend against
equivocation.

Recently, BFT2F [27], a PBFT variant, uses some of the ideas in
SUNDR to provide linearizability and liveness up to⌊N−1

3
⌋ faults,

and a weaker safety property called fork* consistency without live-
ness for up to2⌊N−1

3
⌋ faults, relying on clients’ help to protect

consistency. With the help of A2M, A2M-PBFT-E can instead
guarantee linearizability up to2⌊N−1

3
⌋ faults, and A2M-PBFT-EA

guarantee both linearizability and liveness up to⌊N−1

2
⌋ faults.

In loosely related work, BAR [7] fault tolerance contains a no-
tion of protocol-action commitment (to a quorum maintained by
replicas themselves) to capture rational behavior. Also, PeerRe-
view [16], CATS [40], and Timeweave [30] use authenticated his-
tories to allow fault detection given a replica’s self-inconsistent his-
tory; this might be a helpful mechanism to allow A2M-based pro-
tocols to recover even when the safety fault bound is (temporarily)
violated.

A2M-PBFT-EA bears a close resemblance to Paxos [24] in that
they both require quorum size⌊N−1

2
⌋ + 1. Paxos assumes benign

faults, and it is live as long as fewer than one half replicas are faulty
but is safe with up toN faults. In contrast, A2M-PBFT-EA as-
sumes Byzantine faults, but thanks to A2M a faulty node can stop
or lie consistently to other replicas. A2M-PBFT-EA is both safe
and live when fewer than one half replicas are faulty, but when this
assumption is violated, there is no guarantee on safety and liveness.

Symmetric-Fault Tolerance: Researchers have describedsym-
metric faults[38] as a specialization of Byzantine faults, and shown
that for agreement protocols, a hybrid fault model that is a mixture
of non-malicious faults (of sizeb), malicious symmetric faults (of
size s), and malicious asymmetric faults (of sizea) can lead to
more flexible tolerance guarantees. In Thambidurai and Park [38],
a modified version of the classic synchronous Oral Messages (OM)
agreement algorithm can toleratea + s + b faults whenN >

2a+2s+b+r (for a ≤ r) wherer is the number of rounds of mes-
sage exchange excluding initial transmission. Follow-on work in-
cludes analyses of fault bounds on synchronous and asynchronous
approximate agreement under the hybrid fault model [9, 21]. In
contrast, we focus on providing a practical, generic, small prim-
itive that prevents equivocation and limits Byzantine hosts to be-
have symmetrically. We hope to explore further whether A2M can
be used as a systematic way to make Byzantine faults symmetric,
admitting simpler protocols with greater fault tolerance.

Abstract Shared Objects: Fleet [29] uses a consensus protocol
by performing read and append operations on Timed Append-Only
Arrays (TAOAs), which are single-writer multi-reader objects to
which clients can append values and from which clients can read
values. Each appended value is tagged with a logical timestamp
vector. A TAOA is emulated by a distributed client-server protocol
built atop ab-masking quorum system [28], which requiresN > 4b

to tolerateb Byzantine faults. Unless this fault bound is violated,
a TAOA provides the following properties: values are appended in
a sequential order; values appended are not modified or deleted;
and timestamps partially capture the order of values that different
clients append. In contrast, A2M is a local primitive that can be
used to enforce a node to commit to a sequential order of opera-
tions. Our goal is to slightly grow the trusted computing base to
strengthen distributed trustworthy abstractions such as replicated
state machines and shared storage built atop the base. In fact, im-
plementing Fleet’s TAOA and consensus protocol could be simpli-
fied if servers employ A2Ms.

9. CONCLUSIONS
In this paper, we present a trusted, log-based abstraction called

Attested Append-Only Memory (A2M). Servers utilizing A2M are
forced to commit to a single, monotonically increasing sequence of
operations. Since the sequence is externally verifiable, malicious
servers cannot present different sequences to different parties. We
discuss several implementation scenarios of A2M under different
threat models. We present A2M-PBFT-E, a simple variant of Cas-
tro and Liskov’s PBFT protocol that can achieve safety with up to
2⌊N−1

3
⌋ faulty replicas. We also present A2M-PBFT-EA, a more

involved variant, that can preserve safety and liveness with up to
⌊N−1

2
⌋ faulty replicas. Finally, we show how to achieve lineariz-

ability in single-server storage systems such as SUNDR. Our proto-
type implementations of A2M-PBFT-E and A2M-PBFT-EA show
minor performance overhead; they are 1.8% and 4.1% slower than
the PBFT base case, respectively. There are many technical details
in this paper, but the bottom line is that A2M is a practical and em-
inently implementable tool for improving the fundamental Byzan-
tine fault tolerance of replicated and centralized systems alike.

Acknowledgments
We would like to thank Lorenzo Alvisi, Eric Brewer, Mike Dahlin,
Andrey Ermolinskiy, and Prince Mahajan for their constructive feed-
back. We also would like to thank the anonymous reviewers for
their comments and our shepherd, Peter Druschel, for his guidance.

10. REFERENCES
[1] Amazon S3.http://aws.amazon.com/s3/.
[2] Intel Active Management Technology (AMT).

http://www.intel.com/technology/
platform-technology/intel-amt/index.htm.

[3] Java.http://java.sun.com/.
[4] SFSlite.

http://www.okws.org/doku.php?id=sfslite.
[5] Trusted Computing Group (TCG).

http://www.trustedcomputinggroup.org/.
[6] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and

J. Wylie. Fault-scalable byzantine fault-tolerant services. In
Proc. of SOSP, 2005.

[7] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth. BAR fault tolerance for cooperative services.
In Proc. of SOSP, 2005.

[8] T. W. Arnold and L. P. V. Doorn. The IBM PCIXCC: A new
cryptographic coprocessor for the IBM eServer.IBM Journal
of Research and Development, 48(3/4):475–487, 2004.

[9] M. H. Azmanesh and R. M. Kieckhafer. New hybrid fault
models for asynchronous approximate agreement.IEEE
Trans. on Computers, 45(4):439–449, 1996.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. InProc. of SOSP, 2003.

[11] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer,
and L. van Doorn. vTPM: Virtualizing the trusted platform
module. InProc. of USENIX Security, 2006.

[12] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. of OSDI, 1999.

[13] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery.ACM Trans. on Computer Systems,
20(4):398–461, 2002.

[14] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. InProc. of OSDI, 2006.

[15] S. Haber and W. S. Stornetta. How to time-stamp a digital
document.Journal of Cryptology, 3(2):99–111, 1991.

[16] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. InProc. of
SOSP, 2007.

[17] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects.ACM Trans. on
Programming Languages and Systems, 12(3):463–492, 1990.

[18] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel,
O. Hodson, J. Larus, B. Steensgaard, D. Tarditi, and
T. Wobber. Sealing OS processes to improve dependability
and safety. InProc. of EuroSys, 2007.

[19] G. Hunt and J. Larus. Singularity: Rethinking the software
stack.Operating Systems Review, 41(2):37–49, 2007.

[20] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. InProc. of USENIX FAST, 2003.

[21] R. M. Kieckhafer and M. H. Azamanesh. Reaching
approximate agreement with mixed mode faults.IEEE Trans.

on Parallel and Distributed Systems, 3(1):53–63, 1994.
[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.

Zyzzyva: Speculative Byzantine fault tolerance. InProc. of
SOSP, 2007.

[23] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM,
21(7):558–565, 1978.

[24] L. Lamport. The part-time parliament.ACM Trans. on
Computer Systems, 16(2):133–169, 1998.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem.ACM Trans. on Programming Languages
and Systems, 4(3):382–401, 1982.

[26] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). InProc. of OSDI, 2004.

[27] J. Li and D. Mazières. Beyond One-third Faulty Replicas in
Byzantine Fault Tolerant Systems. InProc. of NSDI, 2007.

[28] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proc. of STOC, 1997.

[29] D. Malkhi and M. K. Reiter. An architecture for survivable
coordination in large distributed systems.IEEE Trans. on
Knowledge and Data Engineering, 12(2):187–202, 2000.

[30] P. Maniatis and M. Baker. Secure history preservation
through timeline entanglement. InProc. of USENIX Security,
2002.

[31] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. InProc. of USENIX ATC, 1996.

[32] R. C. Merkle. A digital signature based on a conventional
encryption function. InProc. of CRYPTO, 1987.

[33] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. InProc. of OSDI,
2002.

[34] M. Naor. Bit commitment using pseudorandomness.Journal
of Cryptology, 4(2):151–158, 1991.

[35] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible update propagation for weakly
consistent replication. InProc. of SOSP, 1997.

[36] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. InProc. of SOSP,
2001.

[37] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial.ACM Computing
Surveys, 22(4):299–319, 1990.

[38] P. Thambidurai and Y.-K. Park. Interactive consistency with
multiple failure modes. InProc. of SRDS, 1988.

[39] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. InProc. of SOSP, 2003.

[40] A. R. Yumerefendi and J. S. Chase. Strong accountability for
network storage. InProc. of USENIX FAST, 2007.

APPENDIX

A. A2M-PBFT-EA VIEW CHANGE
When replicai in view vfrom suspects the primary is faulty as per

the PBFT protocol, it broadcasts toR its intent to change views via
a 〈WANTV IEWCHANGE, vto , z, i〉i,R,1 message, wherez is a fresh
nonce andvto is vfrom + 1 if the replica was not already in the
midst of a view change, orv +1 if the replica was in the process of
switching to viewv when it decided to change yet again.

When a replica collects aWANTV IEWCHANGE certificate that
consists of⌊N−1

2
⌋ + 1 valid WANTV IEWCHANGE messages for the

same viewvto , it computes the appropriate nonceZ for its attesta-
tions by hashing together all the nonces in itsWANTV IEWCHANGE

certificate in increasing replica identifier order. It abandons its cur-
rent viewvfrom if vfrom < vto (or its participation in a prior view
change protocol towards viewv′ if v′ < vto), as well as all inter-
vening views up tovto . For all viewsv in [vfrom , vto) in order, the
replica performsadvance(mc, [v + 1|0] − 1, 0, 0) (if it has not
already);[v + 1|0] − 1 is the lastCOMMIT log entry belonging to
view v. Now the replica constructs itsV IEWCHANGE message.

The message form is〈〈V IEWCHANGE, vfrom , vto , n, s, C, P, Q,

W, A, B, H〉, 〈E〉A2M i,R,1〉. Among the contents of the main mes-
sage,vto , n, s, and C are as in regular PBFT;vfrom is as de-
fined above,Q is the set of committed certificates with sequence
number higher thann and P is the set of prepared certificates
for requests that are prepared but are not committed aftern, W

is a WANTV IEWCHANGE certificate,A is the set of A2MCOMMIT

log attestations corresponding to the certificates inP , B contains
the view abandonment attestations from the replica’sCOMMIT log
(see below), and finallyH is a list of committed request log en-
tries that attest those requests inQ. 〈E〉 is the attestation from the
sender’s A2M message log forV IEWCHANGE messages, computed
via alookup(mvc , vto , vto) A2M command.

For each abandoned viewv between vfrom and vto ,
the set B contains the attestation〈LOOKUP, mc, [v|n

′ +
1],Z, 0, SKIPPED, [v + 1|0] − 1, d′〉A2M i,R,1〉, wheremc is the
COMMIT log identifier, andn′ is the highest sequence number in
Q andP . For each abandoned view, this attestation shows that the
replica could not have committed a request for a sequence number
greater than those included in itsQ andP sets.

When a new primary (p = vto modN) collects a new view cer-
tificateV that consists of⌊N−1

2
⌋+1 valid V IEWCHANGE messages

that have the samevfrom and vto and contain correctC, P , Q,
W , A, B, andH, it multicasts toR a NEWV IEW message of the
form 〈〈NEWV IEW, vto , V, Oc, Op〉, 〈E〉A2Mp,R,1〉; the latter part is
the usual A2M attestation for the message, whereas the contents of
the message are a new view certificate, with the setOc containing
PREPREPARE messages for requests to be committed, and the set
Op containingPREPREPARE messages for requests to be prepared
in view vto . When a replica receives the validNEWV IEW message,
it enters viewvto . Any requests in prepared or committed certifi-
cates for sequence numbers later than the latest stable checkpoint
are prepared (issuing a new attestedCOMMIT message) and commit-
ted (appending the request in the request log if not already there) in
order, without need for further inter-replica communication.

Note that allV IEWCHANGE messages within aNEWV IEW certifi-
cate must have the samevfrom ; this is essential for the correctness
properties described next. If the primary fails to collect a quorum of
such messages, it refuses to generate aNEWV IEW message. To en-
sure progress, any non-faulty replica that receives aV IEWCHANGE

message with avfrom later than its own asks the issuer of that mes-
sage for theNEWV IEW certificate that allowed it to entervfrom . Us-
ing that certificate, the lagging replica can bring itself to that view.
When a timeout indicates that the previous view change attempt
stalled – either due to a faulty new primary or because ofvfrom

mismatches – the replica initiates another view change for the next
target view number. Thanks to the eventual synchrony of our net-
work, this guarantees that eventually enough replicas will initiate a
view change with the samevfrom and the change will go through.

B. A2M-PBFT-EA LIVENESS PROOF
We show that no two non-faulty replicas can place different re-

quests in the same sequence number of the A2M request log. We
split our argument into a same-view case, and a different-view case.

Case 1 – Same View:Suppose two non-faulty replicas have
appended two different requests to the same sequence number of
their respective A2M request logs, during the same view. They
both did that after having constructed a valid committed certifi-
cate over two quorums. Those two quorums must have at least one
common (perhaps faulty) replicai, which managed to attest to two
COMMIT messages, one for each request, in each of the two quo-
rums. This, however, is a contradiction with our assumption that
A2M is trusted to avoid equivocation for the same log entry, and
the collision-resistance of the hash function.

It is worth noting that along similar lines, it is trivial to show
that no two non-faulty replicas can be convinced to place different
requests in theirCOMMIT A2M log for the same sequence number
and view, by the analogous argument on the prepared certificate
quorums and thePREPAREA2M log of the common replica. Finally,
the exact same argument can be used to show that no two non-faulty
replicas can put different requests in theirPREPARE A2M logs for
the same sequence number and view, since the single primary for
the view can only attest to a singlePREPREPARE message for that
sequence number in any given view.

Case 2 – Different Views:Now we must show that no two non-
faulty replicas can commit two requestsr andr′ 6= r in sequence
n and in viewsv andv′ > v, respectively.

We define anactiveview as a view for which a validNEWV IEW

certificate has been constructedandseen by a non-faulty replica. A
non-faulty replica cannot commit a request in a view for which it
has not seen a validNEWV IEW certificate, therefore if a non-faulty
replica commits a request in a view, then that view must be active.

We split our argument into two further subcases, first the case in
which no other active views exist betweenv andv′, and the case in
which at least one active view exists betweenv andv′.

Case 2a –v andv′ are consecutive active views:Since no other
active views exist betweenv andv′, then theNEWV IEW certificate
for v′ – and there can be at most one since only oneNEWV IEW

message can be attested by the primary for viewvto = v′ – must
havevfrom ≤ v. This is because at least one non-faulty replica
must have produced aV IEWCHANGE message for the certificate, and
that non-faulty replica guarantees that itsvfrom represents an active
view, which cannot be later thanv (or it would have to bev′). As a
result, thisNEWV IEW certificate contains view abandonments for all
views in its[vfrom , vto) range, which includes[v, v′) as we argued
above.

Now consider three quorums, the one that produced the commit-
ted certificate forr in view v (denotedQ), the one that produced
the NEWV IEW certificate tov′ (denotedV), and the one that pro-
duced the committed certificate forr′ in view v′ (denotedQ′). Let
i ∈ Q ∩ V, which always exists thanks to quorum intersection.

Replicai unavoidably contributed an attestedCOMMIT message
for r at sequence numbern in the committed certificate forv along
with the rest of quorumQ. What can have beeni’s V IEWCHANGE

contribution to theNEWV IEW certificate in quorumV with regards
to sequence numbern? If i reported a valid stable checkpoint
no earlier thann in its V IEWCHANGE, then the resulting, unique
NEWV IEW certificate forv′ should convince any non-faulty replica
that sees it to never commit anything else atn in view v′, since
n belongs in the past; this contradicts our assumption that some
non-faulty replica will in fact commitr atn in view v′.

If instead i reported a stable checkpoint earlier thann in its
V IEWCHANGE, it can only have reported the sameCOMMIT attesta-
tion for requestr atn, since thatV IEWCHANGE message must con-
tain a view abandonment forv as we showed above, and omitting an
attestation for theCOMMIT log entry[v|n] is not an option; to omit it
successfully, it would have to produce an abandonment attestation

〈LOOKUP, mc, [v|n
′ +1],Z, 0, SKIPPED, [v+1|0]−1, d′〉A2M i,R,1

for somen′ < n, which is disallowed by the A2M interface given
the existence of anASSIGNEDattestation for entry[v|n] and the in-
equality[v|n′ + 1] ≤ [v|n] < [v + 1|0] − 1.

This leaves the common replicai between quorumsQ andV
only with the option of reporting requestr as prepared in view
v. As a result, any correct replica in quorumQ′, which can only
commit requests in viewv′ after having seen theNEWV IEW cer-
tificate for that view, must have issued at least aPREPAREmessage
for requestr in view v′ while processing theNEWV IEW certificate.
However, since this replica is also a member of the committed cer-
tificate for requestr′ in view v′, it must also have prepared and
subsequently committed that requestr′. This clearly contradicts
not only the properties of the A2M message logs at that replica, but
also the operation of a non-faulty replica. This completes the proof
for this subcase.

Case 2b –v and v′ are not consecutive active views:Suppose
there arev1, v2, ..., vk−1 active views betweenv(= v0) andv′(=
vk). We can prove inductively on the intervening active views that
at least a prepared certificate for requestr at sequencen will be
propagated to viewv′, preventing a commitment of a conflicting
requestr′ at the same sequence number there.

In the base case, we can use the argument of the previous subcase
2a to show that theNEWV IEW certificate for viewv1 will either
preclude any subsequent commitment to sequencen or will contain
at least a prepared certificate for requestr at that sequence number.

To show the inductive step, assume that theNEWV IEW certificate
for view vi contains a prepared certificate for requestr – that is
the only viable choice since, if it contains a stable checkpoint forn

or later, then no subsequent view will admit a different committed
requestr′, leading to a contradiction. Now consider theNEWV IEW

certificate, formed by quorumV, that will lead away fromvi to
vi+1. Any non-faulty replica inV (there must be at least one),
must have seen the earlierNEWV IEW certificate leading tovi, or
else it would be unable to assumevi as its active view. Therefore,
that replica must also have prepared that same requestr in view vi,
including the prepared certificate in itsV IEWCHANGE contribution
to the laterNEWV IEW certificate.

The induction proves that committed requestr at n in active
view v will either preclude the commitment of another request at
n in view v′ (because somewhere in between aNEWV IEW certifi-
cate contained a stable checkpoint for a sequence at or aftern),
or cause the inclusion of aCOMMIT attestation for the samer at
n in all subsequent validNEWV IEW certificates. This contradicts
the assumption that a non-faulty replica at active viewv′, which
must have seen such aNEWV IEW certificate, will commit request
r′ at n in view v′. This last subcase concludes the proof that two
commitments for the same sequence number at different non-faulty
replicas must commit the same request.

Beyond quorum availability (i.e., ensuring that no quorum can
be blocked from forming due to non-faulty replicas caused to com-
mit incorrect requests), A2M-PBFT-EA also guarantees that no
replica is left behind during view changes: a replica only abandons
its current viewv if it has collected aWANTV IEWCHANGE certifi-
cate; even if the current view change does not complete due to net-
work faults or a faulty new primary, the replica can retransmit the
WANTV IEWCHANGE certificate until eventually enough other non-
faulty replicas have received it to complete the view change, or to
trigger another one with a different primary. This is guaranteed by
the eventual synchrony of our network and processing model.

