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Abstract

The malware detection arms race involves constant change: mal-
ware changes to evade detection and labels change as detection
mechanisms react. Recognizing that malware changes over
time, prior work has enforced temporally consistent samples
by requiring that training binaries predate evaluation binaries.
We present temporally consistent labels, requiring that train-
ing labels also predate evaluation binaries since training labels
collected after evaluation binaries constitute label knowledge
from the future. Using a dataset containing 1.1 million bina-
ries from over 2.5 years, we show that enforcing temporal label
consistency decreases detection from 91% to 72% at a 0.5%
false positive rate compared to temporal samples alone.

The impact of temporal labeling demonstrates the potential
of improved labels to increase detection results. Hence, we
present a detector capable of selecting binaries for submission
to an expert labeler for review. Ata 0.5% false positive rate, our
detector achieves a 72% true positive rate without an expert,
which increases to 77% and 89% with 10 and 80 expert queries
daily, respectively. Additionally, we detect 42% of malicious
binaries initially undetected by all 32 antivirus vendors from
VirusTotal used in our evaluation. For evaluation at scale, we
simulate the human expert labeler and show that our approach
is robust against expert labeling errors. Our novel contributions
include a scalable malware detector integrating manual review
with machine learning and the examination of temporal label
consistency.

1. Introduction

Desktop malware constitutes an enormous arms race in which
attackers evolve to evade detection and detection mechanisms
react. A recent study found that only 66% of malware was de-
tected within 24 hours, 72% within one week, and 93% within
one month [[10]. To evade detection attackers produce a large
number of different malware binaries, with McAfee receiving
over 300,000 binaries daily [19].

Machine learning offers hope for timely detection at scale,
but the setting of malware detection differs from common ap-
plications of machine learning. Unlike applications such as
speech and text recognition where pronunciations and character
shapes remain relatively constant over time, malware evolves
as adversaries attempt to fool detectors. In effect, malware de-

*This author did most of her work on this paper while at
Intel Labs.

tection becomes an online process in which vendors must con-
tinually update detectors in response to new threats. Malware
detection also has unique labeling challenges. Whereas reading
and writing are the only skills necessary to label text, reliably
labeling malware requires expert analysis.

In response to the malware detection challenges, we con-
tribute to the design and evaluation methodology of malware
detectors. We present temporally consistent labels, requiring
that training labels predate evaluation binaries since labels col-
lected after evaluation binaries constitute knowledge from the
future. Improving over random cross-validation (which makes
no effort to respect time), prior work has introduced rempo-
rally consistent samples, requiring that training binaries predate
evaluation binaries. Our analysis shows that temporally consis-
tent labeling significantly impacts evaluation accuracy: tem-
porally consistent samples with temporally inconsistent labels
from the future are almost as misleading as cross-validation.

To realize the potential of improved training labels, we in-
tegrate a human expert labeler into the ongoing maintenance
of the detector. The detector views the human as a limited re-
source, and selectively queries him to label difficult samples
and integrates responses to boost overall system performance.
In our evaluation, we use temporally consistent labels and sim-
ulate the involvement of the human expert labeler by appealing
to the future labels of a sample. Our results demonstrate that by
selectively querying the expert labeler, we get back to the level
of performance suggested by future based labels.

Our work offers the following key contributions:

o We demonstrate the previously unstudied impact of tem-
porally consistent labels on evaluation results. Ata 0.5%
false positive rate, strict temporal consistency yields a
72% detection rate, as compared with 91% and 92% de-
tection rates according to temporally inconsistent labels
and cross-validation, respectively.

e Our detector integrates a human expert labeler that in-
creases baseline detection from 72% at 0.5% false pos-
itive rate to 77% and 89% detection with 10 and 80 or-
acle queries daily on average. Additionally, our system
detects 42% of malicious binaries initially undetected by
all other vendors in our evaluation.

e We examine our open-source learning and evaluation tech-
niques using over 1.1 million samples appearing between
January 2012 and June 2014. Our code, 3% of data, and
all binary hashes will be available online.
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tSchwenk et al. focus on a machine learning system which retrains on predictions produced by the system itself

and ignores temporally consistent labels from external sources.

1Nissim et al. seek to maximize the number of malicious files given to the human, resulting in detection comparable o
to [22] or worse than [21] uncertainty sampling, a human integration technique from other application domains. °

Human Integration
O No human expert interaction
Interaction for purpose other than
improving ML malware detection
Interaction to improve ML malware detection

Table 1: Prior work in file-based malware detection. Domain: vir: x86 viruses, exec: x86 Portable Executable file format, dll:
Windows OS library file, pdf: portable document file, worm: network worms.

Dataset. To conduct our experiments, we have amassed a dataset
constructed from over one million binaries submitted to Virus-
Total, a malware repository [29]. When VirusTotal receives
a submission (including a resubmission) of a binary, it runs a
suite of static and dynamic analyses as well as static malware
detectors on it. Our corpus includes the results of each of the
submissions of each of binary in our dataset to track binaries
over time and to weight them by the interest in them (approxi-
mated by their submission count). In particular, we have times-
tamps for all submissions and corresponding detection results
enabling the use of the temporal consistency of labels in our
evaluation.

Evaluation. We use our evaluation method and dataset to un-
derstand the accuracy of our detector under various conditions.
Our evaluation examines the impact of variations in retraining
interval, detection latency and expert labeling budget on de-
tector accuracy. Although our design includes both static and
dynamic features, since VirusTotal detectors must operate stat-
ically we also compare our performance against VirusTotal us-
ing static features alone. Note that the restriction to static fea-
tures actually disadvantages our approach, as VirusTotal de-
tectors may operate against the arbitrary file and we restrict
ourselves to static attributes available through VirusTotal. Our
performance is slightly impacted, producing 84% detection at
0.5% false positive rate with 80 queries daily and still surpass-
ing detectors on VirusTotal. We also explore the impact of in-
accurate human labelers on the system’s accuracy by adding
random noise to the simulated expert labels. We find that our
design is robust in the presence of imperfect labelers. Given an
oracle with a 80% true positive rate and a 5% false positive rate
our system still achieves 85% detection at a 1% false positive
rate, as compared to 90% detection using a perfect oracle.

In Section 2] we review prior work. Section [3] presents the
design of our system, including feature extraction, machine
learning and integration of the labeling expert. Section[d]covers
our implementation. Section [5]examines our dataset. Section|[6]
presents our method of evaluation while Section [7]exemines its
results. Lastly, Section|[§]concludes.

2. Prior Work

In this section we discuss our relationship to prior work on
machine learning based malware detection. We present the first
integration of a human reviewer with the purpose of increas-
ing performance of machine learning based malware detection.
We also present the first examination of integrating temporally
consistent label knowledge, as contrasted with training labels
obtained after evaluation or retraining a system on the system’s
previous predictions. Since there has been considerable prior
work on malware detection, we focus our discussion below on
the prior work most relevant to our primary contributions. Ta-
ble [T] presents a comparison of our work with the prior work
in file-based malware detection. Note that we only consider
detection mechanisms based on file contents; meta-data based
approaches [24]] and malware family detection approaches are
out-of-scope.

Temporally Consistent Labels. Schwenk et al. present the
most relevant prior work on labeling by examining the perfor-
mance of a malicious JavaScript detector over a five month pe-
riod. Schwenk et al. compare detection performance when iter-
atively retraining using the system’s own predictions as train-
ing labels with detection performance when training on labels
generated after all data collection. By focusing on a system
which retrains purely on the system’s own predictions, there is
no means of incorporating or analyzing the effect of temporally
available knowledge in the anti-malware community. Separate
from Schwenk et al., several other works have identified the
problem of time lag in sample ground truth [10,24]. In contrast
with prior work, our work is the first to explore strict and natu-
ral temporal consistency in labels, training on unsimulated and
strictly historical knowledge of samples and labels in order to
make predictions on current and future samples.

Separate from temporal labeling concerns, few works have
explored temporal sample consistency. Moskovitch et al. [20],
and Kolter et al. [17] present evaluations where malicious in-
stances are temporally sorted, so that the system is trained on
historical malicious samples and tested on yet unseen malware.
We note that only the malicious samples were temporally or-
dered, while the benign samples were not. Srndic et al. [28]]
used temporally consistent malicious and benign PDF instances
to evaluate their system. Moving towards temporal sample con-
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Figure 1: Detector design overview. The detection pipeline employs the current model to detect malware, and the training pipeline
produces the next model for use in the detection pipeline. During each retraining period, the training pipeline reviews all available
training data and selects binaries for submission to the human labeling expert. Binaries labeled by the expert are combined with
training data labeled using the current model and anti-virus scan results to serve as the training data for the next model.

sistency, Henchiri et al. [13|] performed family-aware cross-
validation, where training and testing samples belong to dis-
joint sets of families, simulating apparition of novel malware at
testing time.

Most prior research uses cross-validation or other equivalent
blind dataset randomization schemes for evaluating their ma-
chine learning framework. Some works, e.g., Nissim et al. [22],
evaluate their system on a synthetic stream obtained from ran-
domly partitioning a small set of malware and benign instances,
and refer to each partition as one “day,” even though that does
not represent real time. While this is a standard evaluation tech-
nique in the machine learning literature, it is only appropriate
when the underlying data does not “drift” between training and
testing time. Unfortunately, this requirement is violated for
malware detection, where attackers try to evade the antivirus
systems [91/32]] or simply upgrade malware in functionality. In-
deed, prior work suggests that cross-validation leads to an un-
realistically large detection accuracy at system evaluation time
that does not translate to real world performance once the sys-
tem is deployed [14]. This apparent performance degradation
occurs because in reality, the system can only rely on past data
to predict present and future samples.

Human Integration. Although some prior work has suggested
integration of a human expert into machine learning systems for
malware detection, our work differs significantly in goal, effec-
tiveness and quality of evaluation. Nissim et al. conduct prior
work exploring the integration of a human expert with the goal
of maximizing the number of malicious binaries given to the
expert [2122]. In contrast, our goal is to give the binaries to the
expert which will improve detection performance. Although
Nissim et al. demonstrate that their query technique selects
more malicious samples than uncertainty (or margin) sampling,
detector true and false positive rates are either worse than [21]
or comparable to [22] uncertainty sampling. In contrast, our
evaluation demonstrates at a 15% point improvement over un-
certainty sampling. Nissim et al. additionally lack timestamps
for both binaries and labels in their evaluation and randomize
the order of samples, removing any temporal effects from eval-
uation results.

Dataset Diversity. Most prior work was evaluated on limited
number of malicious and benign instances from a single repos-

itory source (e.g., VX Heaven) and/or with low or unquanti-
fied diversity in terms of malware families [[15,[16L[25/]30]. The
largest dataset of binary executables can be found in Markel
et al. [18] and consists of 123k and 42k malicious and benign
instances respectively, with little diversity characterization. In
contrast, our dataset has approximately 1.1 million instances
collected from Virus Total, a consumer-facing service, with
113k benign samples and 939k malware comprising from 3k to
406k distinct families depending on which AV vendor is used
for naming. We characterize in greater detail our dataset in sec-
tion[3] and in particular show how new families emerge over the
2.5 year time span of the data.

3. Detector Design

In this section we present our detector design, including fea-
ture extraction, machine learning and integration of the human
labeling expert. Figure[T|presents an overview of our approach.
When a binary arrives, the detection pipeline extracts the fea-
tures, applies the current model to classify the binary as mali-
cious or benign, and the training pipeline stores the binary in a
database along with all other binaries seen to-date. During each
retraining period, binaries not detected by scanners on VirusTo-
tal are considered for submission to the human labeling expert.
Binaries confidently detected by the current model are included
in training data with a malicious label, and the remaining pur-
portedly benign binaries are submitted to the human labeling
expert as the query budget allows. The remaining un-submitted
binaries are included in the training data as benign. At the end
of the retraining period, the next model produced in the training
pipeline replaces the current model and the process repeats.

We begin by examining the general techniques used for fea-
ture vectorization in Section[3.I] and then present the applica-
tion of feature vectorization techniques to static and dynamic
attributes of binaries in Sections [3.2]and [3.3]respectively. Sec-
tion [3:4] presents our approach to labeling training data, and
Section [3.5] describes how we integrate machine learning with
an expert.

3.1 Approaches to Feature Vectorization

Many machine learning algorithms work best with numeric



Name Description

Example

Vectorization

Metadata from MAGIC and EXIFTOOL
Certificate chain identity attributes

Binary Metadata
Digital Signing

PECompact2 compressed
Google Inc; Somoto Ltd

Categorical, String
Categorical, String

'é Heuristic Tools TRID; Tools from ClamAYV, Symantec InstallShield setup;DirectShow filter Categorical

& Packer Detection Packer or crypter used on binary UPX; NSIS; Armadillo Categorical
PE Properties Section hashes, entropies; Resource list, types image/x-png; hash:eb0c7c289436. .. Categorical, Ordinal, String
Static Imports Referenced library names and functions msvert.dll/1div; certcli.dll Categorical
Dynamic Imports Dynamically loaded libraries shell32.d11; dnsapi.dll Categorical

o File Operations Number of operations; File paths accessed C:\WINDOWS\system32\mshtml.tlb Categorical, Ordinal

‘E Mutex Operations Each created or opened mutex ShimCacheMutex; RasPbFile Categorical, String

£ Network Operations IPs accessed; HTTP requests; DNS requests 66.150.14.%; b.liteflames.com Categorical, Ordinal

E’ Processes
Registry Operations
Windows API Calls

Created, injected or terminated process names
Registry key set or delete operations
n-grams of Windows API calls

python.exe; cmd.exe

SET: ...\WindowsUpdate\AU\NoAutoUpdate

DeviceIoControl | IsDebuggerPresent

Categorical
Categorical
Categorical, Sequential

Table 2: Feature vectors reflect static and dynamic attributes of binaries. We discuss vectorization techniques in Section|3.1|and the
application of vectorization techniques to attributes of binaries in Sections [3.2]and 3.3}

features, but not all attributes of binaries come in that format.
We present four general techniques to convert raw (static and
dynamic) attributes of binaries into numerical feature vectors.
The methods we can apply to each attribute depends upon its

type.

Categorical. We apply categorical vectorization to all attributes.

The categorical mapping associates one dimension with each
possible attribute value. For example, the DeviceIoControl
API call may correspond to index i in feature vector x, where
x; = 1 if and only if the binary issues the DeviceIOControl
API call. We extend this mapping as new binaries present new
attribute values. Since the absence of an attribute reveals infor-
mation about a binary, we include a special null index to indi-
cate that the value of the attribute is missing. For example, the
file may not generate any network traffic, or may not be signed.

Ordinal. Ordinal attributes assume a specific value in an or-
dered range of possibilities, such as the size of a binary. We
describe these attributes using a binning scheme that works as
follows: for a given attribute value, we return the index of the
bin which the value falls into, and set the corresponding dimen-
sion to 1. For attributes that vary widely, we use a non-linear
scheme to prevent large values from overwhelming small val-
ues during training. For example, the number of written files
v is discretized to a value i such that 3' < v < 3i+!, where the
exponential bins to account for the large dynamic range of this
quantity.

Free-form String. Many of the important attributes appear as
unbounded strings, such as the comments field of the signa-
ture check. Representing these attributes as categorical features
could allow an attacker to evade detection by altering a single
character in the attribute, causing the attribute to map into a
different dimension. Therefore, we capture 3-grams of these
strings, where each contiguous sequence of 3 characters rep-
resents a distinct 3-gram, and consider each of the 3-grams as
a separate dimension. However, this approach is still sensitive
to variations that alter 3-grams. In addition to taking original
3-grams, we perform string simplification to reduce sensitivity
to the 3-gram variations.

We define classes of equivalence between characters and re-
place each character by its canonical representative. For in-
stance, the string 3PUe5f could be canonicalized to 0BAaOb,
where upper and lowercase vowels are mapped to ‘A’ and ‘a’
respectively, upper and lowercase consonants are mapped to ‘B’
and ‘b’, and numerical characters to ‘0’. Likewise, the string
7SEi2d would also canonicalize to 0BAaOb. Occasionally, we

sort the characters of the trigrams to further control for variation
and better capture the morphology of the string. For instance,
these string simplification techniques are used for mapping the
portable executable resource names, which sometimes exhibit
long random-looking bytes sequences.

Sequential. The value of some attributes is a sequence of to-
kens where each token assumes a finite range of values. These
sequential attributes are strongly related to free-form string at-
tributes, although the individual tokens are not restricted to be-
ing individual characters. We use sequential feature extraction
to capture API call information since there is a finite set of
API calls and the calls occur in a specific order. As with free-
form string features, we use an n-gram approach where each
sequence of n adjacent tokens comprises an individual feature.

3.2 Static Attributes of Binaries

In this section, we describe our use of static attributes of
binaries. Static attributes are derived from analysis available
through VirusTotal. Table 2] provides an overview of static at-
tributes, dynamic attributes and associated vectorization tech-
niques.

Binary Metadata. We use attributes of binaries gathered from
two tools designed to extract metadata: MAGIC and EXIFTOOL.
The MAGIC tool interprets the binary’s magic bytes and returns
a literal, such as MS-DOS executable PE for MS Windows
(console) Intel 80386 32-bit. The EXIFTOOL tools re-
turns a list of key-value pairs. Common keys are TimeStamp,
OriginalFilename, FileDescription. We vectorize the
MAGIC and EXIFTOOL attributes using a combination of cat-
egorical and string vectorization techniques.

Digital Signing. From a check of the signature, we collect the
status of the verification, the identities of every entity in the
certificate chain, and additional fields that include comments,
product name, description, copyright, internal name, and pub-
lisher. We vectorize the verification status and specific identi-
ties as categorical features, and treat any additional information
as string features.

Heuristic Tools. This group of attributes contain decisions of
black-box heuristic tools which are inexpensive to run against
a given executable. We use three such tools. CLAMAV PUA
checks for Potentially Unwanted Applications (PUA) that are
not malicious by themselves, but can be used in malicious ap-
plications [1]. SYMANTEC SUSPICIOUS INSIGHT returns a bi-
nary result based on its reputation among other users [4]. TRID
returns a scored list of the most likely file types (e.g., Win32



Executable MS Visual C++) [6]. We vectorize the results
of these tools as categorical features.

Packer Detection. We use three packer/cryptor detectors: COM-
MAND UNPACKER, F-PROT UNPACKER and PEID [2]]. Each
tool returns a list of names of packers detected (e.g., UPX,
NSIS, Armadillo). We vectorize them as categorical features.

Portable Executable Format. We use several attributes of bi-
naries derived from the portable executable file format [3], in-
cluding resource languages (e.g., ENGLISH US, NEUTRAL, RUS-
SIAN), section attributes (e.g. hashes, names, entropies, and
lengths) and resource attributes (e.g. hashes, names and types).
We vectorize these attributes using a combination of categori-
cal, ordinal and string vectorization techniques.

Static Imports. Static imports are referenced library func-
tions. Functions can be referenced by their actual name (e.g.,
msvcrt.d1l1l/1div) or by an ordinal reference (for example,
user32.d11/0rd(490)). Static import attributes of binaries
are vectorized using categorical techniques.

3.3 Dynamic Attributes of Binaries

VirusTotal uses the Cuckoo sandbox to obtain dynamic at-
tributes of binaries the first time each binary is submitted to
VirusTotal [5]. We derive all dynamic features from the Cuckoo
sandbox execution trace.

Dynamic Imports, Mutexes and Processes. We generate fea-
tures from each: a) created or opened mutex name; b) created,
injected or terminated process name; and c) dynamically loaded
library name. These are all vectorized as categorical attributes.

Filesystem Operations. We generate features from the full
paths, types and number of operations made on the file system.
Operations include reading from, writing to, deleting, copying,
and renaming files. We parse each path to extract individual
tokens and prefixes, and then vectorize each as a categorical
attribute.

Network Operations. We derive features from all IP addresses
accessed via both TCP and UDP, DNS queries and responses,
and HTTP requests generated by each binary. To increase gen-
erality, we also include subnets derived from IP addresses as
features. Likewise, we derive more general features from HTTP
requests by extracting query parameters and individual tokens
from the request path. All IP address, DNS and HTTP request
attributes are vectorized using categorical techniques. Addi-
tional attributes related to request lengths and total number of
requests are vectorized using ordinal techniques.

Registry Operations. We collect all operations that result in
an update to a registry key along with the full key path. We
vectorize registry operations using categorical techniques.

Windows API Calls Sequence. The raw output of the Cuckoo
sandbox contains the sequence of Windows API calls issued by
the binary, as well as the arguments, argument values and re-
turn value of the system call. We use the sequential technique
to vectorize API call sequences with n-grams for n in {2,3},
over the sequence of windows API call names. We also ap-
ply categorical vectorization to the individual system calls in
the sequence, including the names (but not the values) of the
supplied arguments.

3.4 Labeling the Training Set

To periodically update the detection model, the detector must
construct a labeled training set of binaries. To do so, at each pe-

riod, the detector collects all the binaries seen up to that point
and uses the information currently available to assign labels for
training. In particular, the detector uses four sources of infor-
mation: the community consensus on each binary as provided
by VirusTotal, the current learned model, the results, if any, of
prior expert review and finally, additional fresh expert reviews
for a small number of binaries that it selects with a query strat-
egy.

To understand how to make use of antivirus vendors labels,
we studied our VirusTotal dataset. We found that antivirus ven-
dors tend to prefer false negatives over false positives, possibly
due to detection latency and the potential inconvenience of false
positives to users. We quantify the detector bias in Section [5]
which shows that the number of detections a binary receives is
more likely to increase than to decrease over time. This ten-
dency is so strong that we elected to treat a community con-
sensus that the binary is malicious as a sure thing and assign a
malicious label to the binary. We call this heuristic the unde-
tected filter. Furthermore, since we trust our current detection
model to a certain extent, we assign a malicious label to any bi-
nary which detection score exceeds a confidence threshold M.
We call this heuristic auto-relabeling. 1If both of these heuris-
tics fails to produce a (malicious) label, and if no known expert
label is yet available for the binary, we submit the binary to the
query strategy.

Query Strategy. The query strategy selects which binaries
among the previously prefiltered ones to submit to the expert
labeler. The stock query strategy of machine learning is the un-
certainty strategy: submit to the expert the binary about which
the current model is most uncertain (i.e., those that lie closest
to the boundary).

In general, a query strategy is most effective when the result-
ing machine learning model incurs a large update as a result of
the gained knowledge. For a linear classification model such
as logistic regression, the most impactful labels are those of the
instances which lie the furthest away from the decision bound-
ary. That is, flipping the labels of the largest scoring binaries
(in absolute value) will produce the most different model. Since
we know that antivirus providers’ false negatives are far more
common than false positives, we expect the labels of the high-
est scoring (most malicious) binaries to have a fair chance of
changing from benign to malicious. Hence, it is those a priori
benign but high scoring binaries that we submit to the human
oracle. We call this strategy maliciousness.

More formally, the query strategy has a submission budget B,
where B is determined as a fixed percentage of the total num-
ber of new training binaries during the retraining period. The
detector then submits the B remaining binaries with the great-
est maliciousness scores to the expert. The binaries in excess
of B, i.e. those that are not submitted to the human labeler are
conservatively labeled as benign.

3.5 Model Training

We base our detection on the logistic regression and begin
by examining its mechanics and advantages. As a linear classi-
fication technique, logistic regression assigns a weight to each
feature and issues predictions as a linear function of the feature
vector. Formally, if x € RY is the feature vector representing an
instance and w € R? are the model weights, then the algorithm
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scores the instance as:
d
fw(x) =Y xiwi
i=1

where without loss of generality, we have omitted the constant
additive bias term. Linear classification scales well in predic-
tion as the size of the model is a function of the dimensionality
of the data, and not with the size of the training data as hap-
pens with a kernelized SVM. We adjust the threshold at which
a binary is considered malicious by scoring each binary as a
real valued quantity fi(x). This enables us to create a tradeoff
between true and false positive rates. Considering malicious as
the positive class, higher thresholds will result in lower false
positive rates while missing more malware, and lower thresh-
olds will result in higher false positive rates while detecting
more malware. Additionally, the clear relationship between bi-
nary features and the classification outcome allows supervisors
to clearly understand what the detector is doing and why. Also,
logistic regression scales well in training with many available
implementations capable of accommodating high dimensional
feature spaces and large amounts of training data.

In logistic regression, the model is defined by a weight vector
w learned from a given labeled training set { (x,y!),..., (x",y")}
where y' € {—1,+1} represents the label. Logistic regression
finds the model w which minimizes the following risk func-
tion:

C_x Z

iyl=—

+ Cex Y Ufw(x) +

iyi=1

) 1
£(— fw (X —|w|)?
1( Jw(x)) 5 Iwll

where C_ > 0 and Cy > 0 are distinct hyper-parameters con-
trolling for both regularization and class importance weight-
ing and ¢(x) = log(1 + exp(—x)) is the logistic loss function.
The first and second terms correspond to the misclassification
losses for negative and positive instances, respectively. The
last term is a regularization term that discourages models with
many large non-zero weights. We use L,-regularization, result-
ing in a dense weight vector w. Finally, while online learning
techniques are in theory well suited for frequent model retrain-
ing, we fit the weight vector using the exact batch-optimization
tool LIBLINEAR [11]]: batch training times remain reasonable
even for our million instances dataset, and we observe inferior

detection accuracies for models learned online.

Since the expert will only review a fraction of the binaries
labeled benign, many false negatives will persist. To counteract
the false negatives, any binary labeled benign by the expert is
given a higher weight W during training.

The detector design we present has expert labeler submission
budget B, auto-relabeling confidence threshold M, C_, C+, W,
and the retraining period as parameters. Section [7]presents the
effects of varying the submission budget B and retraining pe-
riod, with increased submissions and more frequent retraining
resulting in higher performance. The others are fixed to values
yielding good performance on a set of binaries excluded from
our evaluation: M =1.25,C_ =0.16, C;. = .0048 and W = 10.

4. Detector Implementation

In this section we present our detector implementation. Since
anti-virus vendors can receive in excess of 300,000 binaries
daily [[19]], we design our detector with a focus on scalability.
Our detector can conduct feature vectorization to prepare bina-
ries for classification for all 1 million binaries included in our
evaluation in less than 6 hours. Thus, as VirusTotal receives and
processes as many as 1 million new files daily, the end-to-end
combination of our detector with VirusTotal analysis infrastruc-
ture could perform detection on a realistic workload [29].

We implement our detector on a VMware ESX cluster run-
ning Apache Spark [31]. Since Apache Spark holds data in
memory, computational tasks making repeated use of the same
data elements operate faster, enabling greater scalability. Within
the cluster we designate 10 nodes as worker nodes, each allo-
cated 3 cores, 48GB of memory, 16GB disk swap space and
32GB Spark spill space. We designate a single master node
with 8 cores, 120GB of memory, 16GB disk swap space and
32GB Spark spill space. We implemented our design in ap-
proximately 4,600 lines of Python.

Figure 2a] presents an overview of our design, divided into
feature processing and metadata processing. Feature process-
ing is responsible for the transformation of raw data into a fea-
ture matrix, with one row corresponding to each binary. Once
a feature matrix is produced, metadata processing produces tu-
ples specifying all rows and labels necessary for both training
and evaluation during each retraining period. Once the features
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Figure 3: Data Overview. Figures anddemonstrate that scans are well distributed across binaries and our evaluation period,
respectively. Note that relative scarcity of scans in the first 200 days reflects availability of necessary attributes in VirusTotal data,
not underlying phenomenon in submission behavior. Figure [3c|presents the distribution of malware across families. Each vendor
regards 50% or more of malware as belonging to 10% of the families identified by the vendor, with the number of families varying

from 3,129 (Symantec) to 406,250 (McAfee).

and metadata are produced for each time period, all training,
prediction and expert queries occur in job execution.

Since feature vectorization is the most computationally in-
tensive aspect of our detector, we utilize a combination of com-
pression, caching and parallelism to reduce computational bur-
den and maintain scalability. Figure [2b] presents the reduc-
tion in data size afforded by the feature vectorization sequence.
Raw data is first compressed using gzip to store the original
records unaltered in HDFS, and compressed a second time as
the data is transferred into the Parquet format. Parquet enables
increased compression over gzip by maintaining a schema for
the data, effectively removing the need to store the keys asso-
ciated with each element of a dictionary.

After raw data has been transferred to Parquet, feature vec-
torization proceeds to an intermediate caching step known as
summarization allowing result reuse across experiments. Dur-
ing the summarization process we extract the necessary data
for subsequent vectorization of the feature, often reducing the
total size of the data. For example, a feature based on the total
number of URL requests need only store the total number of
requests made, not the actual requests themselves.

After summarization, a vectorization process transforms the
summarized data into feature vectors. If the vectorization pro-
cess were constructed such that each binary can be vectorized
independent of other binaries, then summarization data can be
discarded after vectorization. However, vectorization depends
on all binaries, so the summarized data must be re-visited as
new binaries are added to the training data.

5. Data and Label Overview

In this section we examine the dataset we use for our eval-
uation, consisting of over 1 million distinct binaries submitted
to VirusTotal between January 2012 and June 2014. We begin
with an overview examining the distribution of the data over
time and diversity across malware families. Then, we discuss
changes in detection results over time and our approach to ob-
taining accurate labels.

In addition to the static and dynamic analysis and virus de-
tection conducted when VirusTotal first receives a file, VirusTo-

tal rescans the file with up-to-date virus detectors on any sub-
sequent submission of the file. Figure [3a]depicts the impact of
resubmissions on the dataset. We include these rescan events
in our analysis since rescans offer updated, timestamped labels
for the file, providing for more timely labeling during evalua-
tion. Additionally, inclusion of re-submissions ensures that the
distribution of our evaluation data mirrors the distribution of
actual data submitted to VirusTotal by incorporating the preva-
lence of each individual file, effectively balancing any effects
of polymorphism in the dataset.

Although our evaluation includes data from January 2012 to
June 2014, we reserve the first year of data for training purposes
only and use data from January 2013 to June 2014 to assess
the performance of our detector. Figure [3b| presents the occur-
rence of scans over time, indicating that scans consistently oc-
cur throughout the period assessing our detector performance.
Notice that scans do not occur evenly during the training pe-
riod, with the first approximately 200 days containing fewer
scans. The difference in available data occurs because fewer
binaries have dynamic attributes available; the difference does
not reflect an underlying phenomenon in submissions.

We also demonstrate that binaries reflect a broad range of
malware families. Figure [3c|presents the distribution of bina-
ries across families from four leading vendors. Since our goal is
to reflect the true diversity of the binaries, rather than the initial
perceptions of scanners, we associate binaries with the family
given in the final scan of the binary to obtain the most accurate
family label. Since each vendor uses a unique naming scheme
and identifies a different set of binaries as malware we plot the
portion of total binaries detected by each vendor compared to
the portion of total families identified by the vendor, with fam-
ilies ordered from largest to smallest. Each vendor agrees that
the distribution across families is non-uniform, with more than
50% of binaries belonging to the most common 10% of fami-
lies issued by each vendor. As the number of families identified
by vendors ranges from 3,129 to 406,250, the majority of ma-
licious binaries are drawn from hundreds if not thousands of
families.

We now discuss our approach to labeling binaries. Although
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Figure 4: Temporally consistent labels are critical for accurate evaluation results. Figure @ illustrates three types of evaluations.
The upper left shows the evolution of the data set including two instances (B and E) receiving a change in label. The three remaining
subfigures each shows how a type of evaluation would handle the shown data set. Rows correspond to successive retraining periods
with specified training and evaluation data, binaries appear chronologically from left to right, and + and - denote malicious and
benign labels, respectively. Notice that cross-validation disregards time for binaries and labels, while temporally consistent samples
orders binaries chronologically but uses gold labels regardless of time. Figure fb]presents the effects of evaluation methodology on

accuracy results.

we observe scan results from 80 different vendor’s detectorsm
some of these detectors are only sporadically present in the
data. Since we label binaries using detection results from mul-
tiple vendors, we restrict our work to the 32 vendors present in
at least 97% of scan results to increase consistency in the set of
vendors applied to each binaryﬂ

Although the contents of a binary may not change over time,
the communal understanding of whether the binary is malicious
can change. Due to the potential inconvenience for users of
false positive detection results, label changes are overwhelm-
ingly from benign to malicious. Examination of binaries with
multiple scans in our dataset reveals that while 29.6% of bina-
ries increase in number of detections by at least 5 vendors from
their first to last scan, only 0.25% of binaries decrease by 5 or
more detections. Given vendors’ demonstrated aversion to false
positives, we set a detection threshold of four vendor detections
to label a binary as malicious, and rescan any binary which re-
ceived fewer than 10 detections at the most recent scan. We
conduct rescans in February and March 2015, 8 months after
the end of our data collection period, to allow time for ven-
dor signature updates. We avoid rescanning binaries with 10 or
more detections since decreases large enough to cross the four
vendor detection threshold are unlikely. After rescanning, we
assign a gold label to each binary in our dataset representing
the best available understanding of whether the binary is mali-
cious.

ISince vendors are able to customize their products for Virus-
Total results may differ from retail or enterprise products.

2In particular, we include the following vendors: AVG,
Antiy-AVL, Avast, BitDefender, CAT-QuickHeal, ClamAV,
Comodo, ESET-NOD32, Emsisoft, F-Prot, Fortinet, GData,
Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition, Microsoft, Norman, Panda, SUPER AntiSpyware,
Sophos, Symantec, TheHacker, TotalDefense, TrendMicro,
TrendMicro-HouseCall, VBA32, VIPRE, ViRobot and nPro-
tect.

6. Evaluation Method

We build evaluation method around faithfully modeling the
actual setting of malware detection at a reasonable cost. To
ensure that our evaluation is faithful to the actual setting of
malware detection, we maintain the temporal consistency of
both samples and labels. To keep costs reasonable, we simulate
rather than employ labeling experts.

In practice, knowledge of both binaries and labels changes
over time as new binaries appear and malware detectors re-
spond appropriately with updated labels. Evaluations that fail
to recognize the emergence of binaries and knowledge over
time effectively utilize knowledge from the future, inflating
the measured accuracy of the approach. For example, consider
malware that evades detection but can be easily detected once
the first instance is identified. Accuracy inflation occurs be-
cause inserting correctly labeled binaries into training data cir-
cumvents the difficult task of identify the first instance of the
malware.

Figure[a]presents three approaches to evaluation of malware
detectors which recognize the emergence of binaries and labels
to varying degrees. Cross-validation is a common approach for
machine learning evaluations in situations where binaries are
independent and identically distributed (i.i.d.). In the malware
detection context the i.i.d. assumption does not hold since mal-
ware changes over time to evade detection. Cross-validation
evaluations completely disregard time, dividing binaries ran-
domly and applying evaluation quality labels to all binaries.
Evaluations maintaining temporally consistent samples recog-
nize the ordering of binaries in time but not the emergence of
labels over time, instead applying gold labels from future scan
results to all binaries. Use of gold quality labels during train-
ing effectively assumes that accurate detection occurs instantly.
Evaluations maintaining temporally consistent labels fully re-
spect the progression of knowledge, ordering binaries in time
and restricting the training process to binaries and labels avail-



able at the time of training. To support the temporal consistency
of labels, our dataset stores the label available for each binary
at each time it is submitted to VirusTotal.

We also provide a method of simulating a labeling expert.
Since the evaluation data spans 2.5 years, involvement of actual
humans to reproduce the equivalent effort on a much shorter
timescale is not economically feasible. Rather, we model the
involvement of a human with an oracle that can see the gold la-
bel of a binary from the future. For specific experiments in our
evaluation, we consider an imperfect oracle functioning with
a specified true positive rate and false positive rate, where the
likelihood of the oracle supplying the correct label depends on
the gold label of the sample.

In the next section, we present not just the results of evaluat-
ing our detector with temporally consistent labels, but also with
cross-validation, temporally consistent samples, and various or-
acle error rates. These examinations illustrate the important of
our methodological considerations.

7. Results

In this section we evaluate our malware detector. We begin
by examining the impact of temporal consistency of labels on
accuracy measurements, showing its importance to evaluating
detectors realistically. Next, we examine the performance im-
provement from the oracle and impact of variations in oracle
query budget and accuracy, query strategy, timeliness of train-
ing data labels, and length of retraining period. Without the use
of the oracle, our detection approach performs comparably to
detectors on VirusTotal. With modest support from the oracle,
we achieve performance improvements over the vendor labels
supplied on VirusTotal. We conclude with an examination of
which features of binaries were the most helpful for detection.

Impact of Temporal Consistency of Labels. We begin by
comparing several approaches to evaluating malware detectors.
Since the oracle effectively reduces the impact of temporally
consistent labels by revealing future labels, we conduct these
evaluations without any oracle queries. Figure [b] presents the
results of our analysis. Notice that cross-validation and tempo-
rally consistent samples perform similarly, inflating accuracy
results 20 and 19 percentage points respectively over tempo-
rally consistent evaluation at a 0.5% false positive rate.

Impact of Labeling Oracle. Given the temporal factors we
consider, the vendor detection results on VirusTotal provide the
best performance comparison for our work. Based on the false
positive rates of vendors, we tune our detector to maximize de-
tection for false positive rates greater than 0.1% and less than
1%. Figure [5] compares our performance to vendor detectors
provided on VirusTotal. Without involvement from the labeling
oracle our detector achieves 72% detection at a 0.5% false pos-
itive rate, performing comparably to the best vendor detectors.
With support from the labeling oracle, we increase detection to
89% at a 0.5% false positive rate using 80 queries daily on av-
erage. Since we train a separate model during each retraining
period, the performance curve results from varying the same
detection threshold across the results of each individual model.

VirusTotal invokes vendor detectors from the command line
rather than in an execution environment, allowing detectors to
arbitrarily examine the file but preventing observation of dy-
namic behavior. Since our analysis includes dynamic attributes,
we also observe our performance when restricted to static at-
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Figure 5: Without the labeling oracle, detector performance
competes with VirusTotal detectors. With the labeling ora-
cle, detection improves beyond vendors on VirusTotal. We
tune the oracle integration to maximize detection in the (0.1%,
1%) false positive region, consequently decreasing detection at
lower false positive rates.

tributes provided by VirusTotal. Note that this restriction places
our detector at a strict disadvantage to vendors, who may ac-
cess the binary itself and apply signatures derived from dy-
namic analysis. Figure [5] demonstrates that our performance
decreases when restricted to static features but, with support
from the labeling oracle, continues to surpass vendors, achiev-
ing 84% detection at a 0.5% false positive rate.

Performance comparison must also consider the process of
deriving gold labels, which introduces a circularity that artifi-
cially inflates vendor performance. Consider the case of a false
positive: once a vendor has marked a binary as positive, the bi-
nary is more likely to receive a positive gold label, effectively
decreasing the false positive rate of the vendor. An alternate
approach would be to withhold a vendor’s labels when evalu-
ating that vendor, effectively creating a separate ground truth
for each vendor. Although this approach more closely mirrors
the evaluation of our own detector (which does not contribute
to gold labels), in the interest of consistency we elect to use the
same ground truth throughout the entire evaluation since efforts
to correct any labeling bias only increase our performance dif-
ferential.

In addition to offering higher levels of detection across all
data than vendor labels, our approach also experiences greater
success detecting novel malware that is missed by detectors on
VirusTotal. Of the 1.1 million samples included in our analy-
sis, there are 6,873 samples which have a malicious gold label
but are undetected by all vendors the first time the sample ap-
pears. Using 80 oracle queries daily, our approach is able to
detect 44% and 32% of these novel samples at 1% and .1%
false positive rates, respectively. The ability of our approach to
detect novel malware illustrates the value of machine learning
for detecting successively evolving generations of malware.

To provide a corresponding analysis of false positives, we
measure our performance on the 61,213 samples which have a
benign gold label and are not detected as malware by any ven-
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Figure 6: Figurepresents the impact of each component in our customized oracle query strategy. We improve detection over the
uncertainty sampling approach from prior work. Figures [6b]and [6c| present the performance of our detector for imperfect oracles
with the specified true and false positive rates. For example, given an oracle with a 5% false positive rate and 80% true positive
rate, our detector’s true positive rate only decreases by 5% at a 1% false positive rate. Expert budget is set to B = 80 in all figures.

dor the first time the sample appears. Of these 61,213 benign
samples, our detector labels 2.0% and 0.2% as malicious when
operating at 1% and .1% false positive rates over all data, re-
spectively. The increased false positive rate on initial scans of
benign samples is expected since the sample has not yet been
included as training data.

Oracle Integration Strategies. Our oracle integration strategy
represents numerous advances over generic ones for problems
outside of computer security. Figure |3_3| presents the impact of
each of the three improvements we introduce and discussed in
Section 34} For a fixed labeling budget B = 80, the stock un-
certainty sampling results in 17 percentage points lower detec-
tion rate than the combination of our techniques at 0.1% false
positive rate.

Oracle Accuracy. Our system also demonstrates strong re-
sults in the presence of an imperfect oracle. Although our work
models the presence of a human labeler as an oracle, actual hu-
man labelers may make mistakes in identifying malware from
time to time. Malware creators may explicitly design malware
to appear benign, but benign software is less likely to appear
malicious. Accordingly, we model the false positive and true
positive rates of oracles separately, reflecting an oracle which
is more likely to mistake malware for benign software than be-
nign software for malware. Figures[6b|and[6c|present detection
rates for oracles with 1% and 5% false positive rates respec-
tively and a range of true positive rates. For example, given an
oracle with a 5% false positive rate and 80% true positive rate,
our detector’s true positive rate only decreases by 5% at a 1%
false positive rate.

Resource Parameterization. Beyond classifier parameters (dis-
cussed in Section@), operator resources determine several ad-
ditional parameters including oracle query budget, frequency
of retraining and frequency of rescanning training data. We ex-
plore each of these parameters individually below.

As the allowed budget for queries to the oracle increases,
the detector accuracy increases since more accurate labels are
available. Figure|7_3|presents the increase in accuracy from in-
creased oracle queries, with the benefit of 80 queries per day
on average approaching the benefit of training on gold labels
for all binaries. The benefit of oracle queries is non-linear, with
the initial queries providing the greatest benefit, allowing op-
erators to experience disproportionate benefit from a limited

oracle budget.

Although our evaluation is large relative to academic work,
an actual deployment would offer an even larger pool of pos-
sible training data. Since the utility of oracle queries will vary
with the size of the training data, increasing the amount of train-
ing data may increase oracle queries required to reach full ben-
efit. Fortunately, the training process may elect to use only
a subset of the available training data. We demonstrate that
1 million binaries selected randomly from VirusTotal submis-
sions is sufficient training data to outperform vendor labels for
our evaluation data.

Separate from querying the oracle, rescanning binaries with
updated detectors would also improve label quality. To main-
tain temporal consistency our evaluation uses the most recent
detection results occurring before model training. Unfortu-
nately there is no guarantee that binaries have been submitted
regularly, so detection results may be outdated. While our ap-
proach maintains a conservative estimation of accuracy, timely
labels for training data may improve performance.

To simulate the benefit of regular rescanning, we reveal the
gold label for training purposes once a specified amount of
time has elapsed since the binary’s first submission. Figure[7D|
presents the results of our analysis, which we conduct while
retraining every 7 days with O oracle queries to observe the
effects of timely training labels in isolation. Notice that even
when gold binaries are released after 1 week, detection remains
approximately 9 percentage points lower than when training on
all gold labels. This phenomenon illustrates the necessity of the
labeling oracle as well as the importance of maintaining timely
labels for training data.

Lastly, we examine variations in the length of the re-training
period governing how often models are updated. We conduct
these experiments with 80 oracle queries on average per day.
Figure [7c| presents the effect of variations in the retraining pe-
riod. Notice that the benefit of frequent retraining begins to
diminish around 2 weeks. A comparison with Figure [7b] rein-
forces the importance of oracle queries for improving training
data labels: the benefit of oracle queries exceeds the benefit of
including recent binaries in training data with the wrong label.

Detection Mechanics. Having analyzed detection accuracy
and evaluation methodology, we now examine the features that
our detector uses for classification. In the interest of under-
standing the dataset as a whole, we train a model over all data



Impact of Retraining Frequency

1.0 Impact of Increased Oracle Queries 1.0 Impact of Simulated Gold Label Delay 1.0

o
©
T

1
e
P

o
o)
T
o
)
T
o
e

°
(=)}
‘

°
P
o
P

EEl 0 Queries/Day
I 10 Queries/Day
I 20 Queries/Day

[ 40 Queries/Day
[ 80 Queries/Day || -
[J Gold Labels

EEN Never
I 8 Weeks
I 4 Weeks
-

[ 2 Weeks
[ 1 Week
Gold Labels

True Positive Rate
o
3
|
True Positive Rate
o
~
T
L
True Positive Rate
o
~
T

I 8 Weeks
I 4 Weeks
[ I —
0.01
False Positive Rate

2 Weeks -
I 1 Week

o
]
T
o
wn
T
1
o
wn
T

o
»
o
N
o
»

I
0.01 0.001
False Positive Rate

0.01 0.001 0.001

False Positive Rate

@ (b) (©

Figure 7: Figure|7a|presents performance for different oracle query budgets, with significant return on minimal efforts and dimin-
ishing returns occurring around 80 queries/day. Figure[7b]demonstrates that regular rescans of training data may boost accuracy as

training labels are more accurate. Figuredemonstrates that retraining more quickly improves detector performance.

Featyre Impaclt

Heuristics N '

Processes,
Mutexes|
Packers|
Dynamic Imports| |
Metadata)
Registry|

PE Formatj
Network| |
Signature|

API Calls| |
Static Imports|
Filesystem| ,

0.0 0.5 1.0 1.5 2.0
Relative Importance

T
H Static
[ Dynamic

j

u

|

Figure 8: Feature categories ranked by importance.

from all dates. Because we learn a linear model w and each fea-
ture is O or 1, we can readily present the model as a list of these
features and their associated weights. However, inspecting the
weights vector alone is not enough to understand features im-
portance: a feature can be associated with a large weight but be
essentially constant across the dataset. Intuitively, such features
have low discrimination power. Furthermore, we are interested
in grouping low-level features together into high level concepts
that reflect the original measurements.

Thus, we use the following ranking method for sets of fea-
tures. For a given weight vector w and a given set of instances
{x'};, we can compute the importance of a group S C {1,...,d}
of features by quantifying the amount of score variation /g they
induce. Specifically, we use the following formula for ranking:

Var
X

Y Xka}

keS

Using this ranking method, Figure 8] shows the global rank-
ing of the features when grouped by their original measure-
ments. The most important measurements are thus the file sys-
tem operations, static imports, API call sequence and digital
signature, while the least useful measurement is the heuris-
tic tools. Table [3] shows the most positively and negatively
weighted dimensions of w.

8. Conclusion

w dimension semantic

39 one section has specific hash 78752d. . .

34 one resource has specific hash 049eb4. . .

2.7 signed by Conduit Ltd.

2.7 opens a mutex with pattern Babababbab

2.5 one resource has specific hash 932c6e. . .

25 makes http request with url /img/beginogo. . .

2.4 dynamically loads 1z32 library

24 empty TRID measurement

2.3 call sequence contains subsequence LoadLi-
braryA, OpenMutexW, SetWindowsHookExA

22 signed by PC Utilities Software Limited

-1.8 one section has specific hash 4d3932. . .

-1.8 one resource has specific hash b7f5c1. ..

-1.8 one section has specific hash 2a70e9. . .

-1.9 DNS query for VBOXSVR.ovh.net

-1.9 one resource has specific hash 2b9c54. . .

-1.9 DNS query for vboxsvr.ovh.net

-1.9 signed by Google Inc

2.1 one resource has specific hash a8d9db. . .

2.2 one resource has specific hash 69897c. . .

-39 no packer found by COMMANDUNPACKER

Table 3: Top 20 model dimensions with largest magnitudes.
Negative weights are associated to benign instances, positive
weights to malicious. The pattern of the mutex name is a result
of the string simplification rules presented in Subsection@

In this paper, we explore the power of putting humans in
the loop by integrating a simulated human labeling expert into
a scalable malware detection system. We show it capable of
handling over 1 million samples using a small cluster in hours

while substantially outperforming commercial anti-virus providers

both in terms of malware detection and false positive rates (as
measured using VirusTotal). We explain why machine learn-
ing systems perform very well in research settings and yet fail
to perform reasonably in production settings by demonstrating
the critical temporal factors of labeling, training, and evaluation
that affect evaluation accuracy in real-world settings. We also
provide guidelines for the proper temporal use of labeling dur-
ing training and evaluation and show that the use of statistical
machine learning in malware detection is not just promising,
but can produce high quality, competitive results in a setting



that more closely reflects realistic conditions.

In future, we plan to estimate the cost of an oracle in terms of
time and expertise. Discussions with labeling experts suggest
that binaries can typically be labeled as malicious or benign
by experts in approximately one hour. Our system can signif-
icantly expedite the decision process by strategically choosing
tricky binaries and ranking their attributes. A user study with
malware analysts can help measure the effectiveness of our ap-
proach in reducing human effort. We also plan to investigate
adversarial attacks against our system. An adversary aware of
our query strategy can manipulate binaries either to bypass or
to overwhelm the oracle.

To encourage further exploration of the integration of hu-
mans into systems using machine learning for security, we have
released our machine learning pipeline as open-source and pub-
lished a dataset containing the hashes we used for evaluation
and training along with 3% of all data.
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