
Botnet Judo: Fighting Spam with Itself

Andreas Pitsillidis∗ Kirill Levchenko∗ Christian Kreibich† Chris Kanich∗

Geoffrey M. Voelker∗ Vern Paxson† Nicholas Weaver† Stefan Savage∗

†International Computer Science Institute ∗Dept. of Computer Science and Engineering
Berkeley, USA University of California, San Diego, USA

christian@icir.org {apitsill,klevchen,ckanich}@cs.ucsd.edu
{vern,nweaver}@cs.berkeley.edu {voelker,savage}@cs.ucsd.edu

Abstract

We have traditionally viewed spam from the receiver’s
point of view: mail servers assaulted by a barrage of spam
from which we must pick out a handful of legitimate mes-
sages. In this paper we describe a system for better filtering
spam by exploiting the vantage point of the spammer. By
instantiating and monitoring botnet hosts in a controlled
environment, we are able to monitor new spam as it is cre-
ated, and consequently infer the underlying template used
to generate polymorphic e-mail messages. We demonstrate
this approach on mail traces from a range of modern bot-
nets and show that we can automatically filter such spam
precisely and with virtually no false positives.

1. Introduction

Reactive defenses, in virtually any domain, depend on
the currency of their intelligence. How much do you know
about your opponent’s next move and how quickly can you
act on it? Maximizing the time advantage of such infor-
mation is what drives governments to launch spy satellites
and professional sports teams to employ lip readers. By
the same token, a broad range of competitors, from com-
modities traders to on-line gamers, all seek to exploit small
time advantages to deliver large overall gains. As Benjamin
Franklin famously wrote, “Time is money.”

Today’s spammers operate within this same regime. Re-
ceivers install filters to block spam. Spammers in turn mod-
ify their messages to evade these filters for a time, until the
receiver can react to the change and create a new filter rule
in turn. This pattern, common to spam, anti-virus and in-
trusion detection alike, dictates that the window of vulner-
ability for new spam depends on how quickly it takes the
receiver to adapt.

We advocate shrinking this time window by changing
the vantage point from which we fight spam. In particu-
lar, it is widely documented that all but a small fraction of
today’s spam e-mail is transmitted by just a handful of dis-
tributed botnets [10, 18], and these, in turn, use template-
based macro languages to specify how individual e-mail
messages should be generated [14, 27]. Since these tem-
plates describe precisely the range of polymorphism that a
spam campaign is using at a given point in time, a filter
derived from these templates has the potential to identify
such e-mails perfectly (i.e., never generating false positives
or false negatives).

In this paper we describe Judo, a system that realizes just
such an approach—quickly producing precise mail filters
essentially equivalent the very templates being used to cre-
ate the spam. However, while spam templates can be taken
directly from the underlying botnet “command and control”
channel, this approach can require significant manual ef-
fort to reverse engineer each unique protocol [12, 14]. In-
stead, we use a black-box approach, in which individual bot-
net instances are executed in a controlled environment and
the spam messages they attempt to send are analyzed on-
line. We show that using only this stream of messages we
can quickly and efficiently produce a comprehensive regu-
lar expression that captures all messages generated from a
template while avoiding extraneous matches. For example,
in tests against live botnet spam, we find that by examin-
ing roughly 1,000 samples from a botnet (under a minute
for a single energetic bot, and still less time if multiple bots
are monitored) we can infer precise filters that produce zero
false positives against non-spam mail, while matching virtu-
ally all subsequent spam based on the same template. While
template inference is by no means foolproof (and accord-
ingly we examine the anticipated arms race), we believe
that this approach, like Bayesian filtering, IP blacklisting
and sender reputation systems, offers a significant new tool

for combating spam while being cheap and practical to de-
ploy within existing anti-spam infrastructure.

In particular, we believe our work offers three contri-
butions: First, we produce a general approach for infer-
ring e-mail generation templates in their entirety, subsum-
ing prior work focused on particular features (e.g., mail
header anomalies, subject lines, URLs). Second, we de-
scribe a concrete algorithm that can perform this inference
task in near real-time (only a few seconds to generate an
initial high-quality regular expression, and fractions of a
second to update and refine it in response to subsequent
samples), thereby making this approach feasible for deploy-
ment. Finally, we test this approach empirically against live
botnet spam, demonstrate its effectiveness, and identify the
requirements for practical use.

The remainder of the paper is organized as follows. In
Section 2 we provide background and related work followed
by a description of our model for spam generation in Sec-
tion 3. We describe the Judo system in Section 4 and then
evaluate its effectiveness on live data in Section 5. We dis-
cuss our results and further applications in Section 6 fol-
lowed by our overall conclusions.

2. Background and Related Work

Since the first reported complaint in 1978, unsolicited
bulk e-mail, or spam, has caused untold grief among users,
system administrators, and researchers alike. As spam grew,
so too did anti-spam efforts—today comprising a commer-
cial market with over $1B in annual revenue. In this section
we briefly review existing anti-spam technology and discuss
the botnet work most directly related to this paper.

2.1. Current Anti-spam Approaches

Broadly speaking, anti-spam technologies deployed to-
day fall into two categories: content-based and sender-
based. Content-based approaches are the oldest and perhaps
best known, focusing on filtering unwanted e-mail based
on features of the message body and headers that are either
anomalous (e.g., date is in the future) or consistent with un-
desirable messages (e.g., includes words like Rolex or Via-
gra). Early systems were simple heuristics configured man-
ually, but these evolved into systems based on supervised
learning approaches that use labeled examples of spam and
non-spam to train a classifier using well-known techniques
such as Bayesian inference [22, 25] and Support Vector Ma-
chines [6, 32]. These techniques can be highly effective
(see Cormack and Lynam for an empirical comparison [5])
but are also subject to adversarial chaff and poisoning at-
tacks [8, 17], and require great care to avoid false positives
as spammers become more sophisticated at disguising their
mail as legitimate.

Another class of content-based filtering approaches in-
volves blacklisting the URLs advertised in spam [1, 3, 4,
31]. Because URL signatures are simple and require no
complex training, they are more easily integrated into a
closed-loop system: for example, in one study of spam sent
by the Storm botnet, domains observed in templates were
on average subsequently found on a URL blacklist only 18
minutes afterwards [15]. Unfortunately, URL-based sys-
tems also require comprehensive, up-to-date whitelists to
avoid poisoning. They are also generally rigid in block-
ing all appearances of the URL regardless of context, and,
of course, they do nothing for spam not containing a URL
(e.g., stock schemes, image-based spam, and some types
of phishing). Our system provides a fast, closed-loop re-
sponse, while generating a more selective signature based
on the URL (if present) and text of the spam instances.

Sender-based systems focus on the means by which
spam is delivered. The assumption is that any Internet ad-
dress that sends unsolicited messages is highly likely to re-
peat this act, and unlikely to send legitimate, desired com-
munication. Thus, using a range of spam oracles, ranging
from e-mail honeypots to user complaints, these systems
track the IP addresses of Internet hosts being used to send
spam. Individual mail servers can then validate incoming
e-mail by querying the database (typically via DNS) to see
if the transmitting host is a known spam source [11, 20].
Blacklists dealt very effectively with open e-mail relays
and proxies, and forced spammers to move to botnet-based
spam distribution, in which many thousands of compro-
mised hosts under central control relay or generate spam
on behalf of a single spammer [23]. As the number of hosts
grows, this both reduces blacklist freshness and places scal-
ability burdens on blacklist operators.

A related approach is sender reputation filtering, con-
ceptually related to Internet address blacklisting. These
schemes attempt to provide stronger ties between the nom-
inal and true sender of e-mail messages in order to al-
low records of individual domains’ communications to be
employed to filter spam based on past behavior. Thus,
using authentication systems such as SPF [30] or Do-
mainKeys [16] (or heuristics such as greylisting [9]), a map-
ping can be made between origin e-mail’s domain (e.g.,
foo.com) and the mail servers authorized to send on behalf
of these addresses. Having bound these together, mail re-
ceivers can then track the reputation for each sending do-
main (i.e., how much legitimate mail and how much spam
each sends) and build filtering policies accordingly [28].

In practice, these techniques are used in combination,
with their precise formulation and mixture tuned to new
spam trends and “outbreaks” (e.g., image spam). We view
our system as a new component in this arsenal.

2.2. Spamming Botnets

Since roughly 2004, bot-based spam distribution has
emerged as the platform of choice for large-scale spam
campaigns. Conceptually, spam botnets are quite simple—
the spammer generates spam and then arranges to send it
through thousands of compromised hosts, thereby launder-
ing any singular origin that could be blacklisted. How-
ever, an additional complexity is that spammers also need
to generate content that is sufficiently polymorphic so that
at least some of it will evade existing content filters. To
describe this polymorphism, while ensuring that the un-
derlying “messaging” is consistent, spammers have devel-
oped template-based systems. While original template-
based spam generation from such templates was central-
ized, modern spammers now broadcast templates to individ-
ual bot hosts that in turn generate and send distinct message
instances.

We have previously described the template-based spam-
ming engine of the Storm botnet [14], while Stern analyzed
that of the Srizbi botnet [27] and first observed the oppor-
tunity for filtering techniques that “exploit the regularity of
template-generated messages.” Our work is a practical real-
ization of this insight.

Closest to our own system is the Botlab system of
John et al. [10]. Their system, contemporaneously built,
also executes bots in a virtual machine environment and
extracts the outbound spam e-mail messages. Indeed, our
work builds on their preliminary successes (and their data,
which the authors have also graciously shared), which in-
cluded using exact-matching of witnessed URL strings as
a filter for future botnet spam. Our work is a generaliza-
tion in that we do not assume the existence of any particular
static feature (URL or otherwise), but focus on inferring the
underlying template used by each botnet and from this gen-
erating comprehensive and precise regular expressions.

The system of Göbel et al. [7] uses a similar approach.
Their system generates signatures by analyzing spam mes-
sages collected from compromised hosts as well. However,
the Judo template inference algorithm supports key addi-
tional elements, such as dictionaries, which make it signifi-
cantly more expressive.

The AutoRE system of Xie et al. clusters spam mes-
sages into campaigns using heuristics about how embedded
URLs are obfuscated [31]. This effort has algorithmic sim-
ilarities to our work, as it too generates regular expressions
over spam strings, but focuses on a single feature of spam
e-mail (URLs). By contrast to these efforts, our work is dis-
tinguished both by its generality (for example, generating
signatures for images spam or spam with “tinyurl” links for
which URLs are not discriminatory) and by its design for
on-line real-time use.

3. Template-based Spam

Spam templates are akin to form letters, consisting of
text interspersed with substitution macros that are instanti-
ated differently in each generated message. Unlike form let-
ters, spam templates use macros more aggressively, not only
to personalize each message but also to avoid spam filtering
based on message content. Figure 1 shows a typical tem-
plate from the Storm botnet (circa Feb. 2008) together with
an instance of spam created from the template and a Judo
regular expression signature generated from 1,000 message
instances (Section 4 below describes our algorithm for gen-
erating such signatures). Note that this regular expression
was created by observing the messages sent by the botnet,
and without any prior knowledge of the underlying template
(we show the template for reference only).
Template Elements. We can divide the bulk of macros
used in templates into two types: noise macros that pro-
duce a sequence of random characters from a specified char-
acter alphabet, and dictionary macros that choose a ran-
dom phrase from a list given in a separate “dictionary” in-
cluded with the template. For example, in the Storm tem-
plate shown in Figure 1, the “%ˆP . . . ˆ%” macro gener-
ates a string of a given length using a given set of charac-
ters, while the “%ˆF . . . ˆ%” macro inserts a string from a
list in the specified dictionary. Similar functionality exists
in other template languages (e.g., the rndabc and rndsyn
macros in Reactor Mailer [27]). In general, noise macros
are used to randomize strings for which there are few se-
mantic rules (e.g., message-ids), while dictionary macros
are used for content that must be semantically appropriate in
context (e.g., subject lines, sender e-mail addresses, etc). In
addition to these two classes, there are also special macros
for dates, sender IP addresses, and the like. We deal with
such macros specially (Section 4.2).

Thus, to a first approximation, our model assumes that
a message generated from a template will consist of three
types of strings: invariant text, noise macros producing ran-
dom characters as described above, and dictionary macros
producing a text fragment from a fixed list (the dictionary).
Real-time Filtering. The nature of template systems doc-
umented by our earlier work [14] as well as Stern [27]
suggests that templates can be used to identify—and thus
filter—any mail instances generated from a template. It is
relatively straightforward to convert a Storm template, for
example, into a regular expression by converting macros to
corresponding regular expressions: noise macros become
repeated character classes, and dictionary macros become a
disjunction of the dictionary elements. Such a regular ex-
pression signature will then match all spam generated from
the template. Unfortunately, obtaining these templates re-
quires reverse-engineering the botnet “command and con-
trol” channel—a highly time-consuming task. Instead, our

Received: from %ˆC0%ˆP%ˆR2-6ˆ%:qwertyuiopasdfghjklzxcvbnmˆ%.%ˆP%ˆR2-6ˆ%:qwertyuiopasd .
fghjklzxcvbnmˆ%ˆ% ([%ˆC6%ˆIˆ%.%ˆIˆ%.%ˆIˆ%.%ˆIˆ%ˆ%]) by .
%ˆAˆ% with Microsoft SMTPSVC(%ˆFsvcverˆ%); %ˆDˆ%

Message-ID: <%ˆZˆ%.%ˆR1-9ˆ%0%ˆR0-9ˆ%0%ˆR0-9ˆ%0%ˆR0-9ˆ%@%ˆC1%ˆFdomainsˆ%ˆ%>
Date: %ˆDˆ%
From: <%ˆFnamesˆ%@%ˆV1ˆ%>
User-Agent: Thunderbird %ˆFtrunverˆ%
MIME-Version: 1.0
To: %ˆ0ˆ%
Subject: %ˆFstormlineˆ%
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

%ˆG%ˆFstormlineˆ% http://%ˆFstormlink2ˆ%/ˆ%

Received: from auz.xwzww ([132.233.197.74]) by dsl-189-188-79-63.prod-infinitum.com.mx .
with Microsoft SMTPSVC(5.0.2195.6713); Wed, 6 Feb 2008 16:33:44 -0800

Message-ID: <id012345.99066044044@experimentalist.org>
Date: Wed, 6 Feb 2008 16:33:44 -0800
From: <katiera@experimentalist.org>
User-Agent: Thunderbird 2.0.0.14 (Windows/20080421)
MIME-Version: 1.0
To: victim@spam-target.com
Subject: Get Facebook’s FBI Files
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

FBI may strike Facebook http://GoodNewsGames.com/

From: <.+@.+\..+>
User-Agent: Thunderbird 2\.0\.0\.14 \(Windows/200(80421\)|70728\))
MIME-Version: 1\.0
To: .+@.+\..+
Subject: (Get Facebook’s FBI Files|...|The F\.B\.I\. has a new way of tracking Facebook)
Content-Transfer-Encoding: 7bit

(FBI may strike Facebook|FBI wants instant access to Facebook|...|The F\.B\.I\. .
has a new way of tracking Facebook) http://(GoodNewsGames|...|StockLowNews)\.com/

Figure 1. Fragment of a template from the Storm template corpus, together with a typical instantiation,
and the regular expression produced by the template inference algorithm from 1,000 instances. The
subject line and body were captured as dictionaries (complete dictionaries omitted to save space).
This signature was generated without any prior knowledge of the underlying template.

template inference algorithm, described in the next section,
creates such signatures by observing multiple instances of
the spam from the same template.

Figure 2 shows a diagram of a Judo spam filtering sys-
tem. The system consists of three components: a “bot farm”
running instances of spamming botnets in a contained envi-
ronment; the signature generator; and the spam filter. The
system intercepts all spam sent by bots and provides the

specimens to a signature generator. The signature genera-
tor maintains a set of regular expression signatures for spam
sent by each botnet, updating the set in real time if neces-
sary. We can then immediately disseminate new signatures
to spam filters.

System Assumptions. Our proposed spam filtering sys-
tem operates on a number of assumptions. First and fore-
most, of course, we assume that bots compose spam using a

Figure 2. Automatic template inference
makes it possible to deploy template signa-
tures as soon as they appear “in the wild:”
bots (¶) running in a contained environment
generate spam processed by the Judo system
(·); signatures (¸) are generated in real time
and disseminated to mail filtering appliances
(¹).

template system as described above. We also rely on spam
campaigns employing a small number of templates at any
point in time. Thus, we can use templates inferred from one
or a few bot instances to produce filters effective at match-
ing the spam being sent by all other bot instances. This as-
sumption appears to hold for the Storm botnet [15]; in Sec-
tion 5.3 we empirically validate this assumption for other
botnets. Finally, as a simplification, our system assumes
that the first few messages of a new template do not ap-
pear intermixed with messages from other new templates.
Since we infer template content from spam output, rather
than extracting it directly from botnet command and con-
trol messages, interleaved messages from several new tem-
plates will cause us to infer an amalgamated template—the
product of multiple templates—which is consequently less
precise than ideal. This assumption could be relaxed by
more sophisticated spam pre-clustering, but we do not ex-
plore doing so in this paper.

4. The Signature Generator

In this section we describe the Judo system, which pro-
cesses spam generated by bots and produces regular expres-
sion signatures. The system operates in real time, updating
the set of signatures immediately in response to new mes-
sages. We begin with a description of the template infer-
ence algorithm—the heart of Judo—which, given a set of
messages, generates a matching regular expression signa-
ture. We then describe how we incorporate domain knowl-
edge, such as the header-body structure of e-mail messages,
into the basic algorithm. Finally, we show how we use the
template inference algorithm to maintain a set of signatures

matching all messages seen up to a given point in time.

4.1. Template Inference

The template inference algorithm produces a regular ex-
pression signature from a set of messages assumed to be
generated from the same spam template. As described in
Section 3, a template consists of invariant text and macros
of two types: noise macros which generate a sequence of
random characters, and dictionary macros which choose a
phrase at random from a list (the dictionary). Proceeding
from this model, the algorithm identifies these elements in
the text of the input messages, and then generates a match-
ing regular expression. Throughout this section, we use the
simple example in Figure 3 to illustrate the steps of our al-
gorithm.

4.1.1. Anchors

The first step of the algorithm is to identify invariant text
in a template, that is, fragments of text that appear in every
message. We call such fragments anchors (because they
“anchor” macro-generated portions of a message). Invari-
ant text like “Best prices!” and “http://” in Figure 3 are
examples of anchors.

We start by extracting the longest ordered set of sub-
strings having length at least q that are common to every
message. Parameter q determines the minimum length of
an anchor. Setting q = 1 would simply produce the longest
common subsequence of the input messages, which, in ad-
dition to the anchors, would contain common characters,
such as spaces, which do not serve as useful anchors. Large
minimum anchor lengths, on the other hand, may exclude
some useful short anchors. In our experiments with a vari-
ety of spamming botnets, we found that q = 6 produces
good results, with slightly smaller or larger values also
working well.

We note that finding this ordered set of substrings is
equivalent to computing the longest common subsequence
(LCS) over the q-gram sequence of the input, i.e., the se-
quence of substrings obtained by sliding a length-q window
over each message. Unfortunately, the classic dynamic pro-
gramming LCS algorithm is quadratic in the length of its
inputs.

As an optimization we first identify all substrings of
length at least q that are common to all input messages
(using a suffix tree constructed for these messages). We
then find longest common subsequence of substrings (i.e.,
treating each substring as a single “character”) using the
classic dynamic programming algorithm. Typical messages
thus collapse from several thousand bytes to fewer than ten
common substrings, resulting in essentially linear-time in-
put processing.

Figure 3. Template inference algorithm example showing excerpts from template-based spam mes-
sages, the invariant text and macros inferred from the spam, and the resulting regular expression
signature.

4.1.2. Macros

Following anchor identification, the next step is to clas-
sify the variant text found between anchors. In the sim-
plest case this text corresponds to a single macro, but it may
also be the back-to-back concatenation of several macros.
In general, our algorithm does not distinguish between a
single macro and the concatenation of two or more macros,
unless the macros are joined by “special” characters — non-
alphanumeric printing characters such as “@” and punctu-
ation. We call these special characters micro-anchors and
treat them as normal anchors. Our next step, then, is to de-
cide whether text between a pair of anchors is a dictionary
macro, a noise macro, or a micro-anchor expression, itself
consisting of a combination of dictionary and noise macros
separated by micro-anchor characters.
Dictionary Macros. In a template, a dictionary macro is
instantiated by choosing a random string from a list. In Fig-
ure 3, for instance, the brand names “gucci”, “prada”, and
“chanel” would be generated using such a macro. Given
a set of strings found between a pair of anchors, we start
by determining whether we should represent these instances
using a dictionary macro or a noise macro. Formally speak-
ing, every macro can be represented as a dictionary, in the
sense that it is a set of strings. However, if we have not seen
every possible instance of a dictionary, a dictionary repre-
sentation will be necessarily incomplete, leading to false
positives. Thus we would like to determine whether what
we have observed is the entirety of a dictionary or not. We
formulate the problem as a hypothesis test: the null hypoth-
esis is that there is an unobserved dictionary element. We
take the probability of such an unobserved element to be
at least the empirical probability of the least-frequent ob-
served element. Formally, let n be the number of distinct

strings in m samples, and let fn be the empirical probabil-
ity of the least-frequent element (i.e., the number of times
it occurs in the sample, divided by m). Then the probabil-
ity of observing fewer than n distinct strings in m samples
drawn from a dictionary containing n + 1 elements is at
most (1−fn/(1+fn))m. For the brand strings in Figure 3,
this value is at most (1 − 0.25/1.25)4 ≈ 0.41. In practice,
we use a 99% confidence threshold; for the sake of exam-
ple, however, we will assume the confidence threshold is
much lower. If the dictionary representation is chosen, we
group the distinct strings α1, . . . , αn into a disjunction reg-
ular expression (α1| . . .|αn) to match the variant text.
Otherwise, we check whether it might be a micro-anchor
expression.
Micro-Anchors. A micro-anchor is a substring that con-
sists of non-alphanumeric printing characters too short to
be a full anchor. Intuitively, such strings are more likely
to delimit macros than ordinary alphanumeric characters,
and are thus allowed to be much shorter than the minimum
anchor length q. We again use the LCS algorithm to iden-
tify micro-anchors, but allow only non-alphanumeric print-
ing characters to match. In Figure 3, the domain names
in the URLs are split into smaller substrings around the “.”
micro-anchor. Once micro-anchors partition the text, the al-
gorithm performs the dictionary test on each set of strings
delimited by the micro-anchors. Failing this, we represent
these strings as a noise macro.
Noise Macros. If a set of strings between a pair of an-
chors or micro-anchors fails the dictionary test, we consider
those strings to be generated by a noise macro (a macro that
generates random characters from some character set). In
Figure 3, the host names in the URLs fail the dictionary test
and are treated as a noise macro. The algorithm chooses the
smallest character set that matches the data from the set of

POSIX character classes [:alnum:], [:alpha:], etc.,
or a combination thereof. If all strings have the same length,
the character class expression repeats as many times as the
length of the string, i.e., the regular expression matches on
both character class and length. Otherwise, we allow arbi-
trary repetition using the “∗” or “+” operators.1

When generating each signature, we also add the con-
straint that it must contain at least one anchor or dictionary
node. If this constraint is violated, we consider the signature
as unsafe and discard it.

4.2. Leveraging Domain Knowledge

As designed, the template inference algorithm works on
arbitrary text. By exploiting the structure and semantics of
e-mail messages, however, we can “condition” the input to
greatly improve the performance of the algorithm. We do
two kinds of “conditioning,” as described next.
Header Filtering. The most important pre-processing
element of the Judo system concerns headers. We ig-
nore all but the following headers: “MIME-Version,”
“Mail-Followup-To,” “Mail-Reply-To,” “User-Agent,” “X-
MSMail-Priority,” “X-Priority,” “References,” “Language,”
“Content-Language,” “Content-Transfer-Encoding,” and
“Subject.” We specifically exclude headers typically added
by a mail transfer agent. This is to avoid including ele-
ments of the spam collection environment, such as the IP
address of the mail server, in signatures. We also exclude
“To” and “From” headers; if the botnet uses a list of e-mail
addresses in alphabetical order to instantiate the “To” and
“From” headers, portions of the e-mail address may be in-
correctly identified as anchors.

The resulting headers are then processed individually by
running the template inference algorithm on each header
separately. A message must match all headers for a sig-
nature to be considered a match.
Special Tokens. In addition to dictionary and noise
macros, bots use a small class of macros for non-random
variable text. These macros generate dates, IP addresses,
and the like. If the output of a date macro, for example,
were run through the template inference algorithm, it would
infer that the year, month, day, and possibly hour are an-
chors, and the minutes and seconds are macros. The re-
sulting signature would, in effect, “expire” shortly after it
was generated. To cope with this class of macros, we per-
form the following pre- and post-processing steps. On in-
put, we replace certain well-known tokens (currently: dates,
IP addresses, and multi-part message delimiters) with spe-
cial fixed strings that the template inference algorithm treats
as anchors. After the algorithm produces a regular expres-
sion signature, it replaces these fixed strings with regular

1We also experimented with the alternative of allowing a range of
lengths, but found such an approach too restrictive in practice.

expressions that capture all instances of the macro.

4.3. Signature Update

The Judo system processes e-mail messages generated
by a botnet, creating a set of signatures that match those
messages. The need for a signature set, rather than a single
signature, arises because several templates may be in use at
the same time. Recall that the template inference algorithm
relies heavily on anchors (common text) to locate macros. If
the template inference algorithm were given messages gen-
erated from different templates, only strings common to all
templates would be identified as anchors, leading the algo-
rithm to produce a signature that is too general. Ideally,
then, we would like to maintain one signature per template.

Unfortunately, because we do not know which template
was used to generate a given message, we cannot simply
group messages by template and apply the template infer-
ence algorithm separately to each. The situation is not as
dire as it seems, however. If we already have a good sig-
nature for a template, we can, by definition, easily identify
messages generated by the template. Thus, if new templates
are deployed incrementally, we can use the template infer-
ence algorithm only on those messages which do not al-
ready match an existing signature.

On receiving a new message, the algorithm first checks
if the message matches any of its existing signatures for the
botnet in question. If it does, it ignores the message, as
there is already a signature for it. Otherwise, it places the
message into a training buffer. When the training buffer
fills up, it sends the message to the template inference algo-
rithm to produce a new signature. The size of the training
buffer is controlled by a parameter k, which determines the
trade-off between signature selectivity and training time. If
the training buffer is too small, some dictionaries may be
incomplete—the template inference algorithm will emit a
noise macro instead. On the other hand, a very large train-
ing buffer means waiting longer for a usable signature. A
very large training buffer increases the chances of mixing
messages from two different templates, decreasing signa-
ture accuracy. Thus we would like to use a training buffer
as small as necessary to generate good signatures.

In experimenting with the signature generator, we found
that no single value of k gave satisfactory results. The
Storm botnet, for example, tended to use large dictionaries
requiring many message instances to classify, while in the
extreme case of a completely invariant template (containing
no macros), signature generation would be delayed unnec-
essarily, even though the first few messages are sufficient to
produce a perfect signature. We developed two additional
mechanisms to handle such extreme cases more gracefully:
the second chance mechanism and pre-clustering.
Second Chance Mechanism. In many cases, a good sig-

71

42

bluedoes.com

.3

Figure 4. The second chance mechanism allows the updating of signatures: when a new message
fails to match an existing signature (¶), it is checked again only against the anchor nodes (·); if a
match is found, the signature is updated accordingly (¸).

nature can be produced from a small number of messages,
even though many more are required to fully capture dictio-
naries. Furthermore, the dictionary statistical test is rather
conservative (to avoid false negatives). To combine the ad-
vantage of fast signature deployment with the eventual ben-
efits of dictionaries, we developed a “second chance” mech-
anism allowing a signature to be updated after it has been
produced. When a new message fails to match an existing
signature, we check if it would match any existing signa-
tures consisting of anchors only. Such anchor signatures
are simply ordinary regular expression signatures (called
full signatures) with the macro-based portions replaced by
the “.∗” regular expression. If the match succeeds, the mes-
sage is added to the training buffer of the signature and the
signature is updated. This update is performed incremen-
tally without needing to rerun a new instance of the infer-
ence algorithm.
Pre-Clustering. Whereas the second chance mechanism
helps mitigate the effects of a small training buffer, pre-
clustering helps mitigate the effects of a large training
buffer. Specifically, a large training buffer may intermix
messages from different templates, resulting in an amalga-
mated signature. With pre-clustering, unclassified messages
are clustered using skeleton signatures. A skeleton signa-
ture is akin to an anchor signature used in the second chance
mechanism, but is built with a larger minimum anchor size
q, and as such is more permissive. In our experiments, we
set q = 6 for anchor signatures and q = 14 for skeleton sig-
natures. Further evaluation indicated that slight variations
of these values only have a minimal impact on the overall
performance.

The pre-clustering mechanism works as follows. Each
skeleton signature has an associated training buffer. When
a message fails to match a full signature or an anchor sig-
nature (per the second chance mechanism), we attempt to
assign it to a training buffer using a skeleton signature.
Failing that, it is added to the unclassified message buffer.
When this buffer has sufficient samples (we use 10), we
generate a skeleton regular expression from them and as-
sign them to the skeleton’s training buffer. When a training
buffer reaches k messages (k = 100 works well), a full sig-
nature is generated. The signature and its training buffer
are moved to the signature set, and the signature is ready

for use in a production anti-spam appliance. In effect, the
pre-clustering mechanism mirrors the basic signature up-
date procedure (with skeleton signatures instead of full and
anchor signatures).

As noted in Section 3, our system does not currently sup-
port a complete mechanism for pre-clustering messages into
different campaigns. Instead, our current mechanism relies
on the earlier assumption that the first few messages of a
new template do not appear intermixed with messages from
other new templates—hence our decision to group together
every 10 new unclassified messages and treat them as a new
cluster. Note that it is perfectly acceptable if these first 10
messages from a new template are interleaved with the mes-
sages of a template for which we already have generated a
signature. In this case, the messages of the latter will be fil-
tered out using the existing regular expression, and only the
messages of the former will enter the unclassified message
buffer. From our experience, this choice has provided us
with very good results, although a more sophisticated clus-
tering method could be a possible future direction.

4.4. Execution Time

Currently the execution time of the template inference
algorithm observed empirically is linear in the size of the in-
put. Based on our experience, the length of messages gener-
ated by different botnets varies significantly. The largest av-
erage length we have observed among all botnets was close
to 6,000 characters. The selected training buffer size k (in-
troduced in Section 4.3), along with the average length of
e-mails, determine the total size of the input. Under this
worst-case scenario, the algorithm requires 2 seconds for
k = 50 and 10 seconds for k = 500, on a modest desktop
system. Signature updates execute much faster, as they are
performed incrementally. The execution time in this case
depends on a wide range of factors, but an average estimate
is between 50 − 100 ms. The focus of our implementation
has always been accuracy rather than execution time, thus
we expect several optimizations to be possible.

Corpus Messages

SpamAssassin 2003 [19] 4,150
TREC 2007[29] (non-spam only) 25,220
lists.gnu.org [2] (20 active lists) 479,413
Enron [13] 517,431

Table 1. Legitimate mail corpora used to as-
sess signature safety throughout the evalua-
tion.

5. Evaluation

The principal requirements of a spam filtering system are
that it should be both safe and effective, meaning that it does
not classify legitimate mail as spam, and it correctly recog-
nizes the targeted class of spam. Our goal is to experimen-
tally demonstrate that Judo is indeed safe and effective for
filtering botnet-originated spam.

Our evaluation consists of three sets of experiments. In
the first, we establish the effectiveness of the template infer-
ence algorithm on spam generated synthetically from actual
templates used by the Storm botnet. Next, we run the Judo
system on actual spam sent by four different bots, measur-
ing its effectiveness against spam generated by the same
bot. In our last set of experiments, we execute a real deploy-
ment scenario, training and testing on different instances of
the same bot. In all cases, Judo was able to generate effec-
tive signatures.

In each set of experiments, we also assess the safety of
the Judo system. Because Judo signatures are so specific,
they are, by design, extremely safe; signatures generated in
most of our experiments generated no false positives. We
start by describing our methodology for evaluating signa-
ture safety.

5.1. Signature Safety Testing Methodology

By their nature, Judo signatures are highly specific, tar-
geting a single observed campaign. As such, we expect
them to be extremely safe: Judo signatures should never
match legitimate mail. We consider this to be Judo’s most
compelling feature.

The accepted metric for safety is the false positive rate
of a signature with respect to a corpus of legitimate (non-
spam) mail, i.e., the proportion of legitimate messages in-
correctly identified as spam. Throughout the evaluation we
report the false positive rate of the generated signatures;
Section 5.5 presents a more detailed analysis.
Corpora. We used four corpora of legitimate mail, to-
gether totaling over a million messages, summarized in
Table 1: the SpamAssassin “ham” corpus dated February
2003 [19], the 2007 TREC Public Spam Corpus restricted

to messages labelled non-spam [29], 20 active mailing lists
from lists.gnu.org spanning August 2000 to April 2009 [2],
and the Enron corpus [13].
Age bias. Recall that Judo signatures consist of regular
expressions for a message’s header as well as the body. To
avoid potential age bias, we tested our signatures with all
but the subject and body regular expressions removed. This
is to safeguard against age-sensitive headers like “User-
Agent” causing matches to fail on the older corpora. It is
worth noting that using only subject and body is a signifi-
cant handicap because the remaining headers can act as ad-
ditional highly discriminating features.

5.2. Single Template Inference

The template inference algorithm is the heart of the
Judo system. We begin by evaluating this component in
a straightforward experiment, running the template infer-
ence algorithm directly on training sets generated from sin-
gle templates. By varying the size of the training set, we
can empirically determine how much spam is necessary to
achieve a desired level of signature effectiveness. Our met-
ric of effectiveness is the false negative rate with respect
to instances of spam generated from the same template. In
other words, the false negative rate is the proportion of spam
test messages that do not match the signature. Because the
template is known, we can also (informally) compare it with
the generated signature. Figure 1 from Section 3 shows an
example.

5.2.1. Methodology

We generated spam from real templates and dictionar-
ies, collected during our 2008 study of Storm botnet cam-
paign orchestration [15]. The templates covered three
campaigns: a self-propagation campaign from August 1–
2, 2008 (4,210 templates, 1,018 unique), a pharmaceuti-
cal campaign from the same time period (4,994 templates,
1,271 unique), and several low-priced stock campaigns be-
tween June and August 2008 (1,472 templates, all unique).
Each one of these templates had its own unique set of dic-
tionary files. Both the self-propagation and pharmaceutical
templates contained URLs; the stock campaign templates
did not.2

For convenience, we generated Storm spam directly
from these templates (rather than having to operate actual
Storm bots) by implementing a Storm template instantiation
tool based on our earlier reverse-engineering work on this
botnet [14]. For each of the 10,676 templates, we generated

2Although less common in terms of Storm’s overall spam volume [15],
we included non-URL spam to determine how much of our system’s effec-
tiveness stems from learning the domains of URLs appearing in the spam,
compared to other features.

False Negative Rate

k 95% 99% Max Avg

1000 0% 0% 0% 0%
500 0% 0% 2.53% <0.01%
100 0% 0% 0% 0%
50 0% 0% 19.15% 0.06%
10 45.45% 58.77% 81.03% 14.16%

(a) Self-propagation and pharmaceutical spam.

False Negative Rate

k s 95% 99% Max Avg

1000 99.8% 0% 0.22% 100% 0.21%
500 81.8% 100% 100% 100% 18.21%
100 55.0% 100% 100% 100% 45.04%
50 42.9% 100% 100% 100% 57.25%
10 40.9% 100% 100% 100% 62.13%

(b) Stock spam.

Table 2. False negative rates for spam generated from Storm templates as a function of the training
buffer size k. Rows report statistics over templates. The stock spam table also shows the number of
templates s for which a signature was generated (for self-propagation and pharmaceutical templates,
a signature was generated for every template); in cases where a signature was not generated, every
instance in the test set was counted as a false negative. At k = 1000, the false positive rate for all
signatures was zero.

1,000 training instances and an additional 4,000 instances
for testing.

We ran the template inference algorithm on the 1,000
training messages and assessed the false negative rate of the
resulting signature using the 4,000-message test set.3 To
better understand the performance of the Judo system, we
then pushed it to the “breaking point” by using smaller and
smaller training sets to generate a signature. We use k to
denote the training set size.

5.2.2. Results

As expected, the template inference algorithm generated
effective signatures. Both self-propagation and pharmaceu-
tical campaigns were captured perfectly, with no false neg-
atives. For the stock campaign, 99% of the templates had a
false negative rate of 0.22% or lower.

Table 2 also shows Judo’s performance as we decrease
the number of training instances k. In effect, k is a mea-
sure of how “hard” a template is. We separate results for
templates with URLs (self-propagation and pharmaceuti-
cal) and without (stock) to establish that our algorithm is
effective for both types of spam. Rows correspond to dif-
ferent numbers of training messages, and columns to sum-
mary statistics of the range of the false negative rates. For
example, when training a regular expression on just k = 10

3We choose 1,000 as the training set size in part because Storm gen-
erated roughly 1,000 messages for each requested work unit. We note
that 1,000 messages represents a very small training set compared with
the amount of spam generated by bots from a given template: in our 2008
study of spam conversion rates [12] we observed almost 350 million spam
messages for one spam campaign generated from just 9 templates. Thus,
we can generate potent signatures nearly immediately after a new template
is deployed, and use that signature for the duration of a large spam cam-
paign.

messages from a URL-based campaign template, the sig-
nature yielded a false negative rate of 45.45% or less on
95% of such templates, and a false negative rate of 81.03%
for the template that produced the worst false negative rate.
Such high false negative rates are not surprising given just
10 training instances; with just 50 training messages, it ex-
hibits no false negatives for 99% of such Storm templates.4

Column s in Table 2b also shows the number of tem-
plates for which a signature was generated (all templates
resulted in a signature for self-propagation and pharmaceu-
tical spam). Recall from Section 4 that we discard a signa-
ture if it is found to be unsafe. This was the only case in
our evaluation where this occurred. For such templates for
which we do not generate a signature, we calculate a 100%
false negative rate. For this test, our input was stock tem-
plates which did not contain URLs. These messages were
also very short and consisted entirely of large dictionaries:
characteristics that make messages particularly difficult to
characterize automatically from a small number of samples.

Signatures from the self-propagation and pharmaceutical
templates produced no false positives in three of the four
legitimate mail corpora, regardless of the value of k. For the
stock templates, the result was again zero for k = 1000. We
present a detailed breakdown of these results in Section 5.5.

4One peculiarity in Table 2a merits discussion: the 2.53% maximum
false negative rate for k = 500 arises due to a single template out of the
9,204 total; every other template had a false negative rate of 0%. For this
template, when transitioning from k = 100 to k = 500 training samples
the algorithm converted the “Subject” header from a character class to a
dictionary. The mismatches all come about from a single dictionary entry
missing from the signature because it did not appear in the 500 training
messages.

Cumulative False Negative Rate

Botnet
H

HHHHk
d

0 50 100 500 Sigs

Mega-D 50 0.11% 0.09% 0.07% 0.05% 5
100 0.16% 0.13% 0.12% 0.08% 5
500 0.54% 0.52% 0.50% 0.34% 5

Pushdo 50 0.17% 0.13% 0.10% 0.05% 8
100 0.23% 0.20% 0.17% 0.08% 6
500 0.72% 0.69% 0.66% 0.45% 6

Rustock 50 0.19% 0.12% 0.06% 0.05% 9
100 0.28% 0.22% 0.15% 0.08% 9
500 1.01% 0.95% 0.88% 0.40% 9

Srizbi 50 0.22% 0.11% 0% 0% 11
100 0.33% 0.22% 0.11% 0% 11
500 1.21% 1.10% 1.05% 0.79% 11

Table 3. Cumulative false negative rate as a function of training buffer size k and classification delay
d for spam generated by a single bot instance. The “Sigs” column shows the number of signatures
generated during the experiment (500,000 training and 500,000 testing messages). All signatures
produced zero false positives with the only exception being the signatures for Rustock.

5.3. Multiple Template Inference

In the previous section we examined the case of spam
generated using a single template. In practice, a bot may
be switching between multiple templates without any indi-
cation. In this part of the evaluation we test the algorithm
on a “live” stream of messages generated by a single bot,
classifying each message as it is produced.

5.3.1. Methodology

Our spam corpus consists of bot-generated spam col-
lected by the Botlab [10] project from the University of
Washington. One instance each of the Mega-D, Pushdo,
Rustock, and Srizbi bots was executed and their output col-
lected. We split the first 1 million messages from each bot
into a training and testing set by sequentially assigning mes-
sages to each set in alternation. The Judo system was then
used to create signatures from the training data. In paral-
lel with running the Judo system, we processed the testing
corpus in chronological order, classifying each message us-
ing signatures generated up to that point. In other words,
we consider a test message matched (a true positive) if it
matches some signature generated chronologically before
the test message; otherwise we count it as a false negative.
Our measure of effectiveness is the false negative rate over
the testing message set.

It is important to note that in practice one could em-
ploy some delay when matching messages against the fil-

ters: either holding up messages for a short period to wait
for the generation of updated filters, or by retroactively test-
ing messages already accepted, but not yet presented to the
receiving user, against any filter updates. To simulate such
a scenario, we buffered testing messages in a classification
buffer, allowing us to delay classification. We denote the
length of the classification buffer by d. The case d = 0 cor-
responds to no message buffering; in other words, messages
must be classified immediately upon being received. We
also evaluated signature performance with the classification
delay d set to 50, 100 and 500. In a real-world deployment,
we can think of this buffer as a very short delay introduced
by e-mail providers before delivering incoming e-mails to
inboxes.

5.3.2. Results

Our results confirm the effectiveness of the Judo system
in this “live” setting as well. Table 3 shows the cumulative
results for each combination of k and d, as well as the num-
ber of signatures generated for each botnet during the exper-
iment. Two trends are evident. First, the false negative rate
decreases as the classification delay d increases. This is not
surprising, since the delay gives Judo time to build a signa-
ture. The second trend, an increasing false negative rate as
k increases, may seem counterintuitive because in our pre-
vious experiment, increasing k led to a decrease in the false
negative rate. This increase occurs because all spam in the
testing set generated before Judo produces the signature is

(a) Mega-D (b) Rustock

(c) Pushdo (d) Srizbi

Figure 5. Classification effectiveness on Mega-D, Rustock, Pushdo, and Srizbi spam generated by a
single bot, as a function of the testing message sequence. Experiment parameters: k = 100, d = 0
(that is, 100 training messages to generate each new signature, and immediate classification of test
messages rather than post facto).

counted as a false negative. Classification delay helps, but
even with d = 500, a new signature is not produced until
we collect 500 messages that match no other signature.
Dynamic Behavior. We can better understand Judo by
looking at its dynamic behavior. Figure 5 shows the av-
erage and cumulative false negative rate as a function of
the testing messages. Dashed vertical lines indicate when
Judo generated a new signature. Looking at the Mega-D
plot (Figure 5a), we see that Judo is generating signatures
during the first 20,000 messages in the testing set. After the
initial flurry of signature generation, the false negative rate
hovers just under 0.5%. After 100,000 testing messages, the
false negative rate drops to nearly zero as the signatures are
refined.

There are also two interesting observations here. First,
peaks sometimes disappear from the graphs without the cre-
ation of a new signature. Normally we would expect that
mismatches would be eliminated by inferring a new, previ-
ously missed underlying template. The effect in question

here, though, is a result of using the second chance mecha-
nism. For example, missing entries from a dictionary node
can cause some false negative hits to occur until eventually
the signature gets updated. This is done incrementally with-
out the need to deploy a new signature, hence the absence of
a dashed vertical line in the graph. The second observation
is similar and relates to the creation of new signatures with-
out any peaks appearing in the graph indicating the need for
performing such an action. In this case, we need to remem-
ber that the training and testing track operate independently
of each other. Thus it is sometimes the case that the train-
ing track observes a new template slightly before the testing
track, and of course immediately generates a new signature.
In this way, false negative hits are eliminated since the sig-
nature is already available for use when messages from the
new template appear on the testing track.

We also observe that Pushdo exhibits different behav-
ior in terms of the number of generated signatures. One
would expect that the number of such signatures should be

Bots Training Testing

Xarvester 184,948 178,944
Mega-D 174,772 171,877
Gheg 48,415 207,207
Rustock 252,474 680,000

Table 4. Number of training and testing mes-
sages used in the real-world deployment ex-
periment.

the same regardless of the parameters used. Although this
holds for the other botnets, it does not for Pushdo due to the
dictionary statistical test. Recall from Section 4 that we de-
clare something as a dictionary only if Judo believes that it
has seen every entry of it. This decision is based on the oc-
currences of the least-frequently observed element in the set
under question. Hence, in the cases where we observe the
same elements repeated over an extended number of mes-
sages, we can sometimes mis-conclude that we have seen
the dictionary in its entirety. The use of a high threshold
ensures that we keep such cases to a minimum. While pro-
cessing Pushdo, the algorithm mistakenly classified a node
as a dictionary before capturing all of its entries. As a re-
sult, Judo eventually generated multiple regular expressions
for the same underlying template, with each one including
a different subset of the underlying dictionaries.

5.4. Real-world Deployment

The previous experiments tested regular expressions pro-
duced by the template inference system against spam pro-
duced by a single bot instance. Doing so illuminates how
quickly and how well the system learns a new template, but
does not fully match how we would operationally deploy
such filtering. We finish our evaluation with an assessment
using multiple bot instances, one to generate the training
data and the others to generate the test data. This configura-
tion tells us the degree to which signatures built using one
bot’s spam are useful in filtering spam from multiple other
instances. It also tests to a certain degree our assumption
regarding the small number of templates actively used by
botnets.

5.4.1. Methodology

We ran two instances of Xarvester and two of Mega-D
in a contained environment akin to Botlab [10]. One of the
bots was arbitrarily selected to provide the training corpus
and the other the testing corpus. We also ran four instances
of Rustock and six instances of Gheg. In a similar man-
ner, one of the bots was arbitrarily selected to provide the
training message set, and the remaining bots, combined, the
testing set. Table 4 shows the number of messages gener-
ated by each bot.

As in the previous experiment, we “played back” both
message streams chronologically, using the training data to
generate a set of signatures incrementally as described in
Section 4.3. Again, our metric of effectiveness is the false
negative rate on the testing set. To maintain the accuracy
of the results we preserved the chronological order of mes-
sages in the testing track. This ordering was a consideration
for both Rustock and Gheg where we merged the output of
multiple bots, as described earlier.

5.4.2. Results

Our results show Judo performed extremely well in this
experiment, achieving false negative rates under 1% in most
cases and generating no false positives. Table 5 shows the
cumulative results for each combination of k and d, as well
as the number of signatures generated for each botnet dur-
ing the experiment. Although in all cases the training track
was selected arbitrarily, in the case of Gheg we executed the
experiment six times. Each time we used a different bot as
the training track and the results show the worst false nega-
tive rate over these six choices.

Figure 6 shows the dynamic behavior of the Xarvester
and Rustock bots in this experiment. Despite the fact of now
using independent bots as the training and testing tracks,
we see that the behavior is quite similar to the previous ex-
periment, where only one bot was used. However, we ob-
serve slightly higher false negative rates in the cases where
the training track consists of multiple bots. The reason for
this higher rate is that the bots are not completely “synchro-
nized”, i.e., they do not switch to a new template or dictio-
nary at the exact same time. What is important to note is
that in all cases, even after a slight delay, such a switch does
indeed occur across all hosts. Gheg exhibited similar behav-
ior when we ran six different instances of the botnet. Recall
that for our evaluation, we run the experiment six times and
evaluated each one of the bots as being the provider of the
training set. Even when taking into consideration the results
from the worst run, as presented in Table 5, we can still see
that monitoring just a single bot suffices for capturing the
output of multiple other spamming hosts. Ultimately, the
only reason for the differences in these executions was the
precise ordering of the messages, and how early Judo was
able to deploy a new signature each time. Our real-world
experience verifies to a certain extent our original assump-
tion that spam campaigns use only a small number of tem-
plates at any point in time in current practice. Of course,
spammers could modify their behavior in response; we dis-
cuss this issue further in Section 6.

5.5 False Positives

One of the most important features of Judo is the un-
usual safety that the generated signatures offer. When deal-

Cumulative False Negative Rate

Botnet
H

HHHHk
d

0 50 100 500 Sig

Xarvester 50 0.07% 0.04% 0.02% 0% 6
100 0.13% 0.06% 0.03% 0% 6
500 1.00% 0.89% 0.78% 0.02% 6

Mega-D 50 0.09% 0.06% 0.03% 0% 1
100 0.13% 0.10% 0.07% 0% 1
500 0.92% 0.90% 0.87% 0.64% 1

Gheg 50 0.88% 0.86% 0.84% 0.64% 3
100 1.13% 1.11% 1.08% 0.89% 3
500 3.56% 3.54% 3.51% 3.33% 3

Rustock 50 0.99% 0.97% 0.95% 0.75% 6
100 1.03% 1.01% 0.98% 0.78% 6
500 1.49% 1.47% 1.44% 1.20% 6

Table 5. Cumulative false negative rate as a function of training buffer size k and classification delay
d for spam generated by a multiple bot instances, one generating the training spam and the others the
testing spam. The “Sig” column shows the number of signatures generated during the experiment.
Signatures generated in this experiment produced no false positives on our corpora.

(a) Xarvester (b) Rustock

Figure 6. Classification effectiveness on Xarvester and Rustock spam with multiple bots: one bot
was used to generate training data for the Judo system and the remaining bots to generate the
testing data (1 other for Xarvester, 3 others for Rustock). Experiment parameters: k = 100, d = 0
(that is, 100 training messages to generate each new signature, and immediate classification of test
messages rather than post facto).

ing with spam filtering, the biggest concern has always been
falsely identifying legitimate messages as spam. Messages
that fall under this category are known as false positives.
In this section, we try to verify our claims and validate the
safety of the signatures.

There are two main factors that affect the false positive
rate of our system. The first is the fact that the generated
signatures include information for both the headers and the

body of the messages. In contrast to more naive methods
of simply using URLs or subject lines for identifying spam
e-mails, we use the additional information for minimizing
the possibility of accidental matches. For the purpose of
the current evaluation though, every header besides “Sub-
ject” was removed from the signatures. We made this choice
for two reasons. First, we want to examine the system un-
der a worst-case scenario, since it is straightforward to see

that the presence of additional headers can only improve
our false positive rates. Second, we want to remove any
possible temporal bias that would pollute our results. Such
bias might be the result of age-sensitive headers like “User
Agent”.

The second factor which contributes to the system’s
strong false positive results is the existence of anchor and
dictionary nodes. Recall that dictionary nodes are only cre-
ated when Judo estimates that it has observed every single
dictionary entry. As described in Section 4, these nodes im-
pose strong limitations as to what messages a signature can
match. Hence we add the constraint that all final signatures
must contain at least one anchor or dictionary node. If this
constraint is violated, we consider the signature unsafe and
discard it. Although this heuristic can potentially hinder the
false negative rates, it also makes sure that false positives
remain very small. We confirmed that all signatures used in
our evaluation were safe. There was only one case where
it became necessary to discard signatures, as described in
Section 5.2.

We first look at the Storm templates. Based on our
dataset description in Section 5.2, we split this analysis into
URL and non-URL (stock) templates. For the former cat-
egory, which included signatures from the self-propagation
and pharmaceutical templates, we had no false positives in
three of the four legitimate mail corpora. In the lists.gnu.org
corpus, signatures produced from 100 or fewer training
messages resulted in a false positive rate of 1 in 50,000.
This rate arose from a small number of cases in which dic-
tionaries were not constructed until k = 500. For the re-
maining values of k the result was again zero matches.

Storm templates that did not contain a URL proved to
be a harder workload for our system, and the only scenario
where unsafe signatures were generated and discarded. Al-
though URLs are not a requirement for producing good sig-
natures, the problem was amplified in this case due to the
very small length of messages generated by the Storm bot-
net. Hence it is sometimes the case that the system cannot
obtain enough information for smaller numbers of training
messages. This issue, though, is eliminated when moving
to higher values of k.

For these stock templates, the 99th percentile false pos-
itive rate for k ≤ 100 was under 0.1% across all tem-
plates, and with a maximum false positive rate of 0.4% at
k = 10. For k ≥ 500, the maximum false positive rate
was 1 in 50,000 on the Enron corpus, and zero for the re-
maining three corpora. We emphasize again that we are
using stripped down versions of the signatures (subject and
body patterns only); including additional headers (“MIME-
Version” and “Content-Transfer-Encoding”) eliminated all
false positives. We further validated these numbers by mak-
ing sure that these additional headers were indeed included
in the messages of our legitimate mail corpora. Hence we

confirmed that all mismatches arose due to the correspond-
ing header regular expressions failing to match, and not due
to bias of our specific dataset.

The Botlab workload (Section 5.3) produced zero
matches against all corpora for the MegaD, Pushdo and
Srizbi botnets. The only exception was the signatures gen-
erated for Rustock. We had zero matches against the TREC
2007 corpus. When testing against the remaining corpora,
signatures for this botnet produced an average false positive
rate between 0.00021% to 0.01%. The 99th percentile false
positive rate was at most 0.24% and 95th percentile at most
0.04%. When looking into this issue further we identified
the source of the problem as the inability of these signa-
tures to produce all possible dictionaries. One reason was
the very high threshold used for allowing the conversion of a
character class to a dictionary node. We are currently look-
ing into this particular problem for further improvement.
Once again, though, we note that incorporating additional
headers gives a worst-case false positive rate of 1 in 12,500
due to signature mismatches and not because of the absence
of these headers in our corpora.

For all other signatures generated from messages cap-
tured in our sandbox environment, the result was zero false
positive matches across all corpora for all botnets. Note that
these results correspond to our real-world deployment ex-
periment, with signatures being generated for the very latest
spam messages sent by the botnets. The structure of these
messages allowed for the creation of very precise regular
expressions, such as the example presented in Figure 7 for
the MegaD botnet.

5.6 Response Time

One reasonable concern can be the time Judo requires for
generating a new signature. Since we aim to shrink the win-
dow between the time a new campaign starts and the time
we deploy a filter, being able to quickly infer the underlying
template is crucial. As already shown in Section 4.4, exe-
cution time is not a concern for the system, as it takes under
10 seconds in almost all cases to run the algorithm. Thus
the only question left to answer is how long it takes to build
up the required training sets.

Obviously such a metric is dependent on the spamming
rate of botnets. It is also possible that messages from mul-
tiple campaigns might be interleaved in a corpus, further
complicating the exact time it takes to create the training
set for each one. Despite this, knowing the spamming rate
at which bots operate can give us a good high-level esti-
mate of the time requirements imposed by Judo. Focusing
on the datasets used in our real-world deployment scenario,
we identified that the six Gheg bots took less than 6 hours to
send all 255,622 e-mails. This translates to about 118 mes-
sages per minute, for each bot. In a similar way, the four

Subject ˆ(RE: Message|new mail|Return mail|Return Mail|Re: Order status|no-reply| .
Your order|Delivery Status Notification|Delivery Status Notification \(Failure\))$

ˆ<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=(us-ascii|iso-8859-2| .
iso-8859-1|windows-1250|Windows-1252)">
</HEAD>
<BODY><a href="http://(talklucid|samefield|famousfall|bluedoes|meekclaim).com/" .
target="_blank">
<img src="http://(talklucid|samefield|famousfall|bluedoes|meekclaim).com/dyuwqlk.jpg" .
border="0" alt="Show picture and go to site now!"></BODY></HTML>$

Figure 7. Fragment of a template generated for the Mega-D botnet on August 26, 2009. Only the
subject and body are displayed with full dictionaries, exactly as they were captured. Recall that
templates are inferred from only the output of bots, without any access to the C&C channel and
without any information regarding the underlying mechanisms used.

Rustock bots we had deployed required only 20 hours to
send 932,474 messages, which gives us a spamming rate of
194 messages per minute, for each bot. Considering that
for modern botnets, Judo showed excellent performance for
any values of k ≤ 500, we conclude that the system requires
only a few minutes for the deployment of a new signature.
In fact, the time it takes to do so directly affects all results
of our evaluation in Section 5.3 and Section 5.4. Recall that
while the system is creating the required training set for a
campaign, any mismatches on the testing tracks are regis-
tered as false negatives. Despite this fact, we can see that
Judo is still able to maintain excellent performance, hence
satisfying our initial goal of a fast response time.

5.7. Other Content-Based Approaches

The efficacy of Judo rests on two essential characteris-
tics: its unique vantage point at the source of the spam,
and the template inference algorithm for creating signatures
from this spam. Regarding the latter, one may naturally ask
if a simpler mechanism suffices. In short, we believe the
answer is “No.” To our knowledge two such simple ap-
proaches have been advanced: subject-line blacklisting and
URL domain blacklisting. We consider these in turn.
Subject-line Blacklisting. Filtering based on message
subject is one of the earliest spam filtering mechanisms
in deployment. Most recently, it was used by the Botlab
project [10] to attribute spam to specific botnets.5 Unfor-
tunately, it is very easy (and in some cases desirable for
the spammer) to use subject lines appearing in legitimate
mail. One of the Mega-D templates found in our previous

5Note that John et al. do not suggest that subject lines alone should be
used for identifying spam, but for “classifying spam messages as being sent
by a particular botnet” after being classified as spam.

experiment used a subject-line dictionary containing “RE:
Message,” “Re: Order status,”, “Return mail,” and so on,
and can be seen in Figure 7. Such a template cannot be
effectively characterized using the message subject alone.
URL Domain Blacklisting. URL domain blacklists
(e.g. [3, 4]) are lists of domains appearing in spammed
URLs. In our experience, domain names appearing in spam
do indeed provide a strong signal. However, there are at
least two cases where domain names alone are not suffi-
cient. The first case, spam not containing URLs (stock spam
for example), simply cannot be filtered using URL domain
signatures. (Section 5.2 shows that Judo is effective against
this type of spam).

The second type of spam uses “laundered” domains, that
is, reputable services which are used to redirect to the ad-
vertised site. Most recently, for example, spam sent by the
Gheg botnet was using groups.yahoo.com and google.com
domains in URLs. We suspect this trend will continue as
URL domain blacklisting becomes more widely adopted.
“Focused” Bayesian Signatures. An intriguing possibil-
ity is using a Bayesian classifier to train on a single cam-
paign or even the output of a single bot, rather than a large
universal corpus of spam as is conventional. Our cursory
evaluation using SpamAssassin’s [26] Bayesian classifier
showed promise; however, in addition to a formal evalua-
tion, a number of technical issues still need to be addressed
(the larger size of Bayesian signatures, for example).

We also trained SpamAssassin’s Bayesian filter on a
generic spam corpus of over one thousand recent messages
along with the SpamAssassin 2003 “ham” corpus. It fared
poorly: from a sample of 5,180 messages from the Waledac
botnet, 96% received a score of 0 (meaning “not spam”) due
to the complete absence of tokens seen in the generic spam
corpus; none were given a score above 50 out of 100.

Enterprise Spam Filtering Appliances. We ran a sub-
set of the spam corpora from the Gheg, MegaD, Rustock,
and Waledac botnets through a major spam filtering appli-
ance deployed on our university network. Spam from the
Waledac and Rustock botnets was completely filtered based
upon the URLs appearing in the message bodies, and Mega-
D spam was correctly filtered via a generic “pharmaceutical
spam” rule. However, only 7.5% of the spam from the Gheg
botnet was correctly identified as such; these messages were
German language pharmaceutical advertisements launder-
ing URL reputation through google.com via its RSS reader
application.
IP Reputation. IP reputation filtering is a widely de-
ployed technique for identifying incoming spam messages.
It is orthogonal to content-based approaches, such as Judo;
today reputation-based and content-based approaches are
used in tandem in major spam filtering systems. This is
because IP reputation filtering alone does not provide a
complete spam-filtering solution. In addition to the oper-
ational overhead of dealing with false positives (e.g., de-
blacklisting), they are also vulnerable to reputation launder-
ing. By sending spam using webmail accounts, for exam-
ple, spammers can effectively hide behind reputable, high-
volume sources and increase the deliverability of their e-
mails. In 2008, according to [21], around 10% of all spam
originated by web-based e-mail and application service
providers. Our own informal analysis at a high-volume mail
server indicated that around 16% of all messages classified
as spam, originated from “high reputation” mail servers. In
fact, nearly 50% of those were sent by a single major web-
mail provider. This analysis was performed on September
14, 2009. With IP reputation systems becoming targetted,
approaches like Judo can offer another valuable tool in the
fight against spam. Our system does not rely on IP fea-
tures for achieving high effectiveness and more importantly,
it can do so by offering close to zero false positives.

6. Discussion

There are four questions invariably asked about any new
anti-spam system: how well does it filter spam, how often
does it misclassify good e-mail in turn, how easy or expen-
sive is it to deploy and how will the spammers defeat it? We
discuss each of these points briefly here.

As we have seen, template inference can be highly ef-
fective in producing filters that precisely match spam from
a given botnet. Even in our preliminary prototype we have
been able to produce filters that are effectively perfect for
individual campaigns after only 1,000 samples. To a certain
extent this result is unsurprising: if our underlying assump-
tions hold, then we will quickly learn the regular language
describing the template. Even in less than ideal circum-
stances we produce filters that are very good at matching

subsequent spam. The catch, of course, is that each of our
filters is over-constrained to only match the spam arising
from one particular botnet and thus they will be completely
ineffective against any other spam.

The hidden benefit of this seeming drawback is that
filters arising from template inference are unusually safe.
Their high degree of specialization makes them extremely
unlikely to match any legitimate mail and thus false posi-
tive rates are typically zero or extremely close thereto. To
further validate this hypothesis, we provided the regular ex-
pressions corresponding to the data for Xarvester to a lead-
ing commercial provider of enterprise anti-spam appliances.
They evaluated these filters against their own “ham” corpus
and found no matches. Given this evidence, together with
our own results, we argue that template inference can be
safely used as a pre-filter on any subsequent anti-spam algo-
rithm and will generally only improve its overall accuracy.

There are three aspects to the “cost” of deploying a sys-
tem such as ours. The first is the complexity of capturing,
executing and monitoring the output of spam bots. As more
bot instances can be maintained in a contained environment,
new filters can be generated more quickly. While this is
by no means trivial, it is routinely done in both academia
and industry and there is a broad base of tools and technol-
ogy being developed to support this activity. The second
issue concerns the efficiency of the template inference pro-
cess itself. Here we believe the concern is moot since the
algorithm is linear time and our untuned template extrac-
tion algorithm is able to generate regular expressions from
1000 messages in under 10 seconds, and update the expres-
sion in 50-100 ms. Next, there is the issue of integration
complexity since it is challenging to mandate the creation
of new software systems and interfaces. However, since our
approach generates standard regular expressions—already
in common use in virtually all anti-spam systems—the in-
tegration cost should be minimal in practice.

Finally, we recognize that spam is fundamentally an ad-
versarial activity, and successful deployment of our system
would force spammers to react in turn to evade it. We con-
sider the likely path of such evolution here. There are three
obvious ways that spammers might attempt to stymie the
template inference approach.

First, they can use technical means to complicate the exe-
cution of bots within controlled environments. A number of
bots already implement extensive anti-analysis actions such
as the detection of virtual machine environments and the
specialization of bot instances to individual hosts (to com-
plicate the sharing of malware samples). Moreover, some
botnets require positive proof of a bot’s ability to send ex-
ternal spam e-mail before providing spam template data.
While this aspect of the botnet arms race seems likely to
continue, it also constitutes the weakest technical strategy
against template inference since there is no fundamental test

to distinguish a host whose activity is monitored from one
whose is not.

A more daunting countermeasure would be the adoption
of more complex spam generation languages. For exam-
ple, multi-pass directives (e.g., shuffling word order after
the initial body is generated) could easily confound the al-
gorithm we have described. While there is no doubt that
our inference approach could be improved in turn, for com-
plex languages the general learning problem is untenable.
However, there are drawbacks in pursuing such complex-
ity for spammers as well. Template languages emerged
slightly over 5 years ago as a way to bypass distributed spam
hash databases [24] and they have not changed significantly
over that time. Part of the reason is that they are easy for
spammers to use and reason about; a new spam campaign
does not require significant testing and analysis. However, a
more important reason is that there are limits to how much
polymorphism can be encoded effectively in a spam mes-
sage while still preserving the underlying goal. To be effec-
tive, pitches and subject lines must be roughly grammatical,
URLs must be properly specified, and so on. Randomizing
the letters across such words would defeat template infer-
ence but also would likely reduce the underlying conversion
rate significantly.

Finally, spammers might manage the distribution of tem-
plates in a more adversarial fashion. In particular, were
each bot instance given templates with unique features then
the regular expressions learned from the output of one bot
would suffer from overtraining; they would be unable to
generalize to spam issued from another bot in the same bot-
net. Depending precisely on how such features were gener-
ated, this could add significant complexity to the underlying
inference problem at relatively low cost to spammers, and
without significantly changing the overall “look and feel”
of such messages to potential customers. We leave the chal-
lenge of joint learning across bot instances to future work
should the spam ecosystem evolve in this manner.

7. Conclusion

In starting this paper we observed that strong defenses
benefit from obtaining current and high quality intelligence.
This point is hardly lost on the anti-spam community and
over time there have been many efforts to share information
among sites, precisely to shrink the window of vulnerabil-
ity between when a new kind of spam appears and a corre-
sponding e-mail filter is installed. Historically, these efforts
have been successful when the information gathering itself
can be centralized and have floundered when they require
bilateral sharing of mail samples (even in a statistical sense).
Thus, IP-based blacklists constitute intelligence that, upon
being learned, is shared quickly and widely, while content-
based filter rules continue to be learned independently by

each defender.
To put it another way, the receiver-oriented learning ap-

proach makes it challenging to automatically share new
spam intelligence (for reasons of privacy, logistics, scale,
etc.). However, given that a small number of botnets
generate most spam today, this problem can be neatly
sidestepped. We have shown that it is practical to gener-
ate high-quality spam content signatures simply by observ-
ing the output of bot instances and inferring the likely con-
tent of their underlying template. Moreover, this approach
is particularly attractive since the resulting regular expres-
sions are highly specialized and thus produce virtually no
false positives. Finally, while we recognize that there are
a range of countermeasures that an adversary might take in
response, we argue that they are not trivial for the attacker
and thus that the template inference approach is likely to
have value for at least a modest period of time.

8. Acknowledgments

We would like to thank John P. John et al. for the
Botlab project data. We would also like to acknowl-
edge Brandon Enright and Brian Kantor for their invalu-
able assistance. Some of the experiments were conducted
on the UCSD FWGrid cluster, which is funded in part
by National Science Foundation Research Infrastructure
grant EIA-0303622. This work was supported in part by
National Science Foundation grant awards NSF-0433668,
NSF-0433702, NSF-0905631, and NSF-6783527, as well
as in-kind support from Cisco, Microsoft, Google, Yahoo!,
ESnet, and UCSD’s Center for Networked Systems. Opin-
ions, findings, and conclusions or recommendations are
those of the authors and do not necessarily reflect the views
of the funding sources.

References

[1] jwSpamSpy Spam Domain Blacklist.
http://www.joewein.net/spam/spam-bl.htm.

[2] lists.gnu.org. ftp://lists.gnu.org.
[3] SURBL. http://www.surbl.org.
[4] URIBL – Realtime URI Blacklist.

http://www.uribl.com.
[5] G. V. Cormack and T. R. Lynam. Online supervised spam

filter evaluation. ACM Trans. Inf. Syst., 25(3), July 2007.
[6] H. Drucker, D. Wu, and V. N. Vapnik. Support vector

machines for spam categorization. Neural Networks, IEEE
Transactions on, 10(5):1048–1054, 1999.

[7] J. Göbel, T. Holz, and P. Trinius. Towards proactive spam
filtering. In Proceedings of the 6th Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2009.

[8] G. Hulten, A. Penta, G. Seshadrinathan, and M. Mishra.
Trends in Spam Products and Methods. In Proceedings of

http://www.joewein.net/spam/spam-bl.htm
ftp://lists.gnu.org
http://www.surbl.org
http://www.uribl.com

the First Conference on Email and Anti-Spam (CEAS),
2004.

[9] A. G. K. Janecek, W. N. Gansterer, and K. A. Kumar.
Multi-Level Reputation-Based Greylisting. In Availability,
Reliability and Security (ARES), pages 10–17, 2008.

[10] J. P. John, A. Moshchuk, S. D. Gribble, and
A. Krishnamurthy. Studying Spamming Botnets Using
Botlab. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2009.

[11] J. Jung and E. Sit. An empirical study of spam traffic and
the use of DNS black lists. In IMC ’04: Proceedings of the
4th ACM SIGCOMM conference on Internet measurement,
pages 370–375, New York, NY, USA, 2004. ACM Press.

[12] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: An
Empirical Analysis of Spam Marketing Conversion . In
ACM CCS, pages 3–14, Alexandria, Virginia, USA,
October 2008.

[13] B. Klimt and Y. Yang. Introducing the Enron Corpus. In
Proceedings of the First Conference on Email and
Anti-Spam (CEAS), 2004.

[14] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. On the Spam Campaign
Trail. In Proceedings of the 1st USENIX LEET Workshop,
2008.

[15] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamcraft: An Inside
Look At Spam Campaign Orchestration. In Proceedings of
the 2nd USENIX LEET Workshop, 2009.

[16] B. Leiba and J. Fenton. DomainKeys Identified Mail
(DKIM): Using Digital Signatures for Domain Verification.
In Proceedings of the Fourth Conference on Email and
Anti-Spam (CEAS), 2007.

[17] D. Lowd and C. Meek. Good Word Attacks on Statistical
Spam Filters. In Proceedings of the Second Conference on
Email and Anti-Spam (CEAS), 2005.

[18] Marshal8e6 TRACELabs. Marshal8e6 security threats:
Email and web threats. http:
//www.marshal.com/newsimages/trace/
Marshal8e6_TRACE_Report_Jan2009.pdf, 2009.

[19] J. Mason. SpamAssassin public corpus. http:
//spamassassin.apache.org/publiccorpus,
2003.

[20] R. McMillan. What will stop spam?, December 1997.
[21] MessageLabs Intelligence. 2008 annual security report.

http://www.messagelabs.com/mlireport/
MLIReport_Annual_2008_FINAL.pdf, 2008.

[22] T. A. Meyer and B. Whateley. SpamBayes: Effective
open-source, Bayesian based, email classification system.
In Proceedings of the First Conference on Email and
Anti-Spam (CEAS), 2004.

[23] A. Ramachandran, D. Dagon, and N. Feamster. Can
DNSBLs Keep Up with Bots? In Proceedings of the Third
Conference on Email and Anti-Spam (CEAS), 2006.

[24] Rhyolite Corporation. Distributed checksum clearinghouse,
2000.

[25] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A
Bayesian Approach to Filtering Junk E-Mail. In Learning
for Text Categorization: Papers from the 1998 Workshop,
Madison, Wisconsin, 1998. AAAI Technical Report
WS-98-05.

[26] M. Sergeant. Internet Level Spam Detection and
SpamAssassin 2.50. In MIT Spam Conference, 2003.

[27] H. Stern. A Survey of Modern Spam Tools. In Proceedings
of the 5th Conference on Email and Anti-Spam, 2008.

[28] B. Taylor. Sender Reputation in a Large Webmail Service.
In Proceedings of the Third Conference on Email and
Anti-Spam (CEAS), 2006.

[29] 2007 TREC Public Spam Corpus. http://plg.
uwaterloo.ca/˜gvcormac/treccorpus07, 2007.

[30] M. W. Wong. Sender Authentication: What To Do, 2004.
[31] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and

I. Osipkov. Spamming Botnets: Signatures and
Characteristics. In Proceedings of ACM SIGCOMM, pages
171–182, 2008.

[32] L. Zhang, J. Zhu, and T. Yao. An evaluation of statistical
spam filtering techniques. ACM Transactions on Asian
Language Information Processing (TALIP), 3(4):243–269,
December 2004.

http://www.marshal.com/newsimages/trace/Marshal8e6_TRACE_Report_Jan2009.pdf
http://www.marshal.com/newsimages/trace/Marshal8e6_TRACE_Report_Jan2009.pdf
http://www.marshal.com/newsimages/trace/Marshal8e6_TRACE_Report_Jan2009.pdf
http://spamassassin.apache.org/publiccorpus
http://spamassassin.apache.org/publiccorpus
http://www.messagelabs.com/mlireport/MLIReport_Annual_2008_FINAL.pdf
http://www.messagelabs.com/mlireport/MLIReport_Annual_2008_FINAL.pdf
http://plg.uwaterloo.ca/~gvcormac/treccorpus07
http://plg.uwaterloo.ca/~gvcormac/treccorpus07

	. Introduction
	. Background and Related Work
	. Current Anti-spam Approaches
	. Spamming Botnets

	. Template-based Spam
	. The Signature Generator
	. Template Inference
	. Anchors
	. Macros

	. Leveraging Domain Knowledge
	. Signature Update
	. Execution Time

	. Evaluation
	. Signature Safety Testing Methodology
	. Single Template Inference
	. Methodology
	. Results

	. Multiple Template Inference
	. Methodology
	. Results

	. Real-world Deployment
	. Methodology
	. Results

	False Positives
	Response Time
	. Other Content-Based Approaches

	. Discussion
	. Conclusion
	. Acknowledgments

