
Brief Announcement: Techniques for Programmatically
Troubleshooting Distributed Systems

Sam Whitlock
International Computer
Science Institute (ICSI)

1947 Center St.
Berkeley, CA 94704

samw@icsi.berkeley.edu

Colin Scott
University of California

Berkeley
387 Soda Hall

Berkeley, CA 94720-1776
cs@cs.berkeley.edu

Scott Shenker
ICSI & University of California

Berkeley
387 Soda Hall

Berkeley, CA 94720-1776
shenker@icsi.berkeley.edu

ABSTRACT
The distributed systems research community has developed many
provably correct algorithms and abstractions that are in wide use.
However, practical implementations of distributed systems often
contain many bugs, and practitioners spend much of their time trou-
bleshooting these bugs. In this paper we present an algorithm, ret-
rospective causal inference, to ease the burden of troubleshooting.
We end by enumerating several open research problems related to
the troubleshooting process.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—distributed
debugging, debugging aids, tracing

General Terms
Algorithms, Theory

Keywords
troubleshooting; automation; tools

1. INTRODUCTION
Despite a wealth of abstractions and provably correct algorithms

developed by the distributed systems research community, practi-
cal implementations of even simple distributed systems often con-
tain bugs. Finding and fixing the causes of these bugs is a time-
consuming task. For example, a 2006 survey found that software
developers at Microsoft spend 49% of their time troubleshooting
bugs [1]. The same study found that 70% of the reported concur-
rency bugs take days to months to fix, and 74% of respondents
considered bug reproducibility hard or very hard.

The de facto method for troubleshooting is painstaking manual
analysis of runtime logs. Such manual troubleshooting is hindered
by the large number of inputs to distributed systems; troubleshoot-
ers find little immediate use from traces containing many inputs
prior to a fault, since they are forced to manually filter extraneous

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

procedure REPLAY(subsequence)
for ei in subsequence

if ei is an internal event
and ei is not marked absent :

then


∆← |ei.time− ei-1.time|+ ε
wait up to ∆ seconds for ei

if ei did not occur :
then mark ei as absent

else if ei is an input :

then


if a successor of ei occurred :

comment: waited too long
then return REPLAY(subsequence)
else inject ei

comment: See Figure 2 for invocation

Figure 1: Replay is responsible for replaying subsequences of
events chosen by delta debugging (Figure 2) and determining if
the bug reappears.

inputs before they can start fruitfully examining the source of the
errant behavior. It is no surprise that when asked to describe their
ideal tool, most practitioners said “automated troubleshooting” [9].

We have developed an algorithm, retrospective causal inference,
as a step towards automated troubleshooting. Given a trace of
causally-ordered events that leads to a bug, retrospective causal in-
ference finds a locally minimal subsequence of the trace that is suf-
ficient for reproducing the bug. This smaller set of events provides
developers a better understanding of how the bug in their code was
triggered.

We have applied retrospective causal inference [4] to one type
of distributed system: control software for software-defined net-
works. Our initial experiments have been highly promising: of five
bugs discovered in a five day investigation, retrospective causal in-
ference reduced the size of the input trace to 18 events in the worst
case and 2 events in the best case. In this brief announcement we
describe retrospective causal inferenceand enumerate several open
research problems related to the troubleshooting process.

2. APPROACH
One well-known method for finding event traces that lead to bugs

is symbolic execution [3]: given source code as input, symbolic ex-

ecution builds a model of the distributed state machine. With a
model of the distributed state machine in hand, finding and mini-
mizing errant event traces is fairly straightforward. Unfortunately,
building this model from source code involves enumerating an ex-
ponential number of code paths. Although formal methods can, in
theory, locate and minimize errant behavior, it quickly becomes an
impractical option for real systems.

2.1 Minimized Event Sequences
Practitioners instead typically rely on execution logs to help them

debug their distributed systems. Execution logs represent a particu-
lar subpath through the distributed state machine (where each event
in the log represents a state transition) that is known to trigger a
bug.1

Execution logs can be quite large, and it is time-consuming to
analyze them by hand. It is not apparent from the logs which events
are relevant and which are extraneous, leaving the developers to use
their judgment about which code paths led to the errant behavior.

Deterministic replay systems allow troubleshooters to reproduce
system executions, but merely replaying the execution does not im-
mediately aid in deducing which transitions were causally related
to the bug and which were not. Practitioners need a small sequence
of transitions that triggers the bug. By examining each of the state
transitions in such a sequence, they can get a better understand-
ing of the code path that contains the root cause. Thus, given a
bug-inducing execution log, it would be highly desirable to auto-
matically find the minimal causal sequence (MCS): a subsequence
of the trace that leads the state machine to a bug state, and has the
additional property that if any of the transitions are removed from
the sequence, the bug state is not reached. Finding minimal causal
sequences is the goal of our work.

2.2 Replay, Pruning, and the Functional Equiv-
alence of Events

The software engineering community has explored several search
algorithms [6,8] for minimizing test cases. We focus on a particular
algorithm suited to our goal: delta debugging [8]. Given a single
input (e.g. an HTML page) for a non-distributed program (e.g. Fire-
fox), delta debugging repeatedly runs the program on subsets of the
input until it finds a minimal subset (e.g. a single tag) that is suffi-
cient for triggering a known bug.

Delta debugging has not yet been applied to distributed systems.
Doing so is complicated because the inputs to distributed systems
are spread across time and across multiple processes, rather than
being injected at a single point in time into a single process. This
substantially complicates the task of testing whether a subsequence
chosen by delta debugging contains the minimal causal sequence.

Elsewhere, we describe a system for replaying event subsequences
chosen by delta debugging [4]. Here we focus on the algorith-
mic challenges posed by our system. When we replay a subse-
quence chosen by delta debugging, we must ensure that causality
is maintained. Specifically, to reliably reproduce the original bug
we need to inject each input event e at exactly the point when all
other events, both internal to the system (such as messages sent
between nodes or internal state changes) and external to the sys-
tem (such as node crashes that we inject), that precede it in the
happens-before relation ({i | i → e}) from the original execution
have occurred [5].

At first glance, it seems that allowing delta debugging to alter
the history of the log will prevent us from being able to maintain
causality during replay; if we diverge at all from the original event
1We have shown elsewhere [4] how these event traces can be ob-
tained.

trace we may find ourselves on a different path through the state
machine, unable to reason about the original happens-before con-
straints. Consider for example that the sequence numbers of the
messages passed throughout the system may change if we prune a
single event at the beginning of the trace. Once on a diverged path,
it is unclear whether the original bug will still be triggered.

Our approach to coping with divergence has been to apply heuris-
tics to allow us to maintain causality as best we can. First, we
explicitly disallow delta debugging from subdividing the trace in
a way that leaves an invalid input sequence. We accomplish this
by telling delta debugging to only remove atomic groups of inputs.
For example, if we prune a controller failure event, we make sure
to prune the controller’s subsequent recovery event. This approach
currently depends on our domain knowledge of the semantics of
input events.

Next we need to cope with the fact that the syntax of internal
events may change subtly after pruning inputs. We observe that
many events are functionally equivalent, in the sense that they have
the same effect on the state of the system with respect to triggering
the bug (despite syntactic differences). For example, it is unlikely
that the code responsible for incrementing the sequence number of
messages is related to a buggy replication algorithm, meaning that
we can often safely ignore the sequence numbers of messages. By
disregarding irrelevant state, we draw an equivalence relation be-
tween the events across divergent runs, allowing us to compare ex-
ecutions generated by different subsequences of the original event
trace. In this way we can maintain causality of events in the same
equivalence classes.2

When comparing a pruned execution history to the original, there
are two other subtleties we need to consider: some events from the
original execution may be absent, and other events may be entirely
new. We cope with absent events by timing out after some dura-
tion if they do not occur. We currently allow new events—internal
events that are not functionally equivalent to any events observed in
the original trace—to simply occur, and do not use them to dictate
the timing of external events.

2.3 Retrospective Causal Inference
We have developed an algorithm, retrospective causal inference,

that combines these heuristics to find minimal causal subsequences
of event traces. We show pseudocode for retrospective causal infer-
ence in Figure 2. Using our replay system [4], we have found and
minimized several buggy traces in open source distributed systems.

3. OPEN PROBLEMS
The algorithm we described in the previous section has worked

well in practice, but it leaves open some questions that, if addressed,
may yield a more principled approach to troubleshooting distributed
systems.

How should new events be handled? New events ultimately leave
open multiple possibilities for where we should inject the next in-
put. Consider the following case: if i2 and i3 are internal events
observed during replay that are both in the same equivalence class
as a single event i1 from the original run, we could inject the next
input after i2 or after i3.

Exploring both possibilities would incur exponential runtime.
Our approach to dealing with new events, ignoring them, is a heuris-
tic. We believe that there may be more principled approaches that
are still tractable for large real-world systems.

2Incidentally, ignoring extraneous message fields is similar to how
practitioners examine event logs by hand: they intuitively disregard
certain information they deem to be irrelevant.

Figure 2: Delta Debugging Algorithm From [7]
Input: T8 s.t. T8 is a trace and Replay(T8) = 8. Output: T ′

8 = ddmin(T8) s.t. T ′
8 ⊆ T8, Replay(T ′

8) = 8, and T ′
8 is minimal.

ddmin(T8) = ddmin2(T8, ∅) where

ddmin2(T ′
8, R) =


T ′

8 if |T ′
8| = 1 (“base case”)

ddmin2

(
T1, R

)
else if Replay(T1 ∪R) = 8 (“in T1”)

ddmin2

(
T2, R

)
else if Replay(T2 ∪R) = 8 (“in T2”)

ddmin2

(
T1, T2 ∪R

)
∪ ddmin2

(
T2, T1 ∪R

)
otherwise (“interference”)

where Replay(T) denotes the state of the system after executing the trace T , 8 denotes a correctness violation,
T1 ⊂ T ′

8, T2 ⊂ T ′
8, T1 ∪ T2 = T ′

8, T1 ∩ T2 = ∅, and |T1| ≈ |T2| ≈ |T ′
8|/2 hold.

Is there a better definition of functional equivalence? Our cur-
rent definition of functional equivalence is based on guess-work
and domain knowledge: we intuitively disregard certain pieces of
information in each internal event because we know that they typ-
ically do not determine whether the bug appears. We believe that
formulating functional equivalence in terms of knowledge states of
the distributed system [2] will yield a more principled approach.
If retrospective causal inference has insight into what pieces of
knowledge the nodes of a distributed system act upon, it can make
stronger statements about what parts of each message or internal
state change are capable of affecting the actions of a given node.
By comparing the internal events across runs based on what pieces
of information actually affect the end state, we can draw stronger
functional equivalencies between events.

What types of systems are most amenable to troubleshooting?
Suppose you are troubleshooting a bug in a system that takes a
small number of inputs and performs a long series of computations
after receiving the inputs. If you prune a single input event, ev-
ery successive intermediate state, including the final state, diverges
from the states in the original execution. In this scenario, the min-
imal causal sequence will often be the original event sequence in
its entirety, and the minimization provided by retrospective causal
inference would have no value.

We conjecture that retrospective causal inference operates best
on systems that have ‘quiescent’ state machines, where each input
event only triggers a small number of internal state transitions. We
successfully tested retrospective causal inference on control-plane
systems (software-defined network controllers), which tend to have
this property. It is unclear whether other systems would be equally
amenable to retrospective causal inference.

What types of bugs does this technique perform poorly well on?
Even with a MCS in hand, troubleshooters need to match the MCS
to the errant code path that ultimately triggers the bug. Retrospec-
tive causal inference helps by making the execution trace easy to
understand, but the programmer may not easily be able to match
the sequence to a code path. Consider for example a bug that is
triggered the 27th time the letter ‘a’ appears in the sequence of
events. There are many different event subsequences that can trig-
ger such a bug. Due to the difficulty of distributed replay, it is
very possible that retrospective causal inference will return differ-
ent bug-triggering sequences on successive invocations. It would
require a great deal of insight for a practitioner to deduce a pattern
they all share.

We are not certain what types of bugs retrospective causal infer-
ence is most useful for. In our experience, bugs that are triggered
without prior complicated event sequences provide short, insightful
MCSes. For example, if a system does not support a particular type
of input event (e.g.virtual machine migration), then the first occur-

rence of such an event in any sequence of input events will trigger
the bug; in such a case, retrospective causal inference will return
the single event.

4. CONCLUSION
Developers of distributed systems must be mindful of the minute

details of computer systems. The troubleshooting tools available
for single-process systems are rarely applicable to distributed sys-
tems, leaving practitioners with few viable troubleshooting options
when they observe errant behavior in their distributed systems. De-
velopers consequently spend much more of their time and effort
troubleshooting bugs. We believe that a principled approach to au-
tomated troubleshooting is possible, and we have taken a first step
here by presenting an algorithm for automatically minimizing er-
rant event traces. We hope that the distributed systems commu-
nity will further investigate the theoretical issues behind systematic
troubleshooting.

5. REFERENCES
[1] P. Godefroid and N. Nagappan. Concurrency at Microsoft -

An Exploratory Survey. CAV ’08.
[2] J. Y. Halpern and Y. Moses. Knowledge and Common

Knowledge in a Distributed Environment. JACM ’90.
[3] J. C. King. Symbolic Execution and Program Testing. CACM

’76.
[4] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang,

K. Zarifis, and S. Shenker. How Did We Get Into This Mess?
Isolating Fault-Inducing Inputs to SDN Control Software.
Technical Report UCB/EECS-2013-8, University of
California, Berkeley, ’13.

[5] G. Tel. Introduction to Distributed Algorithms. Thm. 2.21.
Cambridge University Press, 2000.

[6] A. Whitaker, R. Cox, and S. Gribble. Configuration
Debugging as Search: Finding the Needle in the Haystack.
SOSP ’04.

[7] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? ESEC/FSE ’99.

[8] A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. IEEE TSE ’02.

[9] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. A
Survey on Network Troubleshooting. Technical Report
TR12-HPNG-061012, Stanford University ’12.

http://tinyurl.com/by2ljar
http://yuba.stanford.edu/group_wp/technical-reports/

	Introduction
	Approach
	Minimized Event Sequences
	Replay, Pruning, and the Functional Equivalence of Events
	Retrospective Causal Inference

	Open Problems
	Conclusion
	References

