
Brooery: A Graphical Environment for

Analysis of Security-Relevant Network Activity

Christian Kreibich

University of Cambridge Computer Laboratory

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

christian.kreibich@cl.cam.ac.uk

Abstract

We present the design and implementation of the
Brooery, a system for graphical analysis of net-
work activity reported by instances of the Bro in-
trusion detection system. It supports multiple input
streams and provides a web-based graphical user in-
terface to allow the user to analyze the reported
activity. The Brooery understands activity at dif-
ferent abstraction levels, allows for quick drill-down
searches by focusing on contextuality when moving
through the history of events, and provides user-
friendly and semantically strong hierarchical filter-
ing to reduce the amount of information presented.

1 Introduction

In recent years, network monitoring has become a
widely adopted practice for practically every orga-
nization interested in understanding the activity on
its networks. Besides other reasons, this is mostly
done to improve security: intrusion detection sys-
tems (IDSs) are nowadays widely deployed in or-
der to help analysts focus their attention on critical
events that otherwise might have been missed in the
vast amount of activity.

While these systems have matured a great deal, it
has also become clear that the technology is no sil-
ver bullet: in the foreseeable future, the human el-
ement is going to remain an essential component
in the analysis process, largely because our abil-
ity to evaluate the relevance of events in context
of other activity is far superior to the one imple-
mented in present-day technology. This evaluation
is rendered more difficult by the fact that the tech-
nology currently does an insufficient job at distilling

the amount of reported activity into a form whose
volume is still comprehensible to humans and at the
same time provides all relevant information neces-
sary to understand the reported event in the full
context of its occurrence.

We believe that much work remains to be done in
helping the network analyst in that task. In this
paper we present the Brooery,1 a system to support
the analysis of events reported by the Bro IDS [1].
We base our system on Bro because from the out-
set, Bro has taken a more differentiated approach to
the detection problem than other IDSs, by separat-
ing policy (i.e., what events to report) from mecha-
nism (i.e., how to extract the basic building blocks
of events from the network). This separation turns
out to be crucial in the analysis process, because the
difference between relevant events and noise is of-
ten entirely defined by a site’s policy. By deploying
a monitoring policy in line with our understanding
of relevance, we can reduce the volume of reported
events from the outset. The Brooery presents events
to the analyst through a graphical user interface. It
allows quick drill-down to relevant details by allow-
ing the analyst to switch between different log types,
by the use of contextual navigation techniques, and
by employing semantically strong hierarchical filter-
ing that does not require external skills (such as
SQL proficiency) from the analyst.

We first recapture Bro’s current features in Section
2 to give the reader an intuition of the system the
Brooery interfaces with. We present our require-
ments for the system in Section 3 before describing
in detail our resulting architecture along with imple-
mentation details in Section 4. We then exemplify
the application of our system in Section 5 and re-
view related work in Section 6. The current state
of the system and avenues for future work are dis-
cussed in Section 7 before we summarize the paper
in Section 8.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 109



2 Bro: A Distributed Event-Based

Intrusion Detection System

Bro’s architecture has remained faithful to the phi-
losophy developed in the original paper [1]. A sig-
nificant recent improvement has been the introduc-
tion of a communications framework as the basis
of a more powerful event model suitable for dis-
tributed event communication [2, 3]. Figure 1 il-
lustrates Bro’s architecture.

2.1 Separation of Mechanism from Pol-
icy

A core idea of Bro is to split event detection mech-
anisms from event processing policies. Event gener-
ation is performed by analyzers in Bro’s core: these
analyzers operate continuously and trigger events
asynchronously when relevant activity is observed.
Examples include the establishment of a new TCP
connection, or the request for a URL in an HTTP
request. Bro’s core contains analyzers for a wide
range of network protocols such as TCP, UDP, FTP,
HTTP, ICMP, SMTP, RPC, and others. Care is
taken to minimize CPU load: only analyzers respon-
sible for triggering the events used at the policy layer
are actually enabled. Bro also provides a bidirec-
tional signature engine for typical misuse-based in-
trusion detection: it matches byte string signatures
against traffic flows and triggers an event whenever
a signature matches [4].

Once an event is triggered, the engine passes it to
the policy layer. Each Bro peer runs a policy config-
uration in its policy layer. This policy embodies the
site’s security policy, expressed in scripts containing
statements in the special-purpose Bro scripting lan-
guage. The language is strongly typed, procedural
in style, and provides a wide range of elementary
data types to facilitate the analysis of activity on
a network. The policy layer maintains a large vari-
ety of state information about the activity currently
observed on the network. For each event type, one
or more event handlers are triggered that process
events, possibly triggering new ones. Event types
are defined by a name and a set of typed parame-
ters that characterize individual events.

Bro IDS

Policy Layer

Core

Policy Script Interpreter

Event Engine

Network Analysis Peer
Communication I/OTCPUDP HTTP Signature Engine...

Login Policy Scan Detector . . . Worm Detector

Network

libpcap SSL

Figure 1: Architecture of the Bro IDS.

2.2 Event Logging

Event handlers may decide to log an event to per-
sistent storage in a suitable machine- or human-
readable format for later analysis. Bro’s log man-
agement facility currently comprises two stages.
First, at the policy level, Bro supports a basic notion
of log files. These logs can be opened, closed, and
printed to using printf-inspired functions. For no-
tices and alarms, separate Bro policies take care of
formatting the events appropriately before writing
them out. The format of these entries is human-
readable, but sufficiently structured for easy pars-
ing. Second, log rotation is configured within the
policy layer as well. This takes care of archiving the
logs: rotation intervals, monitoring log file size and
duration, labelling with start- and end timestamps,
and file compression are all taken care of from within
the policy layer.

2.3 Communication Framework & State
Management

Bro’s communication framework supports the seri-
alization and transmission of arbitrary kinds of state
between Bro instances. The driving idea behind
its design is to allow the realization of independent
state [2]: we should no longer think of state accu-
mulated at the policy layer as a local concept, but
rather as information dispersed and stored through-
out the network. The communication model im-
poses no hierarchical structure. Examples of ex-
changeable state include triggered events, state kept
in policy data structures, and the policy definitions
themselves. For the purpose of this paper it is suf-

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association110



ficient to think of the entities exchanged between
peers as events, though that ignores a large part of
its flexibility.

To interface other applications with Bro, we have
implemented a lightweight, highly portable library
supporting Bro’s communication protocol called
Broccoli,2 that allows nodes which are not instances
of the Bro IDS to partake in its event communica-
tion. Broccoli nodes can request, send, and receive
Bro events just like Bro itself, but cannot be config-
ured using Bro’s policy language. A Broccoli node’s
policy has to be implemented in the client’s code or
through mechanisms such as configuration files.

3 The Brooery’s Requirements

3.1 Usability Requirements

We have identified the following set of requirements
for our system:

• Interoperability with Bro: The system
should not require significant changes to Bro
itself. Existing communication mechanisms
should be leveraged as much as possible.

• Focus on investigation: The primary goal
of the system is to enable the analysis of log
archive content using a graphical interface, not
to provide a real-time alert notification system.
A highly interactive user interface, while clearly
desirable, is thus not a primary requirement.

• Experimental prototyping: Support for
rapid prototyping and experimentation with
visualization techniques is more important at
this stage than performance optimizations and
long-term maintainability.

• Flexible filtering: The predominant prob-
lem in the analysis of network activity is the
total volume of information. For this reason,
effective filtering is essential. The analysis of
Bro’s log files has so far mostly happened at
the shell prompt, and the effectiveness was es-
sentially defined by the analyst’s command of
the typical text processing toolset: grep, awk,
sed, and Perl, just to name few. Skilled use
of these tools, while often unintuitive to other

analysts, can be quite effective. The system
should therefore aim at supporting this mind-
set in its filter management.

• Contextuality: The richness and diversity
of events in Bro requires great flexibility from
an analysis environment. The visual naviga-
tion should naturally guide the user at all times
depending on the context of the currently in-
spected events, and provide mechanisms for
quick drill-down to allow the analyst to focus
on the relevant activity.

• Easy accessibility: At present, Bro is in
day-to-day use throughout several large orga-
nizations around the planet. Such deployments
require analyst access from multiple locations
and using different platforms. We therefore
prefer a standardized and widely available ren-
dering mechanism that requires as little precon-
figuration on the analyst’s machine as possible.

• Spatial source independence: We would
like to be able to select individual Bro nodes as
data sources because we do not want to require
that all data logging happen at a single place
in the network.

• Representational source independence:

Bro has traditionally created a set of text-based
log files in order to record events for long-term
storage. Two other forms of data storage are
standard database back-ends and live state con-
tained in running Bro nodes. We would like the
system to support access to these uniformly.

• Different user sophistication levels:

While Bro’s design allows for much flexibility in
its configuration, this freedom also means that
its users need to spend more time to familiar-
ize themselves with the system before they can
use it efficiently and effectively. The user inter-
face should support users of a wide range of so-
phistication levels, ranging from the occasional
log inspection to operators who are intimately
familiar with Bro policy development and day-
to-day Bro maintenance.

3.2 Threat Model

The Brooery’s main purpose is to present highly
security-relevant information to the analyst, whose
conclusions may have severe consequences for the
operation of the network. We therefore need to be

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 111



Figure 2: The Brooery’s three-tiered Architecture.

aware of avenues attackers can follow in order to
fool the analyst with false positives and negatives:
an attacker might try to hide successful break-ins
from the system, or equally dangerously, have the
system report that a break-in did succeed where in
fact there was none. The former causes the analyst
to miss crucial information, while the latter would
constitute a denial of service attack if for example
machines had to be taken off line for investigation
and recovery. The main attack surfaces are listed in
the following and need to be protected carefully by
the system:

• At the source. The log entry archives could be
manipulated directly, introducing fake events
or removing existing ones. Note that this is
different from the typical case where IDSs are
tricked into false positives or negatives; here,
the storage system itself is subverted.

• In transit. Log entries need to be transferred
and potentially filtered on their way from the
archive to the analyst’s console. An attacker
with full control over the involved network flows
could drop and introduce events at will, if the
flows are not protected from tampering.

• During filtering & rendering. The system needs
to process and filter log entries for presentation
to the analyst. Similar to transit, an attacker
who can modify the way the system itself op-
erates can drop and introduce information or
just cause the system in general to fail.

• At the destination. Since the application is
mainly intended to read, process, and visual-
ize existing information, the main benefit an
attacker would gain from having access to the
analyst’s console is insight into what activity
Bro nodes have been monitoring. When the
system also permits the analyst to take ad-
ministrative measures by updating running Bro
nodes from the console, attackers with sufficient
privileges to assume the role of an administra-
tor could disable or attempt to crash individual
Bro nodes.

4 The Brooery’s Architecture

Given the requirements just outlined, we decided to
implement our system in the three-tiered architec-
ture illustrated in Figure 2. Analysts access the sys-
tem through web browsers. The web server’s back-
end implements the core of the application, taking
care of user interface rendering, user management,
data source communication, and most importantly,
the actual log entry processing. We will now discuss
each of these components in more detail.

4.1 Web-based user interface

By using a web-based interface, we do away with
the need to deploy stand-alone client applications,

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association112



while at the same time avoiding any porting over-
head that such an application might entail. Web-
based interfaces fall short of the interactivity of
full-blown client-side applications unless they em-
ploy heavy-weight Java Applets or typically unro-
bust JavaScripts. We want to avoid the use of such
features to keep the list of requirements on the client
side as small as possible. However, as outlined in the
our requirements, the system is primarily meant as
an analysis tool for investigation of past activity and
not per se as a real-time alert notification tool. Fur-
thermore, the web-based interface has the obvious
advantage that external web-based services can be
leveraged immediately through HTML linkage, for
example to provide vulnerability information,3 com-
mon TCP/UDP port usage,4 or reports of scanning
activity.5 We have implemented the web front-end
using the Open Source web site development frame-
work Mason6 and the Apache web server. This al-
lowed us to (i) stay within the same language in
which we have already accumulated a considerable
amount of log analysis code and experience (see Sec-
tion 4.4 below), and (ii) employ more advanced lan-
guage features and mechanisms for structuring the
components of the generated web pages than pro-
vided by other popular web site development solu-
tions like for example PHP.7

4.2 Multiple communication back-ends

The Brooery is designed to support multiple com-
munication back-ends for communicating with log
archives in the form of text file repositories,
databases, or live Bro agents. Log archives can re-
side on remote machines or locally. While log entry
archives are clearly only useful for mining past ac-
tivity, the third mechanism is useful for more gen-
eral purposes. For example, it could be used to re-
quest resource usage summaries from running Bro
instances (suitable policies are already part of the
Bro distribution), or to adjust their current poli-
cies dynamically. All of this would happen within
Bro’s existing communications framework, making
this approach potentially very powerful.

4.3 Management of user sessions

We support access to the system by multiple users at
all times. For each user, the system stores his or her
current analysis context, including log entries, filter-
ing combinations, inspection time frames, and gen-

eral user preferences. We currently maintain user
identities in the form of user name and perform au-
thentication using passphrases. User identities are
used to present returning users with the environ-
ment they left earlier.

4.4 Log entry processing & filtering

This component is the core of the system and pro-
vides the domain knowledge necessary to manipu-
late Bro events and log entries. It is implemented
in Perl, for four main reasons: first, a large body of
well-maintained Perl modules has already been de-
veloped in the general context of the Bro project, so
we can instantly leverage these efforts. Second, Perl
is well suited for rapid prototyping, which we feel
is very much the correct development philosophy at
this point in time. Third, the CPAN Perl archive
offers a vast set of modules for any kind of exten-
sion we are likely to need in the future. Fourth, it is
easy to create bindings from Perl to native C, should
the need arise. This could happen for purposes such
as performance optimization, or integration of other
components.

The API for log entry retrieval hides the details of
the underlying mechanism. For the log processing
engine, a log archive is structured into different log
types representing the different logging domains and
abstraction levels at which Bro reports events (e.g.,
connection summaries, notices, signature matches,
or alarms). Each log type’s archive is comprised of
a set of log slices, each labelled with a start- and
end timestamp identifying the timeframe it covers.
Within a log slice, log entries can be obtained sub-
ject to a filtering condition (see Section 4.4.3). Each
back-end implementation maps these abstractions
to the actual API available for accessing a particu-
lar log archive. For accessing text file repositories,
we have developed a simple log entry server that
the corresponding Brooery back-end communicates
with. This resembles in many ways a poor man’s
database implementation; we stress again that our
focus at this point is not on obtaining optimal per-
formance but getting a good feeling for the problem
setting.

4.4.1 Timeframe & Log Type Selection and
Log Navigation

Our current interaction model requires the user to
start the investigation by selecting a timeframe of

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 113



Figure 3: Recursive filter combination using AND/OR-trees and types log entry components: the main filter matches
if both the left and right subfilters match, the left subfilter matches if the source IP of an entry belongs to external
networks and the destination IP is inside the DMZ, and the right subfilter matches when the message string of a log
entry contains “CodeRed”, “Slammer”, or “Nimda”.

activity on which to focus investigation. This time-
frame defines a lower and upper bound on temporal
relevance of log entries, across different log entry
types. After selecting a particular log type, the sys-
tem then obtains a list of log slices that contain log
entries during the configured timeframe. From these
log slices, up to a given maximum number of entries
are then requested starting from a given timestamp.
Within the configured timeframe, the user can then
step forward and backward through the log entries,
manipulating a configurable maximum number of
log entries at any one time.

4.4.2 A Type System for Log Entry Com-
ponents

In our log entry model, every component of a log en-
try has a type, inspired by the types provided by the
Bro scripting language. The Brooery’s type struc-
ture is richer than Bro’s and more hierarchical: at
the very least, every log entry component is of the
root type “data” which provides textual operators
such as “contains” and “does not contain”. A large
number of different types derive from this root, for
example timestamps, flow sizes, port numbers, IP
addresses, and protocol names. Further specializa-
tions exist for example for source and destination
IP addresses.

The benefits we gain from adhering to such a type
model throughout all of our log types are associativ-
ity, extensibility, and semantic processing: regard-
less of the type of log we are currently investigating,
a source IP address in one log file type will seman-
tically represent the same as a source IP address in
a different log type. This allows easy integration
of future log types because only novel component

types need to be integrated in the type hierarchy.
The only information required to support a new log
type is the sequence of the components’ types. Fur-
thermore, knowing that a log entry component rep-
resents for example a timestamp allows us to per-
form according operations on the component, in this
case for example operations such as “earlier-than”,
“after”, or “between”.

4.4.3 Recursively Reusable AND/OR-Trees
for Log Entry Filtering

The Brooery supports an elaborate concept of log
entry matching based on AND/OR-trees, known
from other applications such as attack trees [5].
The Brooery combines the expressiveness of condi-
tions using AND/OR-trees with the strengths of the
typed log entry components. For example, times-
tamps can be matched depending on whether they
represent time earlier or later than a given times-
tamp, and IP addresses can be tested for (not)
matching an address prefix.

A filter always consists of one ore more filter parts,
each of which can either contain a filtering crite-
rion as just described, or refer to another existing
filter. The filtering results of all filter parts are then
combined using Boolean conjunctions or disjunc-
tions and lazy evaluation. Cyclic dependency detec-
tion prevents the user from configuring self-referring
constructs. This approach to filter management al-
lows the creation of arbitrarily nested filtering hier-
archies, while ensuring easy re-use of existing filters.
Figure 3 illustrates the concepts.

Note that a filter so far only represents a focus-
ing mechanism; “filtering” is not meant to imply

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association114



Figure 4: View of a Bro node’s log archive.

“dropping” at this point. Dropping a log entry
due to successful filter evaluation is merely one of
a range of conceivable filter actions; other examples
include keeping a log entry, labelling it, and aggre-
gating log entries by compressing all entries that are
matched by a filter into a single abstract entry. We
can summarize the aggregation by reporting in an
abstract entry the number of entries it represents,
while maintaining the common parts of those log
entries visible.

The fact that multiple filters can trigger actions of
different semantic meaning does imply that multi-
ple filters may need to be active at the same time.
For example, one filter could throw out unwanted
entries, another one could aggregate the remain-
ing ones. Integrating the output of multiple filters
brings the potential of conflict: for example, one
filter could declare that an entry is to be dropped
while a second one asks for it to be kept. The way
we solve this problem is through ordering: while the
user may have multiple filters active at the same
time, those filters have to be put in a sequence, and
the first decision made in a conflict domain is deci-
sive.

To allow the user to quickly weed out unwanted in-
formation and focus on the interesting entries, the
Brooery also supports incremental filtering, i.e., the
addition of new filter parts to a selected filter. At no
time does the nature of the log entry storage shine
through; for example, the user never has to resort
to entering raw database queries.

4.5 Security Considerations

As outlined by our threat model, care must be
taken to restrict the user base of the system to the
intended individuals while preventing others from
eavesdropping on or even tampering with the infor-
mation flows. First of all, we assume that when
an attacker manages to break into one of the hosts
running Bro, or one of the machines storing a log
archive, it is unlikely that we can prevent a deter-
mined intruder from causing serious damage to the
system. Therefore, the security precautions of Bro
nodes and log archives remain unchanged, regard-
less of whether these systems are interfaced with the
Brooery or not.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 115



Figure 5: Alarm log entries, filtering the “Alarm” column for entries containing “Scan”.

Regarding the communication between the various
nodes interacting with the Brooery, we use two dif-
ferent levels of restrictiveness: inside the Bro net-
work, we can assume that the communicating en-
tities know each other’s identities. Besides employ-
ing SSL encryption, we can therefore require mutual
authentication of the communicating peers through
certificates. The web browsers accessing the system
are still required to use encrypted connections via
HTTPS, but as mentioned in Section 4.3 we drop
the requirement for client-side certificates and re-
sort to weaker authentication in the form of user
names & passphrases. Furthermore, we aim to re-
strict the reachability of the involved hosts to a
minimum whenever possible, for example by only
making the ports on which Bro data sources can be
tapped available on a separate network.

5 Usage Example

We will now give a quick but illustrative example
of user interaction with the Brooery. Let us a as-
sume that we have been informed that on October
10, several users have noticed unusual connection
attempts to their machines. Our goal now is to find
out whether any relevant scanning activity was de-
tected that day. Figure 4 shows a Bro node’s log

archive, and we can see that the node has plenty
of information for October 10: there are 7 different
log types ranging from alarms over connection sum-
maries to worm events, reaching in time from the
beginning of September to the present at the time
the screenshot was taken. Horizontal blue bars in-
dicate the timeframes during which the Bro node
was logging events of a particular type. The blue
color is differentiated into two different shades, with
each color switch indicating the start of a new log
slice. Note that the bars cover the timeframe when
the IDS was ready to log, not the timeframe from
the first logged event to the last one — an impor-
tant semantical difference. For example, we can see
that the system was not monitoring at all for several
hours on October 16 and 18, and that worm event
logging was introduced on September 27. The small
vertical orange lines delineate compressed from un-
compressed archival, i.e., log entries residing on the
left side of an orange line are stored in compressed
fashion.

We specify a time interval covering that day, and
look at the contents of the alarms log. We then add
a filter on the alarm names that matches all entries
containing “Scan”, and obtain the result shown in
Figure 5. As can be seen, several hosts have scanned
a large number of machines, and we can now con-
tinue our analysis by looking at the connection sum-
maries for each of those hosts during the given time

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association116



period. To do so, we click on any of the shown IP
addresses, add a filter part for that address using
the option the context panel for IP addresses pro-
vides for this purpose, and switch the log type to
the connection logs.

6 Related Work

In [6], Hoagland and Staniford proposed SnortSnarf,
a web-based console for analyzing Snort alerts [7].
ACID8 is similar and additionally allows the gener-
ation of charts and statistics. Our system is super-
ficially similar to these, however our system is more
comprehensive in that it (i) can manage a wider va-
riety log types and (ii) structures log entries more
thoroughly due to typed column entries for stronger
semantic filtering across different log types. Sguil9

is close to our system in the sense that it acknowl-
edges the need for providing contextual information
for alerts such as connection logs and packet con-
tent. Our system differs from theirs in that filter
management in Sguil is less intuitive for the user
(who has to resort to SQL statements); also, Sguil
is implemented in Tcl/Tk and therefore not as read-
ily accessible as our web-based interface. A num-
ber of other user interfaces for Snort exist; they are
typically geared towards support for signature man-
agement and do not provide the flexibility to deal
with the wide range of log information provided by
Bro. In the commercial space, user interfaces are
often bundled with IDS products directly or offered
in the general Security Incident Management do-
main. As our focus is on open-sourced solutions, we
do not review the commercial domain thoroughly in
the scope of this paper.

7 Discussion & Future Work

The Brooery is work in progress and a prototyp-
ing testbed. We use it for experimentation with
different models for analyzing log information and
therefore feel it is important to point out that we are
currently primarily interested in different metaphors
for manipulating the log information; aspects such
as performance optimization remain secondary. So
far we have found the graphical instruments realiz-
able using HTML sufficient for our needs; it will be
interesting to see if this observation will apply to
future extensions to the system as well.

We currently see two main avenues for future work.
First, we need to augment Bro with a database
logging component that does not require funda-
mental modifications of Bro’s logging component.
Database-driven archival is very much a necessity
for robust log entry storage & retrieval, and, of
course, performance. Text-file based storage, while
familiar and to a certain degree manageable at the
command line, restricts performance and can some-
times pose technical difficulties. One avenue we are
considering for achieving this is to turn the act of
logging an event into an event itself. That way, the
implementation of the logging mechanism would re-
main up to individual event handlers, could happen
in multiple ways in parallel, and other event logging
systems (including the Brooery) could tap into the
stream of logged events using e.g. Broccoli and the
existing event communications framework. This ap-
proach would thus fit very nicely into Bro’s model.
Depending on the implementation of the event han-
dlers responsible for processing such logging events,
the events would then be stored in a text file, a
database, or processed in some other way. The
Brooery’s log entry model is geared towards easy
mapping onto relational structures; the main differ-
ence her are the semantically stronger types used at
within the log entry engine.

Second, we intend to investigate the requirements
for effective analysis of distributed events. We are
currently correlating events originating on multiple
Bro nodes using Bro’s event communication frame-
work; however, it is not yet clear to us what will turn
out to be the best visual metaphor for controlling
this correlation and visualizing the results.

8 Summary

We have presented the Brooery, a three-tiered ex-
perimental prototyping platform for graphical anal-
ysis of network activity reported by instances of the
Bro IDS. The system provides contextually relevant
drill-down features and supports different Bro log
archival back-ends; semantically strong and reusable
log entry matching based on AND/OR trees; filter-
ing, labelling, and aggregation of log entries; and hi-
erarchically typed log entry components. The Broo-
ery’s development is fully open sourced under a BSD
license. More details can be found at http://www.
icir.org/twiki/bin/view/Bro/BrooeryGUI.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 117



Acknowledgements

This work is carried out in collaboration with Intel
Research Cambridge, ICIR, and Lawrence Berkeley
National Laboratory. It was supported in part by
the U.S. National Science Foundation grant STI-
0334088, and the U.S. Department of Energy. We
would like to thank Vern Paxson, Jon Crowcroft,
and the other Bro developers for helpful discussion
and feedback, and the occasional brainstorming in
real-world “brooery” environments.

References

[1] Vern Paxson. Bro: A System for Detecting Net-
work Intruders in Real-Time. Computer Net-
works (Amsterdam, Netherlands: 1999), 31(23-
24):2435–2463, 1998.

[2] Robin Sommer and Vern Paxson. Exploit-
ing Independent State For Network Intrusion
Detection. Technical Report TUM-I0420, TU
München, 2004.

[3] Christian Kreibich and Robin Sommer. Policy-
controlled Event Management for Distributed
Intrusion Detection. In Proceedings of the 4th
International Workshop on Distributed Event-
Based Systems (DEBS’05), June 2005.

[4] Robin Sommer and Vern Paxson. Enhancing
Byte-Level Network Intrusion Detection Signa-
tures with Context. In Proc. 10th ACM Con-
ference on Computer and Communications Se-
curity, 2003.

[5] Secrets and Lies, pages 318–333. John Wiley
and Sons, New York, 2000.

[6] James A. Hoagland and Stuart Staniford. View-
ing IDS alerts: Lessons from SnortSnarf. Tech-
nical report, Silicon Defense, Nov 2000.

[7] Martin Roesch. Snort: Lightweight Intru-
sion Detection for Networks. In Proceedings of
the 13th Conference on Systems Administration,
pages 229–238, 1999.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association118




