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ABSTRACT

There are many deployed approaches for blocking unwanted
traffic, either once it reaches the recipient’s network, or
closer to its point of origin. One of these schemes is based on
the notion of traffic carrying capabilities that grant access
to a network and/or end host. However, leveraging capa-
bilities results in added complexity and additional steps in
the communication process: Before communication starts a
remote host must be vetted and given a capability to use in
the subsequent communication. In this paper, we propose
a lightweight mechanism that turns the answers provided
by DNS name resolution—which Internet communication
broadly depends on anyway—into capabilities. While not
achieving an ideal capability system, we show the mecha-
nism can be built from commodity technology and is there-
fore a pragmatic way to gain some of the key benefits of
capabilities without requiring new infrastructure.

Categories and Subject Descriptors

C.2.2 [Computer Communication Networks]: Network
Protocols—Applications; C.2.0 [Computer Communica-

tion Networks]: General—Security and protection

General Terms

Security, Design, Experimentation

Keywords

DNS, NAT, Capabilities

1. INTRODUCTION
The traditional principle of being conservative in what you

send and liberal in what you accept has strengthened the
Internet along many dimensions over the years. However, as
the volume and type of security threats multiply over time,
showing leniency towards unexpected traffic has diminishing
appeal. This change in attitude manifests in the widespread
use of firewalls, intrusion detection and prevention systems,
anti-virus systems and spam filters. These mechanisms are
put in place to implement conservativeness in terms of what
traffic is acceptable upon arrival. However, the senders and
the network itself remain blind to the decisions taken by
these recipient-centered mechanisms.

Several alternate mechanisms have been proposed to keep
unwanted traffic away from recipients, for instance to mit-

igate denial-of-service (DoS) attacks [11, 12, 23–25]. Addi-
tionally, the off-by-default concept includes notions in the
routing tables for what services are allowed at the recipient,
leaving the remainder unreachable [4]. An alternate pro-
posal is based on capabilities [1]. Using this approach, a
communication initiator must present a valid capability to
the network and end system in order to engage in communi-
cation. Many methods of obtaining capabilities are possible,
varying from asking a capability server which fulfills requests
at a limited rate, to presenting some credentials to authen-
ticate to the capability server before being granted access to
some sensitive service (e.g., a company’s file server). With-
out a valid capability, an initiator cannot even attempt to
access an end host. This can isolate end hosts from random
probing and vulnerability testing by attackers.

Obtaining a capability provides a new decision point
whereby the originating peer, the type of traffic, the in-
tended duration of communication, and other aspects can
be vetted before communication starts. Introducing this de-
cision point and enforcing its judgments naturally leads to
new complexity. The initiator must first obtain a capabil-
ity and then use it in all subsequent traffic. If the network
wants to enforce the capability, it needs to validate the ca-
pabilities as they traverse the network. Finally, the service
being protected has to furnish a server to distribute capabil-
ities. One suggestion to deal with a number of the logistical
difficulties is to use the DNS infrastructure to distribute ca-
pabilities [19, 20]. In this way, we do not need additional
infrastructure to serve capabilities, but they are simply in-
cluded as a component of a natural part of the process (e.g.,
a DNS response).

In this paper we ask the question: Can we simply use
the DNS request itself as the decision point in lieu of a dis-
tinct capability? The obvious answer to this question is
“no” since host names are simply abstractions for IP ad-
dresses which serve as the actual communication endpoints.
In other words, while a DNS server can refuse to answer
a query, that does not prevent the peer from accessing the
given host using an IP address (e.g., as cached from a pre-
vious lookup). However, if we were to borrow a notion from
the attackers’ playbook and allow services to flux across IP
addresses (a la fast fluxing servers within the underground
economy [21]) then DNS responses would gain prominence
as a required component of communicating with a server.
This observation leads to our proposal of a lightweight ca-
pabilities mechanism whereby the name of a service is sta-



ble but the IP address of the service is not and therefore
the IP address becomes the capability returned to a given
DNS query. Subsequent traffic that knows the IP address
(i.e., carries the capability) will be granted access to the end
host, while traffic arriving at a currently unused IP address
will be discarded.

Our approach allows (i) using DNS for the capability
setup logistics without requiring additional machinery and
(ii) the reuse of all the network’s considerable machinery for
acting upon traffic based on IP addresses. Our scheme does
sacrifice some properties of the original capability vision.
For instance, while traditional capabilities call for allowing
any element in the network to validate traffic we do not
enable such verification. Therefore, while traditional capa-
bilities can protect both a service and its network by keeping
unwanted traffic far away, our scheme can protect the service
itself, but not the service’s network (e.g., which could still
come under DoS attack). While our mechanism is less pow-
erful, we believe our approach of largely leveraging existing
technologies provides a pragmatic tradeoff between gaining
some of the benefits of capabilities while easing implemen-
tation. Further, with modest, optional additions to DNS,
we enable a collaboration between edge networks to prevent
unwanted traffic near the originator. While this does not
make the recipient “liberal” in what it accepts, it empowers
the originating edge network to be conservative in what it
sends and it sets up a situation whereby the actions of the
recipient are at least transparent (e.g., as suggested in [14]).

2. LIGHTWEIGHT CAPABILITIES
As sketched above, the basic idea of our proposal is to

flux server IP addresses so that clients are required to peri-
odically query the DNS for a server’s address. Such a mech-
anism turns the DNS lookup into a decision point whereby
the server’s network can decide to allow or deny service to
some client before that client can communicate in any way
with the server. Further, this prevents arbitrary clients from
probing to learn about a server (e.g., scanners).

We build the mechanism from existing technology, specifi-
cally DNS servers and Network Address Translators (NAT).
We assign each server in the network a static private ad-
dress. We then empower the DNS server to drive the trans-
lation table in the NAT. A granted capability manifests as
both a DNS response to the requesting client and a map-
ping between some unpredictable public address and the
private address of the server requested in the DNS query.
The translation in the NAT is set to expire when the TTL
given in the DNS response expires. As sketched, this ma-
chinery is confined to the server’s network. This eases the
deployment path because clients do not have to be mod-
ified. Further, it follows the natural incentives present in
the network, since the server’s network is ultimately the en-
tity with a direct interest in the server’s security. While
such a scheme is straightforward, a number of design issues
immediately arise which we tackle in the remainder of this
section. Issues surrounding an actual implementation will
be discussed in the next section.

2.1 Capability Decisions
A first question that arises is how a DNS server can make

a decision whether to grant a capability (i.e., return an IP
address) based on an incoming lookup. This is ultimately a
policy decision and therefore we do not tackle the particulars

of how an organization would go about vetting a lookup.
However, we note that several approaches are possible.

• Leveraging Previous Behavior: The output of an
institution’s general security monitoring infrastructure
(e.g., network- or host-based intrusion detection sys-
tems, server logs, scan detectors) can be distilled to a
blacklist of known malicious actors at any given time.

• Rate Limits: The DNS server could enforce a rate
limit for each protected server to limit the damage
from DDoS attacks that target specific servers. Of
course a rate limit in the DNS server merely moves this
attack to being a denial-of-capability attack. However,
the impact on legitimate clients is not increased with
our approach since a traditional DoS attack will likely
limit legitimate access to the given server. In fact, im-
pact on legitimate clients accessing other servers dur-
ing a denial-of-capability attack will be overall lower
than during a full-blown DoS attack. This is due to the
lightweight decision process at the DNS server, which
may be more challenging to overwhelm computation-
ally than some application servers.

• Strong Authentication: While not required, a
scheme whereby DNS requests are cryptographically
authenticated would allow the DNS server to verify
the requester.

There are additional mechanisms for making policy decisions
such as client puzzles [17] or assessing the client’s capabil-
ities in some fashion. These mechanisms can help address
traditional weaknesses of capabilities, such as “denial of ca-
pability” attacks [3]. Such extensions for negotiating with
and extracting additional information from a client will re-
quire additional DNS protocol machinery. While potentially
worthwhile, we defer such considerations to future work.

Finally, we note that in conjunction with granting a capa-
bility via a DNS response, the network can also leverage the
significant abilities of network elements to operate on traf-
fic involving particular IP addresses to further drive policy.
For instance, a synergistic policy could call for granting of a
capability followed by traffic shaping the resulting activity
to some low amount of the available capacity.

2.2 Coupling Capabilities with Activity
Often client hosts use institution- or ISP-provided DNS

resolvers to conduct DNS queries on their behalf [13]. These
DNS resolvers can serve a large number of clients, and of-
ten cache results. This makes correlating a particular DNS
lookup with subsequent traffic difficult at best. Hence, when
using DNS lookups as capabilities, the NAT will have no way
to concretely verify a valid capability was actually retrieved
for the given traffic. This could, for instance, allow for ca-
pability sharing whereby a host could retrieve an IP address
and share it across a botnet to DDoS a server. This lack of
strong coupling between capability granting and use in our
system can be mitigated.

With enough public IP addresses and a short enough TTL,
we could correlate capabilities and activity by mapping a
particular DNS resolver R to a unique public IP address A

for each queried server S. In this case, we can map activity
back to a DNS resolver regardless of the actual clients used.
This would then allow us to take broad action to thwart ob-
served problems—e.g., by removing the translation between



A and S. Additionally, since we can with high likelihood
couple traffic with an R, we can use this as input to future
policy decisions involving lookups from R. In § 3.3 we ad-
dress the issue of how much address space would be needed
to provide such a mapping.

Additionally, we can attempt to tighten access even more
using the AS numbers of the DNS resolvers. In the work by
Mao et al. [13], the authors found that 64% of clients were in
the same autonomous system as their local DNS server. This
provides a reasonable heuristic for default client-resolver as-
sociations, but can be further refined. With the unique map-
ping sketched above, a network could use history and some
additional heuristics to likely achieve better associations. If
associations between resolvers and client networks can be
determined, the destination can build its translation table
in the NAT such that the translations only work for hosts
within the identified networks. This serves two purposes.
First, it prevents arbitrary hosts not covered by a granted
capability from reaching the given server. Second, it allows
us to leverage the public IP address space further. For ex-
ample, some public address A could map to server S1 for
traffic arriving from network N1 and to server S2 for traffic
arriving from some other network N2.

An alternative approach to inferring the link between a
DNS resolver and subsequent traffic is to design a mecha-
nism to make that coupling explicit. This mechanism may
optionally be used to achieve the benefits described above,
at the expense of being a larger modification to DNS op-
erations. Contavalli et al. proposed a DNS option to allow
recursive resolvers to indicate the network that originated
the DNS query [6]. This option would provide authorita-
tive DNS servers with more detailed network information
about a query’s origin, allowing better responses for con-
tent distribution networks (CDNs). Google’s public DNS
service is already using the approach with particular CDN
partners [15]. We formalize this option into a mechanism
whereby DNS requests can carry an On-Behalf-Of (OBO)
annotation. This would give the netmask of the networks
served by the DNS resolver making a request.1 This would
allow a NAT translation table to be setup to only conduct
translations for the given networks and not more gener-
ally and hence makes capability sharing attacks—whereby a
NAT entry is instantiated by some request and then shared
widely with attackers—more difficult to mount.

An immediate problem with an OBO request is that DNS
requests are easy to craft and therefore it would be straight-
forward to send a DNS request that claimed to cover arbi-
trary address space to enable a capability sharing attack.
Our notion thwarts this by requiring OBO annotations to
include a verification IP address V in each advertised net-
work block. A reverse lookup on V should then yield the
same OBO information as advertised in the DNS request.
Additionally, the information in V ’s record may be signed
using DNSSEC [2]. In this fashion we force DNS resolvers to
control the reverse mapping of at least one address in their
claimed blocks. This requirement is problematic for alterna-
tive resolvers such as Google Public DNS [8] since the public
nature of the service means (i) there are no natural network
blocks they service and (ii) Google does not control the req-
uisite reverse DNS records. We could mitigate the problems

1Note that the netmask could be host-specific (i.e., a /32),
allowing only the specific client for which the DNS request
is being made.

surrounding such systems by requiring a small number of
whitelisted public DNS servers to provide the specific host
making the request. Such an approach makes the reverse
lookup less crucial because the capability sharing potential
is quite low. Further, we can generally trust that big service
providers such as Google are setting OBO properly based
on the request they receive and hence the chances of request
spoofing are low. Finally, in this fashion we can notice a
large volume of capability requests being laundered through
a public DNS server and apply appropriate policy to capa-
bility requests.

2.3 Dealing With a Crowd
We must also consider that when a DNS resolver acts

on behalf of a set of clients, the capabilities issued treat
all clients in this set identically. This will result in am-
biguous situations whereby a DNS resolver is serving both
well-meaning and malicious hosts and yet the granularity
of our capability mechanism is not fine enough to handle
this situation. We can handle this by blocking or throttling
hosts that are viewed as problematic (e.g., by an IDS). This
is no different from the current situation. However, given
that we have introduced a new decision point for granting
access to servers, our position is that we can design a more
transparent system.

In particular, we add another DNS annotation that al-
lows the granting of a capability with exceptions. So, a local
public IP address A might be returned in response to a DNS
query, but with an additional note that says “except for IP
address a.b.c.d”. In other words, the resolver should re-
turn the mapping to any of its clients except a.b.c.d. To
verify the authenticity of such exceptions, DNS responses
carrying them may be signed [7]. This exception could be
either within the announced OBO networks in the request
or presumed to be covered by the requesting DNS resolver
based on previously developed history (as sketched in § 2.2).
The server’s network would still be wise to block traffic from
the given IP address given that the DNS resolver may not
understand the annotation. However, by making the ser-
vice’s intentions clear in the returned capability we empower
the client’s network to do several things. First, the client’s
network could block the outgoing traffic, unburdening the
network from carrying traffic that does not represent use-
ful work and will ultimately be discarded. Second, it adds
transparency to the process—as advocated in [14]—in that
it indicates who is blocking traffic rather than the usual sit-
uation whereby all one can tell is the traffic is falling into
some black hole. Finally, it indicates to the client’s network
that the server’s network believes the given host is malicious.
In many cases the client’s network has a vested interest in
cleaning up such problems.2

2.4 Additional Considerations
We now briefly address several additional issues with our

lightweight capability mechanism.
Non-DNS-based Communication: Not all communica-
tion uses hostnames and therefore the DNS. For instance,
many peer-to-peer systems have different ways of determin-
ing IP addresses for peers in the system. A general capa-
bility system would incorporate these applications, yet our

2Obviously in some cases, such as a user employing Google
Public DNS, there is no strong relationship and this third
benefit does not hold.



lightweight mechanism that relies on DNS and uses IP ad-
dresses as the capabilities does not work for these applica-
tions. While this is a drawback, we believe there is still
much benefit to our system for standard infrastructure-level
servers (e.g., an institution’s web or mail servers).
Alternate Structure: We base our system on NATs, but
could instead simply make the servers themselves change IP
addresses. For instance, instead of making the DNS server
drive the translation table of the NAT, it could drive the al-
location policy of a DHCP server. One practical drawback
of this is that long-lived connections would be problematic
in the face of servers actually changing their network-level
addresses, whereas we have found NATs to handle long-lived
connections without trouble (see § 3). A second issue with
DHCP is that as discussed in § 2.2 and § 3.3 it is some-
times useful to assign more than one public IP address to
a host and making request multiple DHCP addresses at the
appropriate times adds additional machinery to the over-
all process. Assuming one could mitigate that problem, the
NAT-vs.-DHCP question is largely one of engineering trade-
offs and not one of fundamental differences.
Denied Capabilities: Given that our proposal calls for dis-
tinguishing wanted from unwanted traffic, there is a question
of what to do with the unwanted traffic. Ultimately this is a
policy decision. The default response to traffic that arrives
without a capability is to drop it because there is no trans-
lation table entry to direct the traffic. Another option is
to vector such traffic to a honeypot to learn about attacks.
Likewise, when a DNS server is going to deny a capability it
could instead give the requester a capability and translation
table entry that sends the client to a honeypot.
Richer Capabilities: As discussed in § 2.3 we could add
exceptions to the granted capabilities such that the ori-
gin network could potentially block traffic known to be un-
wanted. However, such exceptions are potentially just the
beginning of additional information that could be included
in the returned capabilities. For instance, records could in-
clude a notion that only the first N hosts or M connections
to contact the target server will be granted access, after
which a new capability will be required. This would provide
a further way to scope incoming traffic to deal with capa-
bility sharing attacks. The parameterization of capabilities
can be quite rich—for example, aggregate or per connection
capacity limits, concurrent connection limits, or host fan-in
limits could be used. Ultimately, such information in the ca-
pability may be ignored; given the loose nature of the system
we have proposed, the recipient cannot count on the origin
enforcing the specified policies. However, such annotations
are useful in two respects: (i) they make the policies at the
recipient more transparent, aiding the problem of opaque
network failures confounding users and administrators, as
sketched in [14], and (ii) this information allows the origin
network to understand how their traffic will be treated at
the recipient and hence plan for the best possible use of their
own resources (e.g., outgoing capacity).

3. IMPLEMENTATION
To validate our proposal and identify issues, we imple-

mented our approach in a small testbed. We used an Ubuntu
Linux system as our NAT and BIND9 as our DNS server.
We wrote a small tool to both update entries in our DNS
zone file and the translation mappings in the NAT (via
iptables). We used Windows XP, Windows 7, and Ubuntu

Linux for our clients. Further, we used the following web
browsers as clients: Mozilla Firefox 5, Google Chrome 10
and 12, and Internet Explorer 6 and 8.3 These browsers
together account for roughly 94% of web traffic [22].

In our unoptimized testbed, we find that updating a DNS
record takes about 13 msec and updating a NAT rule takes
about 4 msec. These delays suggest our capability mecha-
nism would add only minimal delays to connection establish-
ment. In addition, our small-scale testing has uncovered two
issues that need further attention. First, we find that NAT
translation tables do not always persist across updates lead-
ing to broken connections. Second, we find that DNS TTLs
are not universally honored and therefore our naive capabil-
ity system must cope with traffic to IP addresses that are no
longer valid. We consider these issues and their implications
further in the next two subsections. A final implementation
question that lingers is the amount of address space required
by our system. We tackle this in § 3.3.

3.1 NAT Issues
NATs must track two types of translations in their internal

tables. First, a table N maps an external IP address to an
internal IP address for new connections. A second table E

tracks established connections via the ephemeral port num-
ber in the transport protocol header. In our scheme, table N
is controlled by the DNS server. If table E is cleared when
the corresponding entry in table N is updated, the NAT
will sever ongoing communication every time a capability
expires and needs to be updated. We find these mappings
to be independent in the Linux and OpenBSD NAT imple-
mentations. Therefore, changing (or expiring) a capability
has no impact on established connections. However, in the
NAT implementation in a Linksys WRT54Gv2 router, we
found that changes to N do in fact clear the corresponding
connections in E and therefore interrupt connections.

The Linksys results are not particularly troubling because
(i) this is a small client-side device that is not suitable for
the sort of infrastructure-level task we propose in this paper,
(ii) with our mechanism, the NAT device is controlled by the
operators protecting the servers and so they can ensure the
NAT treats the N and E tables independently, (iii) NATs
must have two tables as we have sketched above and so any
linkage between the two is artificial and can be detangled
in the NAT implementation if necessary, and (iv) the Linux
and OpenBSD implementations show that some NATs do in
fact behave in the required fashion already. Therefore, we
believe that while care must be taken to ensure a given NAT
is working as intended, this problem is not burdensome.

3.2 TTL Issues
A larger issue with our proposal is the use of expired

hostname-to-IP address mappings. Previous studies have
found the use of expired DNS entries [16]. Likewise, our
testbed measurements illustrate the problem. All client op-
erating systems we tested honor the TTLs returned in DNS
responses. However, in an effort to mitigate cross-site script-
ing attacks [9] web browsers “pin” hostname-to-IP address
mappings without regard for the TTL in the DNS response.
All the browsers we tested pin. Internet Explorer is the most

3This browser-centric test will be motivated below as we
find that most of the problems with our approach involve
web traffic.



Network Conns. Within Outside
DNS TTL DNS TTL

ICSI 443K 310K 133K (30.1%)
CCZ 817K 753K 64K (7.9%)
LBNL 6.1M 5.2M 838K (13.8%)

Table 1: DNS and Connection Behavior

egregious by pinning for 30 minutes after the DNS lookup.4

Given the results from our testbed that browsers often do
not honor DNS-given TTLs, we turned to empirical mea-
surements of traffic from several vantage points. At each
site we analyzed all outgoing connections on June 30, 2011
in addition to DNS query logs. We gathered data from the
Lawrence Berkeley National Laboratory (LBNL)5 which en-
compasses activity from 3-4,000 users and the International
Computer Science Institute (ICSI) which covers roughly
100 users. Additionally, we collected data from a fiber-to-
the-home residential network run by Case Western Reserve
University (the “Case Connection Zone” or CCZ). We fur-
ther winnowed the data by ignoring connections for which
we did not see a DNS response containing the remote peer’s
IP address.6 Table 1 shows high-level results. DNS TTL
violations are not rare in any of the networks we observed,
ranging from 8–30% of the connections.

In Figure 1, we show the distribution of the time interval
between a DNS response expiring and the use of the given
remote IP address. We find a number of cases where the in-
terval is short (≤ 10 sec) and likely reflects a coarse-grained
expiration procedure in DNS resolvers. However, there are
also many cases whereby the use is an egregious violation
of the TTL. For instance, we find that in the LBNL dataset
18% of the invalid uses come more than one hour after the
name expiration. In all three networks, we find that web
browsers are the predominant user of expired name-to-IP
address mappings accounting for at least 90% of the invalid
uses. While we do not delve into these results in great detail
here, the relative frequency of the phenomenon is clearly an
issue our capability mechanism will face.

Dealing with the issue of remote peers employing expired
DNS results is ultimately a policy issue. We outline three
strategies for addressing this issue, but since it is a policy is-
sue, different networks can choose different courses of action.
The possibilities include:

• One approach is to accept that the clients are bro-
ken and let them handle communication failures after
the NAT entry (i.e., capability) expires. While this
requires no additional complexity at the server and
forces the system to work as specified, it may alienate
fickle users (e.g., potential customers).

• Another approach is to grant capabilities for long pe-
riods of time such that the impact on mis-behaving
clients is reduced. This prevents broken communica-

4On the other hand, IE6 is the only browser we tested that
will timeout and ultimately load the page when an IP ad-
dress pin is wrong. However, this behavior changed in IE8.
5Note, due to a measurement glitch, we use only 15 hours of
data from the laboratory due to missing DNS logs outside
of this range.
6For example, peer-to-peer applications do not use the DNS
and directly route traffic using IP addresses.
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tion and errors for the user, but may be too coarse-
grained to effectively deal with problems as they arise.

• While the above two methods are bounds on the solu-
tion space, the third approach aims to strike a balance:
the NAT tracks the remote hosts that have used a map-
ping, and rather than completely expiring translation
table entries, we can tighten the mappings to continue
to allow only those hosts previously observed as us-
ing the translation for some grace period. This allows
the NAT to restrict new use of the capability while at
the same time taking steps to not break current and
benign behavior. Further, this directly addresses “pin-
ning” because the translation table tightening is done
on a host level and the problems caused by pinning
are caused by hosts that have previously used a par-
ticular lookup. The grace period may be defined such
that it does not cover all cases of client mis-behavior
and hence there is an incentive for the clients to move
towards conformance.

A related issue is the impact of DNS pre-fetching, which
is becoming popular in browsers to reduce the waiting time
users experience after clicking on a link. As long as the
TTL returned in a pre-fetched DNS response is respected,
the practice has no impact on our capability mechanism.
However, if a browser were to employ both DNS pre-fetching
and IP address pinning the grace period described above
would not ameliorate the potential problems. In this case,
the browser would both pin an IP address to a name and
not generate any traffic for some time period after the name
resolution. So, simply allowing hosts to continue using a
binding they have previously used for some grace period is
not possible since there has been no use.

We ran quick experiments with Chrome and Firefox and
have found that the pre-fetching process simply warms the
operating system’s DNS cache (as explained for Chrome
in [18]). Indeed when we click a link with a pre-fetched
hostname after the DNS TTL has expired the hostname is
resolved a second time. This means there is no browser-
level pinning and hence our capability mechanism will work
as expected for these two browsers.

3.3 Address Space Requirements
Our capability system obviously requires some amount of

public IP address space, but an outstanding question is how



many addresses are required. In some sense, our scheme
requires no new address space. For instance, if an edge net-
work has N Internet-facing servers now, then all our scheme
calls for is the random rotation of the corresponding N ad-
dress to different servers. We may leverage a small number
of additional addresses to cushion the transition of a ma-
chine from one IP address to another.

While this minimal set of addresses is in some ways suffi-
cient, it is not ideal. As sketched in § 2.2, to be able to trace
behavior back to particular DNS resolvers, allowing future
capability requests can be handed out more judiciously, we
would like to hand out a unique mapping from a public ad-
dress A to a private address S for each DNS resolver R that
seeks a capability. We can then assume with fairly high like-
lihood that traffic to A for the given TTL in the response is
from hosts associated with R.

To assess the feasibility of the mapping described above,
we analyzed roughly 30 hours of traffic logs from LBNL.7

We found 8.4 million successful incoming connections to
roughly 2,000 servers. We then simulated the evolution of a
translation table required for assigning each client a unique
address8 for each internal server while assuming TTLs of
20 seconds. We find a required peak table size of nearly
2,200; however, the median is less than 1,200 and the 99th

percentile is roughly 1,400. In fact, across the 30 hours, we
found we needed more than 2,000 addresses (which we know
to be available as they are employed by the servers today)
for only 19 seconds. Increasing the pool by 10% compared to
the current allocation would leave us fully covered. We also
note that while small DNS TTLs will result in more DNS
traffic, previous studies have shown that TTLs in the range
of 20 seconds do not adversely impact the DNS process [5].
Further, when using DNS replies as capabilities long TTLs
do not provide for fine-grained control and hence are likely
not desirable.

As a second data point we also ran the simulation using
TTLs of 60 seconds and as expected this increased the nec-
essary table size—with a required table size exceeding 2,000
over 80% of the time. When more table entries are required
than them number of local public addresses available, we
will have to map more than one R to a given A, which may
degrade our ability to map activity to capabilities. Over
long time periods, we still may be able to assess traffic from
particular networks. For instance, if we observe unwanted
traffic on some given A we can start to isolate the resolvers
given A in an attempt to isolate the bad actors and hence
use a different capability allocation process (or the exception
mechanism outlined in § 2.3) in the future.

We stress that the above results are illustrative, not con-
clusive. The results show the behavior at one institution
and should not be taken as “representative” or “typical”
of other enterprise networks. While promising, future work
will develop an understanding of the requisite server pool
size with data from a range of edge networks.

A further refinement would be for the capability server to
take into account open server ports during the allocation.

7Note, the missing DNS logs that winnowed this dataset to
15 hours above does not impact our analysis here as we dis-
regard the normal DNS process to simulate our own system.
8Note, assuming no clients share a DNS resolver is the worst
case. We ran an experiment considering clients within the
same /24 as using the same DNS revolver and, as expected,
this results in a smaller required translation table.

Consider two servers: S1 running only a web server and
S2 running only an email server. Now assume resolver R1

looks up S1 and resolver R2 looks up S2. If the capability
server understands this configuration, the DNS server could
map both of these servers to a single public IP address A

and the resulting traffic could be traced back to R1 and R2

by leveraging the destination port number in the incoming
traffic (since these two requests were for different hostnames
and hence different protocols). Assuming a network has
a number of servers with non-overlapping open ports, this
offers an avenue for further public address savings.

Finally, we note that the question of a unique mapping
becomes nearly moot if IPv6 is employed. Under such a sce-
nario an edge network will have more than enough addresses
to flux servers randomly and give each resolver R a unique
A in the address space for each server S.

4. DISCUSSION
We have designed a scheme that roughly approximates the

traditional capability notion. Traditional capabilities offer
an architecture whereby clients are pre-approved to commu-
nicate with servers. This pre-approval is done in a way that
any network element can discard traffic that does not carry
an approval. Therefore, both the server and the server’s net-
work are protected because malicious traffic targeting either
will be discarded well before it arrives at the destination
edge network. While our approach does not offer the same
degree of protection, we believe it does offer a useful point
in the design space, as follows.

• The cost of our approach is lower than traditional
capabilities since we are leveraging several pieces of
the current system: DNS servers become capability
servers, IP addresses become capabilities and NATs
become capability enforcers. In the basic case only the
server’s network needs to change. The worst case from
a deployment perspective includes also involving DNS
resolvers. This contrasts with involving every network
element in the case of traditional capabilities.

• As with traditional capabilities, when no clients have
been given access to a particular server the server is
completely unavailable. Therefore, even scanning will
not find hosts that are not being legitimately used.

• Using our approach, a server does not have a fixed
location in the IP address space. Therefore, before
legitimate communication a client will naturally per-
form a DNS resolution. In the basic case, once a ca-
pability is granted to one client and a translation is
setup in the NAT then any host on the Internet can
use that translation. To do so the remote host must
either know about the translation or stumble upon it
via probing (during the limited window the server is
available on the given IP address). We conclude that
our approach mostly keeps traffic without capabilities
away from protected end systems.

• There is more vulnerability to scanning in our scheme
compared to a traditional capability scheme. How-
ever, our scheme also raises the bar for scanners to be
successful. First, fluxing servers across IP addresses
makes IP-based hit lists ineffective. Further, scan de-
tectors work by observing that legitimate traffic is usu-



ally productive, whereas scanning is often unproduc-
tive because scanners are guessing at targets (e.g., this
manifests as an incoming SYN to a non-existent host
or closed port) [10]. By fluxing servers constantly we
make it more likely scanning traffic will be unproduc-
tive and hence scanners can be readily identified. Fi-
nally, returning to a particular server is more difficult
because of the lack of a stable IP address.9

• Through the use of On-Behalf-Of annotations (§ 2.2)
and capabilities with exception (§ 2.3) we can winnow
down the set of hosts that can take advantage of a par-
ticular NAT table translation. This further protects
the server.

• As noted above, traditional capabilities protect the
server’s network and our approach does not. By is-
suing capabilities with exceptions our approach can
empower the client’s network to block unwanted traf-
fic and hence modestly addresses the pushback notion
of traditional schemes.

5. CONCLUSION
We have described an approach to implementing capabil-

ities with only a restructuring of currently prevalent tech-
nologies (i.e., DNS servers and NATs). The system bor-
rows the notion of IP address “fluxing” from botnets to pre-
vent arbitrary hosts from connecting to particular servers.
Rather, by making a DNS request for the server’s name the
client is given the current address of the server, which acts
as a capability. This changes the DNS from a handy ab-
straction into a decision point in the system. By denying
a DNS request, the server can thwart communication. We
have built a small version of this system and explored the
issues in realizing our approach. While our analysis is pre-
liminary, the approach is shown to be promising.
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