
CloudPolice: Taking Access Control out of the Network

Lucian Popa
U.C. Berkeley / ICSI

Minlan Yu
Princeton Univ.

Steven Y. Ko
Princeton Univ.

Sylvia Ratnasamy
Intel Labs Berkeley

Ion Stoica
U.C. Berkeley

ABSTRACT
Cloud computing environments impose new challenges on
access control techniques due to multi-tenancy, the growing
scale and dynamicity of hosts within the cloud infrastructure,
and the increasing diversity of cloud network architectures.
The majority of existing access control techniques were orig-
inally designed for enterprise environments that do not share
these challenges and, as such, are poorly suited for cloud en-
vironments. In this paper, we argue that it is both sufficient
and advantageous to implement access controlonly within
the hypervisors at the end-hosts. We thus propose Cloud-
Police, a system that implements a hypervisor-based access
control mechanism. We argue that, not only can CloudPolice
support more sophisticated access control policies, it cando
so in a manner that is simpler, more scalable and more robust
than existing network-based techniques.

1. INTRODUCTION
Cloud computing brings the “pay as you go” model to

data centers. In particular, theInfrastructure as a Service
(IaaS) model allows clients to dynamically scale up/down to
as many machines as needed inside the cloud.

A major hurdle to the widespread adoption of this model
is security, as customers often want to export sensitive data
and computation into the cloud. Threats arise not only from
privacy leaks at the cloud operating company (outsourcing of
data center management is in fact common) but also due to
the multi-tenant nature of clouds. For this reason,network-
level access controlpolicies are a critical component for
preserving security when migrating to the cloud computing
model. For example, tenants would want their traffic to be,
by default, isolated from all other tenants.

Today, access control in cloud environments is typically
provided using techniques such as VLANs and firewalls. Th-
ese techniques, however, were originally designed for enter-
prise environments and as such are ill suited to meet the chal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10,October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

lenges unique to cloud environments. Specifically, we argue
that existing techniques are challenged by four key charac-
teristics of emerging cloud environments: multi-tenancy,di-
versity in cloud network architectures, the large scale andthe
high dynamism of cloud infrastructure. We expand on each
of these challenges in what follows.

Multi-tenancy introduces new requirements to access con-
trol as intra-cloud communication (i.e., provider-tenant and
tenant-tenant) is becoming more popular. For example, Ama-
zon provides their tenants with services such as SimpleDB
and Simple Queue Service (SQS); there are also tenants that
provide services to other tenants,e.g.,mapreduce++ and desk-
top services [2]. The intra-cloud communication is likely
to require new types of access control policies such as fair-
sharing between tenants, and rate-limiting tenants as we will
discuss later in this paper (§2). VLANs and firewalls do not
offer the flexibility to implement these new types of policies.

Network-diversity is another new challenge for access con-
trol. The architecture of data centers has evolved signifi-
cantly from that of the traditional enterprises and is currently
in flux, with many new architectures being proposed [8,15–
17]. These new architectures typically employ multiple paths
and require specific routing algorithms and address assign-
ments. Therefore, they severely limit the applicability of
current mechanisms such as VLANs and firewalls (as we
discuss in §4).

Furthermore, today’s clouds house tens of thousands of
physical machines, and even more virtual machines that are
constantly added and removed (AWS [3] reports over 100K
VMs started per day). Current access control mechanisms
were not designed to handle such scale and churn. For ex-
ample, firewalls have problems scaling to large numbers of
entries and coordinating access control across multiple fire-
walls is complex (as described in §4), while VLANs do not
support dynamic configuration, are limited in scalability and
complex to setup and configure [25, 28]. More generally,
our observation is that as clouds scale to large numbers of
users (AWS reports over 10K users), they will face many
of the problems traditionally associated with the public In-
ternet, including DoS attacks between cloud tenants. Such
attacks are known to be very difficult to tackle [9,10,26,27]
but are not typically the concern of (internal) enterprise ac-
cess control mechanisms.

Therefore, we believe that these challenges call for a new
access control mechanism that provides three properties: (1)

1

flexibility in providing support for policies in multi-tenant
environments such as tenant isolation, fair-sharing, and rate-
limiting policies, (2)network-independencein decoupling
access control from the network topology, routing and ad-
dressing, and (3)scalability in handling hundreds of thou-
sands of machines and users.

In this paper, we argue that it is both sufficient and advan-
tageous for access control to be implemented only at the end-
hosts, within hypervisors. We propose CloudPolice, a new
access control mechanism implemented in hypervisors that
provides the above properties. Since hypervisors have full
software programmability, CloudPolice can provide a broad
class of access control polices needed for multi-tenancy. In
addition, by embedding access control into the hypervisors,
our solution is independent of the network architecture and
we are avoiding needlessly tying the development of access
control to that of specific network equipment and protocols.

For scalability, CloudPolice proposes a distributed solu-
tion, where hypervisors communicate with each other to in-
stall access control state. More specifically, CloudPolice
uses a runtime approach inspired by network capabilities [26,
27] and push-back filters [9, 19]. Similarly to how desti-
nation end-hosts push blocking and rate-limiting filters into
the network in these proposals, in CloudPolice hypervisors
of destination VMs push blocking and rate-limiting filters to
the hypervisors of the source VMs according to the access
control policies of destinations. The reason CloudPolice is
easy to deploy compared to the work on Internet capabilities
is that in a cloud environment the data-center operator con-
trols both end-points (source and destination) through the
hypervisor, and therefore avoids complex in-network mech-
anisms to rate-limit/drop packets.

Next we define a set of network access policies desirable
in clouds and then present the design of CloudPolice.

2. CLOUD ACCESS CONTROL POLICIES
In this section, we examine a few examples of access con-

trol (AC) policies that we believe are important for multi-
tenant clouds; our focus is on intra-cloud traffic. Several of
these policies bring new challenges to cloud policy support
and are not supported by existing AC mechanisms or cloud
provider APIs. From these examples we then derive a policy
model and use it to guide the design of our proposal.

Note that the AC policies should have the ability to be
defined at a finer granularity than per tenant,e.g.,for intra-
tenant policies. In this paper, we refer to the security prin-
cipals used in the AC policies asgroups; this means that a
common policy can be defined for all the VMs belonging
to the same group and also that policies can be based on
(source/destination) groups. A group can be viewed as sim-
ilar to an AWS security group [3].

2.1 Example Types of Cloud AC Policies

Tenant Isolation: The simplest and most common type of
AC policy is to block all traffic from other tenants (in partic-
ular groups) and this is the default policy in the current cloud
environments. Isolation prevents hosts from being compro-

mised and blocks DoS attacks if correctly implemented,i.e.,
if the traffic from the other tenants is blocked at the source.
Note that DoS attacks in the cloud environment can be easier
to mount than in the Internet because attackers may not need
to compromise hosts to create botnets, but can also simply
pay for the attack hosts. Traffic isolation is traditionallyim-
plemented by VLANs, which, however, are not a good fit for
the cloud environment (§4).
Inter-tenant Communication: We expect that the shared
environment of cloud computing will enable users to offer
each other services more easily than with traditional busi-
ness models, due to the close coupling between the users’
machines (i.e.,with small latency and large bandwidth). For
example, real time advertising [4, 5] is a fast growing ad-
paradigm that requires low latency between advertising pro-
viders and providers of web content (which are advertising
consumers). Cloud computing offers the perfect environ-
ment for such a collaboration between tenants. This example
requires the ability to communicate between the ad provider
and the ad consumer (for ad bidding, ad retrieval) and to
isolate the traffic from the other consumers to avoid DoS at-
tacks.1 Even this simple communication pattern is not well
supported by the traditional enterprise mechanisms such as
firewalls and VLANs in the cloud environment (§4).
Fair-Sharing among Tenants: Since multiple tenants may
access the services offered by one tenant or by the cloud
provider, the entity offering the service may want to imple-
ment bandwidth fair-sharing among the groups accessing the
service. For example, tenants that have more machines or
higher available bandwidth (e.g.,are better positioned in the
network topology) should not be able to get better service
nor impact the services available to other tenants more than
their fair share. This is not a feature supported by traditional
AC mechanisms, but we believe that it should be supported
in cloud computing. Scenarios that show the importance
of fair-sharing are storage and database services,e.g.,Ama-
zon’s SimpleDB and Simple Queue Service (SQS).
Rate Limiting Tenants: As a mechanism, rate-limiting is
required by AC to implement the previously mentioned fair-
sharing policies. But we argue that in clouds rate-limiting
is also important as a policy. For example, in a cloud that
charges for bandwidth usage, one tenantAmay want to rate-
limit on tenantB when accessingA’s services. In this case,
attackers can financially damage their victims by increasing
the bandwidth usage of each VM being attacked; the “pay-
as-you-go” pricing model will automatically charge the vic-
tim. Moreover, tenants and cloud providers may implement
elastic services that automatically add more VMs if the de-
mand increases (e.g.,AWS auto scaling). Thus, if there is
a DoS attack, more VMs will be added automatically; the
charge for the added VMs will fall to the victim.

1A mechanism for isolation that also protects against DoS attacks
can be very important for services such as bidding and betting,
where tenants can indirectly influence each other’s bids / bets by
creating large drop packet rates for those services.

2

Allowing Locally Initiated Connections: A common envi-
sioned usage of cloud computing is for virtual desktops [2].
The machines hosting the virtual desktops could use various
services also located inside the cloud (to take advantage of
the low latencies and large bandwidths), such as SMTP, HR
database, EPMAP, a service provided by Facebook,etc.Dif-
ferent users with different security credentials can log inthe
virtual desktop hosts. In these circumstances, it is hard to
know in advance what cloud services will be accessed by
the virtual desktops. Therefore, it is desired to allow incom-
ing traffic from all of the other groups (of the same tenant
or not), but only in response to connections initiated by the
virtual desktops. This behavior is typically implemented by
stateful firewalls and is not available in current cloud provi-
der APIs.

2.2 Policy Model
From the previous examples, we abstract a general AC

policy model to be supported by cloud providers.
We use the following definition for an AC policy: an or-

dered list ofrules of the form: if Condition then
Action. TheCondition is represented by a logical ex-
pression containing one or several predicates connected th-
rough logical operators. Each predicate can be defined based
on: (1) the group of the sender/receiver, (2) the packet header
fields (e.g.,the five tuple), (3) the current time and (4) state
recording the history of past traffic. The predicate is an arith-
metic expression using comparison operators (=, ! =, >, <)
and constants,e.g.,port = 80. TheAction can be: (1)
allow, (2) block and (3) rate limit traffic.2

We refer to conditions that are not based on recorded state
about past traffic asstateless, and the remaining asstate-
ful. The form of the recorded state could be arbitrary; from
our examples, we propose a basic set of four types of state:
(1) Incoming Flows: the number, arrival rate and duration
of flows incoming from a given source host/group, (2) In-
coming Bytes: the number and rate of received bytes from
a given source host/group, (3) Outgoing Flows: the locally
initiated flows, (4) Rejected flows: the number of locally re-
jected TCP connections typically indicating port scanning.

Actions can be applied at the granularity of a flow, ma-
chine or group,e.g.,limit all flows belonging to a group to
a total maximum rate. Blocking/Allowing traffic at a gran-
ularity larger than a flow can be a useful hint for the AC
policy engine to reduce the necessary state,i.e., not keep
per flow blocking state, but rather block entire hosts. Rate-
limiting can be specified using an absolute rate value or a rel-
ative weight. Due to space constraints, we do not elaborate
on conflict resolution between rules; we note, however, that
conditions with per-flow granularity should typically only
trigger per-flow actions (rather than per-VM or per-group).

2The described policies do not offer the ability to impose mid-
dleboxes as allowed by, fore.g., the policy framework described
in [11]. Due to space constraints and since these policies may be
less relevant to clouds, we do not discuss them here (see also§5).

3. CloudPolice
There are several design options for implementing the pol-

icy model and policies discussed in §2. In CloudPolice,
we choose a hypervisor-based approach because hypervisors
are (1)trusted, (2) network-independent, (3) close to VMs
(and thus can block unwanted traffic before reaching the net-
work), and (4) have fullsoftware programmability. Next, we
discuss the rationale behind our design and then present de-
tails of our specific mechanism and analyze its security.

3.1 Design Space
Although the AC policies are defined by the destination,

the policies should be enforced close to thesourcerather
than at the destination. This prevents unauthorized traffic
from abusing the network (e.g.,causing congestion, mount-
ing DoS attacks,etc.).

A naïve solution is to install all policies and the entire
mapping between active VMs and groups in all hypervisors.
In this way, the source hypervisor can directly apply the pol-
icy of the destination to all the flows sent by its hosted VMs.
Unfortunately, this solution scales poorly due to the high
churn rate expected for the active VMs. For example, AWS
reports about 100K new VMs started per day; in a 100K
server infrastructure [3, 6, 14], this translates into morethan
100K update messages sent per second on average (peak up-
date rates would likely be much higher).

Another extreme solution is to distribute no policies to hy-
pervisors, but use a centralized repository for policies and
group membership. Hypervisors then consult this repository
for each new flow and possibly cache the AC policies. How-
ever, the centralized resolution service is likely to represent
a tempting target for DoS attacks. Moreover, the central-
ized service has to sustain very high availability and low re-
sponse times. For example, assuming an average of 10 new
flows per second per server [24], and a 100K server cloud,
the centralized service would need to process 1M flows per
second on average (again, with higher peak rates expected).3

For these reasons, we propose adistributedsolution. In
CloudPolice, hypervisors need only know the policies of
their hosted VMs and not the policies of any other group in
the cloud, nor the group membership. In order to learn which
flows should be allowed, blocked or rate limited, CloudPo-
lice uses aruntimeapproach in which hypervisors communi-
cate with one another using a secure channel as we describe
next. In designing this technique, we have drawn inspiration
from previous approaches on preventing DoS attacks in the
Internet such as push-back filters [9, 10] and network capa-
bilities [26,27].

3.2 CloudPolice Overview
Fig. 1 shows a high level description of the operation of

CloudPolice. When a new flow is initiated by a VM, the
source hypervisor sends acontrol packetspecifying the se-
curity group to which the source VM belongs to; this packet
3Note also that caching may be ineffective since the traffic isex-
pected to be randomly distributed [20, 24] and since policies and
VM locations change in time.

3

VM VM
Src.

VM
VM

Dst.

VM

= data packet between VMs

= secure control packet between hypervisors

Hypervisor Hypervisor

Destination hypervisor checks

p yp

= CloudPolice

2

= Filter for incoming/outgoing traffic

= AC Policy of destination VM

Source hypervisor sends a packet

with group of source VM before flow

yp

policy of destination VM

Destination hypervisor may respond with
“shut-off” or “rate-limit “ messages

1

3

Figure 1: CloudPolice Overview

is sent before the the packets belonging to the flow (step
1). When the destination hypervisor receives such a control
packet, it checks the policy for the group of the destination
VM (step 2). If the policy allows the traffic, the destina-
tion hypervisor creates state for this flow; subsequent pack-
ets will be forwarded up to the destination VM by using this
entry. If the traffic is not allowed or should be rate limited,
the destination hypervisor will send a control packet back to
the source hypervisor to block or rate-limit the flow or the
VM (step 3). By default, VMs are blocked if the policy con-
tains no rule for that traffic.

3.3 Detailed Design

Soft State: CloudPolice maintains soft state (i.e., removed
after expiration) to enforce the policy actions (block, remove
and rate-limit). After the expiration of the soft state, theen-
tire process for setting up the state is restarted. Soft state
makes it easier to support VM migration and handle packet
losses. In our current design, revocation is also handled th-
rough the expiration of the soft state. However, explicit state
invalidation on policy updates could be implemented, by us-
ing control packets between hypervisors in a similar fashion.
Control Packets: There are three types of control packets
sent between hypervisors: (a) sent by a source hypervisor
(step 1 in Fig. 1), (b) sent by a destination hypervisor to
block or rate limit the traffic (step 3 in Fig. 1) and (c) sent by
a destination hypervisor to query the source hypervisor, as
we will describe later. For case (a), the packet contains the
header of the first data packet of that flow, which is used for
the destination hypervisor to check its policy. For case (b),
the packet specifies if the action should be applied per flow
or per VM and the value of the rate limit; to block packets
the rate limit is set to zero. Control packets are distinguished
from the rest of the data packets by using a special transport
protocol number in the IP header (e.g.,the protocol number
254, reserved for testing).
Lost/Reordered Control Packets:First, assume the packet
sent by the source hypervisor containing the group of the
source VM (type (a) above) is lost. If a destination hyper-
visor receives a flow for which it has no entry, it sets up a

querying state for the flow and sends a “querying” control
message to the source hypervisor (type (c) aforementioned).
At the receipt of the querying message, the source hyper-
visor resends the type (a) control packet. There is a timer
associated with the querying state and a new request is made
to the source hypervisor when it expires,i.e., in the case the
querying control packet is lost. Second, assume a type (b)
control packet, sent by the destination hypervisor, is lostand
the destination receives unwanted traffic. In this case, the
destination hypervisor sets up a short term state to block the
incoming traffic, waiting for the shut-off message (in Fig. 1)
to arrive at the source hypervisor. If packets are still received
after a short timeout, the destination hypervisor sends back
another shut-off packet. In case of rate limiting, the des-
tination monitors the incoming rate and if the limit is not
respected, it sends back a new control packet to the source
hypervisor.
Policy Updates: We envision two models for distributing
and updating policies to hypervisors. In the first model, the
cloud provider uploads the group policy to the hypervisor
at the VM startup and updates it at all the group members
when the policy changes. Since policy changes should be
infrequent, we do not expect this service to be a burden for
the cloud provider. In a second model, VMs can directly
communicate their policies to hypervisors. This model does
not require a policy management service from the cloud pro-
vider but requires and additional API in both the hypervisor
and the VMs.
Global Policies: Some policies may require hypervisors to
have knowledge about all the VMs belonging to a group.
For example, a policy might specify that the aggregate traf-
fic from all the VMs of groupA to be rate limited when ac-
cessing the VMs of groupB. Such a policy requires commu-
nication between the hypervisors hostingB’ VMs since the
decision should be taken using an aggregate state; this re-
quires hypervisors to know all the members of the group for
their hosted VMs. Due to space constraints we do not dis-
cuss such policies in this paper, but we note that techniques
such as in [22] can be applied.

4

3.4 Security Analysis
We now analyze possible attacks originated in-cloud by

either malicious tenants or compromised VMs. We consider
three classes of attacks: (1) bypass the CloudPolice poli-
cies and reach a destination VM with unauthorized traffic,
(2) mount a DoS attack using unauthorized traffic, and (3)
mount DoS attacks by using authorized traffic. Next we dis-
cuss how CloudPolice addresses each of them.
Bypass CloudPolice Policies:There are two potential cases
in which a VM could receive undesired packets that bypass
its policies. The first case is obviously when the hosting hy-
pervisor is compromised. However, when a hypervisor is
compromised, access control is not the main concern. For
example, through compromised hypervisors attackers might
directly corrupt and spoof on private data of other tenants
on the same machine. Therefore, we do not consider com-
promised hypervisors in our threat model. The second case
is when a hypervisor receives fake information about the
sender. This could occur even without compromised hyper-
visors,e.g.,if VMs could inject spurious control packets into
the network. To prevent this case, CloudPolice requires hy-
pervisors and ingress routers to drop control packets incom-
ing from VMs or external traffic; thus, only hypervisors can
send control packets.4

DoS with unauthorized traffic: Attackers can attempt to
DoS a victimV by sending it unauthorized traffic. To enable
unauthorized traffic to reachV, two types of attacks can be
attempted. First, an attacker VMX can try to prevent control
packets from reaching its hypervisorHX . In this way,HX

would not know thatX’s traffic should be blocked. To mount
this attack,X’s group can floodHX (possibly with authorized
traffic), and in this way induce losses of control packets. A
simple fix for this attack is to prioritize control packets in
switches (most switches today support QoS). But note that
even in the absence of traffic prioritization, with a loss rate
of 50%, only two control messages are required to block one
VM. In an second attack,X tries to exhaust the filters avail-
able at hypervisors (eitherHX or V’s hypervisorHV). In the
unlikely event for this to occur (since we expect CloudPo-
lice to store a small amount of memory and memory to be
abundant), CloudPolice can aggregate the per-flow state into
per-VM state and block the VMs that have a significant frac-
tion of their flows blocked.
DoS with authorized traffic: AC policies ensure that only
authorized traffic will compete for the bandwidth. However,
AC does not protect against floods of authorized traffic be-
tween colluders that have access to a shared link with the vic-
tim (a well known limitation of network capabilities [27]).
Unfortunately, due to the virtualized environment, this situ-
ation is much more common in clouds than in the Internet.
For example, an attacker can attempt to DoS a VMV by
sending a lot of authorized traffic to VMX located on the
same physical machine withV.

4For this reason, CloudPolice does not require packet encryption
or other security protocols to protect control packets, andthus can
generate control packets with low overhead.

Preventing DoS attacks in the above scenario requiresper-
formance isolation(PI), i.e.,fair bandwidth sharing between
VMs, in addition to AC. Note that performance isolation
without AC is similarly unable to prevent DoS attacks. Due
to space constraints, we do not discuss PI extensively in this
paper. However, we point out that CloudPolice can also be
used to implement PI and can prevent DoS attacks, while the
other PI proposals that we are aware of do not prevent DoS
attacks, as we briefly discuss next.

CloudPolice can provide PI by rate limiting VMs in case
of congestion with the same mechanism used for AC. For ex-
ample, if the hypervisor runsN VMs, the VMs sending traf-
fic to each one of theseN VMs are together rate limited to
1/N (with equal shares or a more sophisticated distribution
algorithm). In other words, the bandwidth is evenly shared
between thedestination VMs.5 In this case, a legitimate VM
cannot be DoSed with authorized traffic sent to another VM
located on the same physical machine.

On the other hand, existing approaches to implement PI
do not block DoS attacks because the sharing is based on the
source VMsrather than the destination ones. One PI solu-
tion is to statically share the bandwidth,i.e., if there areN
VMs on each machine, each can send up to1/N of the avail-
able bandwidth. This approach cannot prevent DoS attacks
since the attacker can use an arbitrary number of VMs to
send traffic. In another example, (dynamic) fair sharing per
source VM has been recently proposed to be implemented
in clouds [23]. This approach is more effective in mitigat-
ing DoS attacks compared to static bandwidth sharing, but
still suffers from the problem that the attacker can use more
source VMs than the legitimate traffic, and thus reduce the
bandwidth of the destination VMs proportionally.

3.5 Feasibility
In this section we discuss the feasibility of implementing

CloudPolice in hypervisors. We are working on implement-
ing a prototype CloudPolice using Open VSwitch [21].

The main concern with implementing AC inside the hy-
pervisor is the ability of the hypervisor to match the line
speed performance requirements. In particular, there are two
types of concerns: (1) the ability to maintain and act on per-
flow state (the fast path) and (2) the ability to install new
state with low enough latencies (the slow path). Next, we
discuss each of these in turn.

First, note that Open VSwitch has been shown to scale at
the full speed of a linux bridge [21]. Moreover, recent soft-
ware routers have shown the ability to forward packets at
around 10Gbps with a single CPU core [12, 18], even when
using routing tables reaching 300,000 entries [12]. Thus, we
believe that we can achieve a reasonable baseline forward-
ing performance with software. However, we recognize that
CloudPolice has extra processing performed per flow, and
we leave this evaluation for future work.

Second, creating state for each new incoming flow needs
to be done fast, before the packets of that flow are dropped
5This approach does not guarantee the fair sharing of a congested
link, but guarantees fair sharing of the bandwidth at the destination.

5

from the input buffers. Since the number of hosted VMs
is typically small, we expect the policy lookup to be very
small and the state setup latency to be dominated by the com-
plexity of the policy. For stateless policies we do not expect
any significant latency since these are simple packet match-
ing rules. Even for the several types of stateful policies that
we have proposed in §2, we expect low latencies since they
mainly involve counters per hosted VM.

4. RELATED WORK
A traditional mechanism to implement AC is through the

use of VLANs. However, VLANs have several limitations.
First, since VLANs couple access control and switching,
they cannot be applied to new network topologies such as [8,
16,17], or to topologies that use L3 routing instead of switch-
ing. In addition, VLANs have much overhead both in span-
ning tree creation/maintenance and in switching between VL-
ANs (which typically requires L3 routing) [13,25]. VLANs
are also limited by the number of hosts in one VLAN and the
number of VLANs in a network [28]. Furthermore, VLANs
do not offer the flexible policies proposed in this paper.

Firewalls can also be used to block unwanted traffic at
the source,e.g.,by placing them at the first-hop switches.
However, this approach presents a major maintenance over-
head, since every time a destination changes its policy, allthe
firewalls at all possible sources need to be updated. More-
over, in order to support group-based policies, firewalls ei-
ther need to create an entry for each VM in the group, or
group the VMs by the same IP prefixes and create an entry
for each prefix. Neither of the solutions is desirable because
the former faces a scalability limit, and the latter makes VM
address management unnecessarily complex.

Centralized controllers such as OpenFlow and Ethane [7,
11] can be used to provide AC. However, these approaches
are network-dependent,i.e.,they require changes to the swit-
ching hardware. Open VSwitch [21] can achieve network-
independence, but it still requires a centralized controller.
Thus, Open VSwitch inherits all the drawbacks of central-
ized approaches – the centralized controller could be a scal-
ing bottleneck, and a potential attraction for DoS attacks
from the tenants. Moreover, the OpenFlow API is designed
for switches, but much richer policies can (and should) be
implemented in hypervisors. VL2 [15] also discusses a mech-
anism to make address assignment independent of the un-
derlying topology, but still makes use of a centralized ser-
vice for AC. Thus, it suffers from the same drawbacks listed
above for Open VSwitch.

AWS [3] offers a limited set of AC policies [1] such as iso-
lation and on/off access between groups. We are not aware
of public information describing AWS’s implementation.

5. DISCUSSION AND FUTURE WORK
In this paper we have discussed the design of CloudPo-

lice, a distributed access control mechanism implemented
in hypervisors. CloudPolice is designed to meet the need
of access control in the era of cloud computing by provid-
ing flexibility for supporting policies in multi-tenant envi-

ronments, network-independence that decouples access con-
trol from the network, and scalability to handle hundreds of
thousands servers and users. Our work could be a first step
towards finding a common access control API and mecha-
nism that can be used across multiple cloud providers.

There are three directions we are pursuing. First, we are
working on implementing a CloudPolice prototype and on
evaluating its performance. We focus on reducing the cost
that this solution would impose in terms of the resources
used at servers. Second, we intend to implement and eval-
uate a performance isolation framework based on CloudPo-
lice. Finally, we want to investigate a class ofdynamicpoli-
cies that are controlled at runtime by VMs based on applica-
tion-level semantics. For example, source VMs could pro-
vide access capabilities at runtime (e.g.,obtained through
external websites) allowing them to access certain groups.

6. REFERENCES
[1] Amazon security white paper.http://awsmedia.s3.amazonaws.com/

pdf/AWS_Security_Whitepaper.pdf.
[2] Amazon virtual desktop services.

http://desktop-client-for-amazon-s3.qarchive.org.
[3] Amazon web services.http://aws.amazon.com.
[4] Appnexus real-time ad platform.http://www.appnexus.com.
[5] Instant Ads Set the Pace on the Web.The New York Times.

http://www.nytimes.com/2010/03/12/business/media/
12adco.html?emc=eta1.

[6] Microsoft Azure.http://www.microsoft.com/windowsazure.
[7] The OpenFlow Switch Consortium: www.openflowswitch.org.
[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. InSIGCOMM. ACM, 2008.
[9] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Accountable Internet Protocol (AIP). InACM SIGCOMM, 2008.
[10] K. Argyraki and D. R. Cheriton. Active Internet traffic filtering: Real-time

response to Denial-of-Service attacks. InUSENIX Annual Tech. Conf., 2005.
[11] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,and S. Shenker.

Ethane: Taking control of the enterprise. InACM SIGCOMM, 2007.
[12] M. Dobrescu, N. Egi, K. Argyraki, B.-g. Chun, K. Fall, G.Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting Parallelism
to Scale Software Routers. InACM SOSP, 2009.

[13] P. Garimella, Y.-W. E. Sung, N. Zhang, and S. Rao. Characterizing VLAN usage
in an operational network.Workshop on Internet Network Management, 2007.

[14] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. TheCost of a Cloud:
Research Problems in Data Center Networks.Comput. Commun. Rev., 2009.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center
Network.ACM SIGCOMM, August 17 - 21 2009.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
BCube: A High Performance, Server-centric Network Architecture for Modular
Data Centers.ACM SIGCOMM, 2009.

[17] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A Scalable and
Fault-tolerant Network Structure for Data Centers. InSIGCOMM, 2008.

[18] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-Accelerated
Software Router. InACM SIGCOMM, 2010.

[19] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-Based
Defense Against DDoS Attacks. InNDDS, 2002.

[20] S. Kandula, J. Padhye, and P. Bahl. Flyways To De-Congest Data Center
Networks. InHotNets, 2009.

[21] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker.
Extending Networking into the Virtualization Layer. InHotNets, 2009.

[22] B. Raghavan and A. C. Snoeren. A System for Authenticated Policy-Compliant
Routing. InACM SIGCOMM, 2004.

[23] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:Performance
Isolation for Cloud Datacenter Networks.HotCloud, 2010.

[24] Srikanth K and Sudipta Sengupta and Albert Greenberg and Parveen Patel and
Ronnie Chaiken. The Nature of Datacenter Traffic: Measurements & Analysis.
In Internet Measurement Conference. ACM, November 2009.

[25] Y.-W. E. Sung, S. Rao, G. Xie, and D. Maltz. Towards Systematic Design of
Enterprise Networks. InACM CoNEXT, 2008.

[26] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter to mitigate
DDoS flooding attacks. InIEEE Symp. on Security and Priv., 2004.

[27] X. Yang, D. J. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. InACM SIGCOMM, 2005.

[28] M. Yu, X. Sun, N. Feamster, S. Rao, and J. Rexford. Virtual LAN Usage and
Challenges in Campus Networks.Princeton University Technical Report 2010
http://www.cs.princeton.edu/~jrex/papers/vlan10.pdf.

6

