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Abstract

A cookie can contain a “secure” flag, indicating that it
should be only sent over an HTTPS connection. Yet there
is no corresponding flag to indicate how a cookie was
set: attackers who act as a man-in-the-midddle even tem-
porarily on an HTTP session can inject cookies which
will be attached to subsequent HTTPS connections. Sim-
ilar attacks can also be launched by a web attacker from a
related domain. Although an acknowledged threat, it has
not yet been studied thoroughly. This paper aims to fill
this gap with an in-depth empirical assessment of cookie
injection attacks. We find that cookie-related vulnerabil-
ities are present in important sites (such as Google and
Bank of America), and can be made worse by the im-
plementation weaknesses we discovered in major web
browsers (such as Chrome, Firefox, and Safari). Our
successful attacks have included privacy violation, on-
line victimization, and even financial loss and account
hijacking. We also discuss mitigation strategies such as
HSTS, possible browser changes, and present a proof-of-
concept browser extension to provide better cookie iso-
lation between HTTP and HTTPS, and between related
domains.

1 Introduction

The same-origin policy (SOP) is a corner stone of web
security, guarding the web content of one domain from
the access from another domain. The most standard def-
inition of “origin” is a 3-tuple, consisting of the scheme,
the domain and the port number. However, the notion of
“origin” regarding cookies is fairly unusual – cookies are
not separated between different schemes like HTTP and
HTTPS, as well as port. The domain isolation of cookie
is also weak: different but related domains can have a
shared cookie scope. A cookie may have a “secure” flag,
indicating that it should only be presented over HTTPS,
ensuring confidentiality of its value against a network

man-in-the-middle (MITM). However, there is no similar
measure to protect its integrity from the same adversary:
an HTTP response is allowed to set a secure cookie for
its domain. An adversary controlling a related domain
is also capable to disrupt a cookie’s integrity by making
use of the shared cookie scope. Even worse, there is an
asymmetry between cookie’s read and write operations
involving pathing, enabling more subtle form of cookie
integrity violation.

The lack of cookie integrity is a known problem,
noted in the current specification [2]. However, the
real-world implications are under-appreciated. Although
the problem has been discussed by several previous re-
searchers [4, 5, 30, 32, 24, 23], none provided in-depth
and real-world empirical assessment. Attacks enabled by
merely injecting malicious cookies could be elusive, and
the consequence could be serious. For example, a cau-
tious user might only visit news websites at open wireless
networks like those at Starbucks. She might not know
that this is sufficient for a temporary MITM attacker to
inject malicious cookies to poison her browser, and com-
promise her bank account when she later logs on to her
bank site at home.

We aim to understand how could attackers launch
cookie inject attacks, and what are the damaging con-
sequences to real-world websites. Our study shows
that most websites are potentially susceptible to cookie
injection attacks by network attackers. For example,
only one site in the Alexa top 100 websites has fully
deployed HTTP Strict Transport Security (HSTS) on
its top-level domain, a sufficient server-side protection
to counter cookie injection attacks by network attack-
ers (Section 3). We also found a number of browser
vulnerabilities and implementation quirks that can be ex-
ploited by cookie injection attacks (Section 4). Notably,
all major browsers, except Internet Explorer (IE), respect
the “Set-Cookie” header in a 407-response (i.e., an Au-
thentication Required Response) when configured to use
a proxy. Because of this vulnerability, even websites
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adopting sufficient HSTS are subject to cookie injection
attacks by a malicious proxy.

Our study also shows that current cookie practices
have widespread problems when facing cookie injection
attacks (Section 5). We demonstrate multiple exploita-
tions against large websites. For example, we show that
an attacker can put his Gmail chat gadget on a victim’s
screen without affecting the victim’s use of Gmail and
other Google services. We also demonstrate that an at-
tacker can hijack a victim’s online deposit to his account,
or even deliver the victim’s online purchase to his ad-
dress. Other exploitations include user tracking, cross-
site scripting (XSS) attacks against large financial sites
embedded in injected cookies, etc..

We have developed a mitigation strategy (Section 6).
By modifying how browsers treat secure cookies, it is
possible to largely mitigate cookie injection attacks by
network attackers. We have also considered possible
browser enhancements to mitigate cookie injection from
web attackers. We implement our proposals as a proof-
of-concept browser extension. A preliminary evaluation
does not encounter compatibility issues.

In summary, this work makes the following main con-
tributions:

• We provided an evaluation of potential susceptible
websites to cookie injection attacks, including a de-
tailed measurement of full HSTS adoption and an
assessment of shared domains used by Content De-
livery Networks (CDNs).

• We examined both browser-side and server-side
cookie implementation, in which we found sev-
eral browser vulnerabilities and a number of non-
conforming and/or inconsistent implementations
that could be exploited in cookie injection attacks.

• We demonstrated the severity and prevalence of
cookie injection attacks in the real world. In par-
ticular, our exploitations against a variety of large
websites show that cookie injection enables compli-
cated interactions among implements, applications,
and various known attacks.

• We developed and implemented browser-side en-
hancements to provide better cookie isolation. Our
evaluation showed promising results in compatibil-
ity.

Together, this work provides a close-up picture of the
cookie integrity problem and the threats of cookie inject
attacks. We intend to provide a context for motivating
further discussion in research community and industry.

2 Background

2.1 Cookies

Cookies are a browser-side assisted state management
mechanism that are pervasively used by web applica-
tions [2]. Cookies can be set by either HTTP servers
using “Set-Cookie:” header or client side JavaScript
with a write to “document.cookie”. A cookie can
have five optional attributes: domain and path specify-
ing the cookie’s scope; expires stating when it should
be discarded; secure specifying that it should only be
sent over HTTPS connections, and HTTPOnly prevent-
ing browser-side scripts from reading the cookie. When
sending a request to a server, a web browser includes all
unexpired cookies whose domains and paths match the
requested URL, excluding those marked as secure from
the inclusion in an HTTP request.

Cookies have two fairly unusual behaviors. First,
there is a critical disconnection between cookie stor-
age and reading. Cookies are set and stored as a
name/domain/path to value attributes mapping, but only
name-value pairs are presented to both JavaScript and
web servers. This asymmetry allows cookies with the
same name but different domain and/or path scopes to be
written into browser; a subsequent reader can read out
all same name cookies together, yet cannot distinguish
them because the other attributes such as path are not
presented in the reading process. Another complication
occurs when writing a cookie, the writer can specify ar-
bitrary value for the path attribute, not limited by the
URL of the writer’s context.

Moreover, the security policy for cookies is not as
stringent as the classic SOP. In web security, the SOP
is the most important access control mechanism to seg-
regate static contents and active scripts from different
origins [3]. An origin for a given URL is defined by a
3-tuple: scheme (or protocol), e.g. HTTP or HTTPS, do-
main (or host), and port (not supported by IE (Internet
Explorer)). However, the security policy guarding cook-
ies does not provide separation based on either scheme or
port but only on domain [2]. In addition, a website can
set cookies with flexible domain scopes: 1) not shared
(i.e., host-only), 2) shared with its subdomains, or 3)
shared with its sibling domains (i.e., using its parent do-
main as the scope). For the third case, a restriction is en-
forced by browser to ensure that a cookie domain scope
is not “too wide”. For example, www.example.com can
set a cookie with the scope of .example.com, but it can-
not set a cookie with .com as the scope because .com is a
public top level domain (TLD). Unfortunately, there is no
clear definition of whether a domain scope is “too wide”
(See Section 3.2).

The combination of the read/write asymmetry and the
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lack of domain or scheme segregation implies that a do-
main cannot protect the integrity of its cookie from an ac-
tive MITM or a malicious/compromised related domain
that shares some cookie domain scope with it. There are
two forms of cookie integrity violations:

• Cookie Overwriting. If a cookie shares the domain
scope with a related domain, it can be directly over-
written by that domain using another cookie with
the exactly same name/domain/path. Of particular
note, although a secure cookie can only be read by
an HTTPS process, it can be written or overwritten
by an HTTP request.

• Cookie Shadowing. Alternatively, an attacker with
the control of a related domain can intentionally
shadow a cookie by injecting another one that has
the same name, but different domain/path scope.
For example, to shadow a cookie with “value=good;
domain=www.example.com; path=/; secure”, a
related domain evil.example.com can write a
cookie with “value=bad; domain=.example.com;
path=/home”. Later, when browser issues a re-
quest to https://www.example.com/home, both
cookies match the URL and are included. For
most browsers, the cookie header will be “Cookie:
value=bad; value=good;”. The “good” cookie could
be shadowed by the “bad” one if a website happens
to prefer the value of “bad” over “good”.

Note while the “good” cookie has a secure flag and
is sent over HTTPS, it can still be shadowed with a
cookie set from an HTTP connection.

2.2 HSTS
HSTS (HTTP Strict Transport Security) allows a server
to inform a client to only initiate communications over
HTTPS. It was originally proposed by Jackson and
Barth to address a number of MITM threats such as
cookie sniffing and SSL stripping [18], and is now
standardized in RFC6797 as a HTTP response header
Strict-Transport-Security [15].

The HSTS header requires a max-age attribute
indicating how long a browser should keep the
HSTS policy for that domain. An optional attribute
includeSubDomains tells a browser to apply the HSTS
policy to its all subdomains. After receiving an HSTS
header, a conforming browser ensures that all subse-
quent connections to that domain always take place over
HTTPS until the policy expires. Chrome and Firefox also
support a preloaded list that contains self-declared web-
sites supporting HSTS. For more information on HSTS,
please see [22].

HSTS coverage can often be incomplete. For example,
if example.com does not specify includeSubDomains

in its HSTS header, a browser will allow HTTP connec-
tion to foo.example.com. Worse, even if the HSTS
policy of example.com specifies includeSubDomains,
this will not be checked by a browser if a user only visits
bar.example.com unless the page includes a reference
to example.com.

2.3 Cookie Injection Attacks
It is a known vulnerability that cookies can be injected
by HTTP response into subsequent HTTPS request, and
from one domain to another related domain. Johnston
and Moore reported such problem in 2004 [19]. Their
report already pinpointed the root cause: the loosely
defined SOP for cookies. Unfortunately browsers ven-
dors did not fix the problem probably because they were
concerned of potential incompatibility issues. In 2008,
Evans described an attack called cookie forcing that ex-
ploits cookie integrity deficiency to overwrite cookies in
HTTPS sessions [7]. In 2013, GitHub migrated their do-
main for hosting users’ homepages from github.com to
github.io after they recognized the threat of cookie in-
jection from/to a shared domain whose subdomains be-
long to mutually untrusted users; they described detailed
steps of several possible cookie injection exploits and re-
ferred to them as cookie tossing [11].

The problem was also noted in several more formal
publications. Barth et al. discussed security impli-
cations of cookie overwriting on session initiation [4].
They also proposed a new header Cookie-Integrity
to provide additional information so that web server can
distinguish between cookies set from HTTP and those
set from HTTPS. Bortz et al. also reviewed the problem
and proposed a new header Origin-Cookie that guaran-
tees integrity by enforcing a complete 3-tuple SOP [5].
Singh et al. referred the difference between the classic
SOP and the cookie SOP as inconsistent principal la-
beling [30]. Both Zalewski’s book [32] and the current
cookie specification by Barth [2] explained the cookie
integrity deficiencies in great detail. We also learned of
two technical reports, one from Black Hat EU by Lun-
deen [23] and the other from Black Hat AD by Lun-
deen et al. [24], that illustrated several subtle attacks ini-
tiated by cookie injection.

Although a known threat, previous research fall short
of in-depth empirical assessment of its real-world secu-
rity implications. This work aims to fill this gap. We
provide a detailed comparison in Section 7.

3 Threat Analysis

We first present the threat model for cookie injection at-
tacks. For each type of attacker, we analyze its real-world
threat. Table 1 gives an overview.

3
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Attacker Root Cause Attack Surface Mitigation
Network
Attacker

Active MITM SOP without protocol &
complete domain isolation.

Websites and browsers that allow attackers to reply an unen-
crypted request to a related domain with forged response. Full HSTSMalicious Proxy

Web
Attacker

Full control of related domain SOP without complete do-
main isolation.

Websites using shared domains. Public suffix list
XSS on related domain Websites with compromised related domains. Out of scope

Table 1: Overview of the threats of cookie injection attacks

3.1 Threat Model
Two classes of attackers can manipulate a target site’s
cookies: an active network adversary or a remote adver-
sary able to host or inject content on a related domain.

The active MITM attacker (including the classic
MITM fully controlling the network and the Man-on-the-
Side (i.e., wiretapping and packet-injecting)) can load ar-
bitrary cookies through HTTP into the target’s cookie
store. The attacker modifies an unrelated HTTP re-
quest to create a hidden iframe in a web page. The at-
tacker’s iframe then creates a series of HTTP fetches to
the target domains, which the attacker responds to with
Set-Cookie headers to poison the victim’s cookie store.

A malicious proxy is at least as powerful as an active
MITM in terms of manipulating network traffic. More-
over, because the browser has extra protocol interactions
with the proxy, potential logic flaws or implementation
bugs might give the malicious proxy additional chances
to break in. Chen et al. highlighted this threat with a
number of logic flaws [6]. Our study also targets this
type of issues related to unexpected capabilities for a ma-
licious proxy to inject cookies.

Finally, if an attacker controls a related domain di-
rectly, he may launch cookie injection remotely. The at-
tacker does not need full control of the related server, just
the ability to host JavaScript. This attacker cannot target
arbitrary domains, but can target any other domain under
the same “top level” domain.

One key property of all these adversaries is its ability
to change state. For example, a victim might only visit
her bank from known-good networks, but an attacker can
poison the victim’s browser when the victim is on an
open wireless network. Only later, when the victim has
now returned to the “safe” network and visits her bank,
does the attack actually affect the victim.

3.2 Attack Surface
Network Attack Surface: The only current protection
against an active network attacker requires that the vic-
tim’s browser never issues an unencrypted HTTP con-
nection to a target site or any related domain. This con-
dition holds if 1) the target domain enables HSTS on its
base domain 1 (i.e. the first upper-level domain that is

1We learned this term from Kranch and Bonneau’s recent HSTS
study [22].

Domain Ranking
<10 10-102 102-103 103-104 104-105 > 105

Valid HTTPS 7 52 353 2,914 20,548 128,805
Full HSTS 0 1 7 35 212 997

Table 2: Ranking distribution of domains with valid
HTTPS and full HSTS.

considered “non-public”) with the includeSubDomains
option, which we refer to as full HSTS; 2) the browser
supports HSTS; and 3) the browser has received the full
HSTS policy from the base domain of the target domain.

Unfortunately, the support and adoption of HSTS in
the real world is unsatisfactory. First, all current ver-
sions of IE, a major browser with considerable mar-
ketshare, do not support HSTS (Microsoft announced
that its new browser will support HSTS [16]). Sec-
ond, there is limited adoption of full HSTS among sites.
We scanned 961,857 base domains from the Alexa top
one million websites and also examined if these do-
mains present in the Chrome’s preloaded HSTS list [28].
While we observed 152,679 (15.87%) domains have de-
ployed HTTPS with valid certificates, we only found
1,252 (0.13%) domains have enabled full HSTS. More-
over, most of the full HSTS domains are low ranked do-
mains (see Table 2). A recent study by Kranch and Bon-
neau also presented a similar total number of full HSTS
domains among the Alexa top one million websites [22].

Because of the prevalence of unsafe networks like
open wireless networks and the very limited deploy-
ment/availability of full HSTS protection, we consider
cookie injection by active network attackers a pervasive
and severe threat, especially for websites who have de-
ployed HTTPS to prevent active network attackers from
launching other possible attacks such as eavesdropping
or active script injection, yet have not enabled full HSTS.

Web Attack Surface: Generally, a web attacker
might be able to control a related domain in two ways.
First, for large websites that all subdomains are used in-
ternally, an attacker can fully control one subdomain by
compromising its DNS resolution or its hosting server.
The attacker can also exploit a XSS vulnerability on a
subdomain of a large website. A cookie injection attack
can then be launched to target other subdomains.

A greater concern is when a website either hosts user
content or shares a domain scope with other possibly
untrustworthy sites. This problem is inherent from the

4
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weaker cookie SOP. As we previously discussed in Sec-
tion 2.1, a domain is allowed to set cookies with wider
domain scope as long as the scope is not considered
public. Hence, a clear boundary between “public” and
“non-public” domain scope is needed to prevent cookie
injection from undesired shared cookie domain. How-
ever, this is not easy to define and implement clearly.
First, many top-level domains (a.k.a., TLDs), especially
country code top-level domains (a.k.a., ccTLDs) have
their own reserved suffixes such as .com.cn, .co.uk,
which are mostly TLD-specific. Second, many websites
use shared domains to assign subdomains to their mu-
tually untrusted clients. Such shared domain providers
include cloud hosting providers, web hosting providers,
blog providers, CDN providers etc. These shared do-
mains should also be considered as non-public in terms
of cookie domain scope.

The problem of cookie domain scope boundary is
partially remedied by a community effort initiated by
Mozilla called “public suffix list”, which maintains an
exceptional list containing TLDs, TLD-reserved suffixes,
and self-declared shared domains [25]. Public informa-
tion suggests that the list is enforced by major browser
vendors including IE, Chrome, Firefox, and Opera, while
our own tests confirm that Safari implements this list.

Our study of the public suffix list shows that the
public shared domains list still exposes an attack sur-
face for cookie injection. First, we empirically identi-
fied 45 shared domains from the Alexa top one million
websites, among which only 10 Google domains and 3
non-Google domains are included in the public suffix
list. Among the remaining domains, we found at least
4 domains (sinaapp.com, weebly.com, myshopify.
com, and forumotion.com) allow customized server-
side code or browser-side scripts. Websites hosting on
these domains are vulnerable to cookie injection attacks.

Another easy-to-miss corner case is shared domains
used by CDNs. CDNs commonly assign subdomains
or sub-directories of shared domains to their customers.
If a website directly uses a shared domain assigned by
its CDN provider, and the CDN provider does not han-
dle the shared domain carefully, then the website is sub-
ject to cookie injection attacks from malicious customers
of the same CDN provider. While websites rarely use
shared domains as their main domains, a common prac-
tice is to refer static resources (e.g., JavaScript files, im-
ages) using shared domain URLs. Although cookies un-
der these resource URLs are usually not processed by
server-side code or browser-side scripts, cookie injection
attacks could still cause serious consequences. For ex-
ample, suppose both websites A and B host their static
resource files under one shared domain from the same
CDN. Website A can inject garbage cookies from the
requests to his resource files with specific paths so that

Vendor Domain Publis Suffix List? Vulnerable?

Akamai

akamai.net No n/a 1

akamaiedge.net No n/a
akamaihd.net No n/a
edgesuite.net No n/a

Azure msecnd.net No Yes
windows.net No Yes

BitGravity bitgravity.com No n/a
CacheFly 2 cachefly.net No Yes
CDN77 cdn77.net No Yes
CDNetworks cdngc.net No n/a
CDN.net worldcdn.net No n/a
ChinaCache chinacache.net No n/a
ChinaNetCenter wscloudcdn.com No n/a
CloudFlare 3 cloudflare.net No Yes
CloudFront cloudfront.net Yes No
EdgeCast edgecasecdn.net No n/a
Exceda expresscdn.com No Yes
Fastly 3 fastly.net Yes Yes
Highwinds hwcdn.net No n/a
Incapsula incapsula.net No Yes
Internap internapcdn.net No n/a
Jiasule jiashule.com No Yes
KeyCDN 2 kxcdn.com No Yes
Level3 footprint.net No n/a
Limelight linwd.net No n/a
MaxCDN netdna-cdn.com No Yes
Squixa squixa.net No n/a

1: “n/a” refers to the case that we were not able to test.
2: CDNs attempting to defend cookie related attacks on shared do-
mains by filtering the Set-Cookie header.
3: CDNs allowing shared cookie scopes in customer-specific prefixes
of shared domains.

Table 3: Assessment of cookie injection attacks on
shared domains used by CDNs.

the injected cookies will be sent with the requests of re-
source files to website B. This type of cookie injection
attack could cause performance downgrade, bandwidth
consumption, and even denial-of-service (DoS) if the
amount of injected cookies exceeds the server’s header
size limitation2. In worst case, DoS of a critical resource
file like a JavaScript library could break the whole web-
site.

We empirically collected 28 shared domains used
by 23 CDNs 3, in which only 2 domains are reg-
istered in the public suffix list, as presented in Ta-
ble 3. We were also able to sign up and test 13
shared domains from 12 CDNs. While we confirmed
that cloudfront.net is immune because of its pres-
ence in the public suffix list, for each of the other 12
domains, we successfully launched DoS attack on one
test URL by injecting 72KB cookies from another test
URL. Our experiments also found two problematic be-
haviors. First, CacheFly and KeyCDN attempt to de-
fend cookie related attacks by filtering the Set-Cookie

header in response instead of utilizing the public suf-

2Although the current HTTP specification does not define any lim-
itation on the size of request header [9], most of web server implemen-
tations do so by default. For example, nginx by default limits a single
HTTP header not to exceed 8KB [26].

3We collected most of the CDNs from http://www.cdnplanet.

com/cdns/.
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fix list, which fails to prevent JavaScript from inject-
ing cookies. Second, although Fastly has declared sev-
eral subdomains of fastly.net as public suffix, its
naming mechanism enables shared scopes in customer-
specific prefixes, making its customers still vulnerable to
cookie injection attacks. For example, for a customer
foo.com, Fastly assigns a customer subdomain foo.

com.global.prod.fastly.net. Although the suffix
global.prod.fastly.net is present in the public suf-
fix list, the prefix causes a cookie scope com.global.

prod.fastly.net shared with other customer subdo-
mains such as bar.com.global.prod.fastly.net.
CloudFlare also has the same problem. We have reported
this problem to all vulnerable vendors. CloudFlare and
CDN77 have acknowledged our reports. The response
from CloudFlare said that they are considering to disable
direct access of all cloudflare.net URLs to defend
against this problem.

4 Pitfalls in Cookie Implementations

Based on the threat model and the understanding of po-
tential attack surfaces, we then turn to understand how
cookie related mechanisms are implemented in browsers
and web applications. Our study pinpointed a number
of inconsistent and/or non-conforming behaviors in ma-
jor browsers and web frameworks, as summarized in Ta-
ble 4. We also identified several vulnerabilities in ma-
jor browsers allowing an active network attacker to inject
cookies even when the full HSTS is deployed. We have
reported these vulnerabilities to browser vendors.

4.1 Uncovered Implementation Quirks
Browser-side Cookie Ordering. The current cookie
specification [2] suggests that browsers should rank
cookies first by path specificity and then by the creation
time in ascending order. We found all major browsers
follow this suggestion except Safari, which ranks cook-
ies first by the specificity of the domain attribute then by
the path specificity.

Server/script-side Cookie Preference. The cookie
header is semantically a list. For the same name cookies
in the list, the specification states that the server should
not rely upon cookie’s ordering presented by the browser.
We examined popular web programming languages, web
frameworks, and third-party libraries including PHP,
Python, Java, Go, ASP, ASP.NET, JavaScript, Node.js,
JQuery, JSF, SpringMVC. At the language level, only
Java, JavaScript and Go provide built-in or standard li-
brary interfaces to read cookies as a list. Other lan-
guages, and all web frameworks and third-party libraries
treat the cookie list as a name-value map that only returns
one value for each cookie name in the list. For cookies

with the same name, while the name-value map inter-
face in Python standard library prefers the last-ordered
cookie, all others prefers the first-ordered one. This ex-
plains why cookie shadowing is possible and the example
given in Section 2.1 works in many cases.

Cookie Storage Limitation. The specification has
several vague suggestions for browsers to limit the num-
ber and size of stored cookies. We found all major
browsers set the maximum size of a single cookie to 4
KB. Chrome, Firefox, and Opera implements a cookie jar
for every base domain, with the total numbers of cookies
limited to 180, 150, and 180, respectively. IE’s cookie jar
implementation is per cookie domain scope, with the to-
tal number of cookies limited to 50. We did not reach Sa-
fari’s cookie storage limit after writing and reading 1,000
cookies.

Cookie Header Size Limit. While Safari does not
seem to have a limit for the number of cookies, it trun-
cates the matching cookie list if the length of the cookie
header exceeds 8 KB. We did not observe similar behav-
iors in other browsers.

Cookie Name. The cookie name can contain all
US-ASCII values except control characters and sepa-
rator characters (see definition in [2] and [8]). We
found that Safari mistakenly stores cookie name in case-
insensitive manner. Some programming languages also
implement cookie names incorrectly. Previously Lun-
deen et al. reported that ASP.NET implements cookie
names case-insensitively [24]. We found that ASP makes
same mistake. In addition, PHP performs percent-
decoding on cookie names. For these languages, dif-
ferent cookie names sent by browser are possibly rec-
ognized as same name cookies, which embraces another
vector for cookie shadowing. For example, PHP inter-
prets a cookie header “%76alue=bad; value=good;” as
“value=bad; value=good;”, causing the “good” cookie to
be shadowed by the “bad” one.

Cookie Path. According to the specification, a cookie
matches a URL only when the path scope of the cookie is
a sub-directory of (or identical to) the URL path. When
a cookie does not specify the path scope, the browser
is required to set its default path as the directory-portion
of the URL path without any trailing slash. We found 4
violations to the standard: 1) Safari4 implements a sub-
string other than sub-directory matching rule; 2) Firefox
and IE match cookie path with not only the URL path,
but also the URL query and the URL fragment portion
match; 3) Firefox matches a cookie path with a URL
path when the former has one more slash than the later;
4) Chrome, Safari, and Opera (Linux and iOS versions)
include the trailing slash in default cookie path.

4Also Chrome on iOS, but as iOS browsers need to use Apple’s
rendering engine rather than their own, this is probably due to Apple’s
decision, not Google’s
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Cookie Property Specification Non-conforming/inconsistent behaviors
Browser-side priority Cookies SHOULD be ranked by specificity of

path then by creation time in ascending order.
1. Safari ranks cookies by specificity of domain then by specificity of path.

Server/script-side preference Server SHOULD NOT rely on cookie’s order-
ing presented by browsers.

1. Most standard libs and frameworks only provide name-value map interfaces;
2. For each name in the cookie list, Python prefers the last-ordered cookie, others
prefer the first-ordered one.

Cookie storage limitation Several vague suggestions 1. Safari seemingly does not have limitation on the number of stored cookies;
2. Chrome and Firefox limit the size of the cookie store per base domain, IE does
so per specific domain scope.

Cookie header size limitation Not specified 1. Safari truncates the cookie header not to exceed 8,192 bytes.
Cookie name US-ASCII values except control characters

and separator characters (see definition in [2]
and [8])

1. Safari is case-insensitive with cookie name;
2. ASP and ASP.NET are case-insensitive;
3. PHP performs percent-decoding on cookie name.

Cookie path 1. Cookie path and URL path MUST be iden-
tical or sub-directory matching;
2. Trailing slash MUST NOT be included in
default cookie path.

1. Firefox and IE matches cookie path not only with URL path, but also with URL
query and URL fragments;
2. Safari implements sub-string matching other than sub-directory matching;
3. Firefox allows cookie path has one more slash than the URL path;
4. Chrome, Safari, and Opera under some platforms include trailing slash in the
default cookie path.

Table 4: Summaries of non-conforming and inconsistent behaviors found in browser and web server cookie imple-
mentations.

4.2 Uncovered Vulnerabilities

Vulnerabilities in Handing Proxy Response. In [6],
Chen et al. found a number of flaws in major browsers.
The root problem resided in the handling of HTTPS re-
sponses. Essentially, all browsers at that time could not
differentiate an HTTPS response from a proxy and an
HTTPS response from the intended server. The flaws
were patched after disclosure. However, we found the
patches are incomplete: if a proxy replies to a HTTPS
CONNECT request with an unencrypted 407 (proxy au-
thentication required) response, all major browsers ex-
cept IE accept the cookies set in 407 response. While
some vulnerable browsers display a pop-up window,
some accept cookies silently (Table 5).

These vulnerabilities allow a malicious proxy to
launch cookie injection attacks against a full HSTS site.
Users who use proxies or have them set automatically,
these vulnerabilities can also be exploited by an active
MITM between the victim and the proxy, even if a victim
user does not intentionally use the attacker as the proxy.

Vulnerability in Handing Public Suffixes in Safari.
As described in Section 3.2, the public suffix list enforces
the boundary between public and non-public cookie do-
main scopes. However we found the implementation
of Safari is vulnerable under certain conditions. When
Safari issues a request http://tld/, it accepts cook-
ies in the response with domain scope as .tld, which
are shared by all subdomains.tld. Because HSTS is
not enabled on an entire TLD (in general, there is no A
record indicating a server at the TLDs), this vulnerability
is exploitable by active network attackers who can forge
a DNS response as well as an HTTP response.

Vulnerability in Safari’s HSTS Implementation.
We also found a vulnerability in Safari’s HSTS imple-
mentation. When receiving a URL, Safari does percent-

Windows Mac OS Linux Android iOS
IE – N/A N/A N/A N/A

Chrome � � � � �
Firefox � � � � N/A

Safari � � N/A N/A �
Opera � � N/A � N/A

�: cookie injection with pop-up window.
�: cookie injection without pop-up window.
�: cookie injection and script injeciton.

Table 5: Browser vulnerabilities in handling 407 re-
sponse by a malicious proxy.

decoding and upper-to-lower case conversion on its do-
main name before issuing a request. However, the HSTS
check is performed before the conversion process com-
pletes, enabling an attacker to bypass Safari’s HSTS
check if both capital and percent-encoding are used in
the domain name.

5 Real-World Exploitations

Our study aims at understanding the prevalence and
severity of potential exploitation by cookie injection in
real-world websites. In particular, we are curious about
how web developers use cookies, whether they are aware
of this problem explicitly and have developed best prac-
tices accordingly. With these questions in mind, we
conducted black box penetration tests on a number of
popular websites with our test accounts. We also re-
viewed several well-known open source web applica-
tions. For penetration tests, we first used browser exten-
sions like EditThisCookie [1] to test manually. For pos-
sible exploitations, we then implemented with Bro [27]
(for packet sniffing and injection with the rst tool) in an
open wireless network setting.

We found cookie injection attacks are possible with
very large websites and popular open source applications
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including Google, Amazon, eBay, Apple, Bank of Amer-
ica, BitBucket, China Construction Bank, China Union-
Pay, JD.com, phpMyAdmin, and MediaWiki, among
others. The consequences of attacks include, but are not
limited to, XSS, privacy leakage, bypassing of cross-site
request forgery (CSRF) defenses, financial loss, and ac-
count hijacking. The varieties of vulnerable web appli-
cations and exploitations suggest cookie injection is a
serious threat in the real world, and deserves a greater
attention from the web security community.

The exploitations we found indicate three common
cookie usages: 1) using cookies as authentication tokens;
2) associating important and session independent states
with cookies; 3) reflecting cookies into HTML. These
cookie usages often lead to cookie injection attacks if
specific defensive measures are not in place.

We present our exploitations based on these cate-
gories, along with the necessary background and addi-
tional observations. Please refer Section 4 and Table 4
for the details of different cookie implementations in-
volved in some cases. We extensively make use of cookie
shadowing. For these cases, unless otherwise specified,
we assume that the web server has the common behav-
ior of preferring the first-ordered cookie for each name
in the cookie list.

5.1 Cookies as Authentication Tokens

A common practice in web development is to use a
cookie to identify a user session. Many websites fur-
ther set long expiration durations on session cookies to
avoid having users sign in every time. This practice itself
is somewhat questionable, because session cookies are
sent along with HTTP requests automatically, which fa-
cilitate CSRF attacks. Nevertheless, Barth et al. showed
that CSRF attacks can be defeated with specific defen-
sive principles and techniques in web applications [4].

Also in [4], Barth et al. noted a special form of CSRF
which they called login CSRF. In this attack, an attacker
signs in with his own account on the victim’s browser.
If not noticed, the victim might visit targeted web site
on behalf of the attacker’s account, resulting in security
and privacy consequences such as search history leakage,
credit card stealing, and XSS. The authors also pointed
out that login CSRF is a special form of a threat they
called Authenticated-as-Attacker, which can also be car-
ried out by injecting malicious session cookies to over-
write original ones.

In fact, the consequences of cookie injection on ses-
sion cookies can go beyond those described in [4]. We
found that, by using cookie shadowing, similar attacks
could be carried out without noticeable evidences by the
victim. We call our attacks sub-session hijacking attacks.

5.1.1 Exploiting Google Chat and Search

We first present two exploits targeting Google, which
lead our observation of the sub-session hijacking attack.
Google’s base domain google.com is not protected with
full HSTS, so in most cases it is subject to cookie injec-
tion by an active network attacker.

Case-1: Gmail chat gadget hijacking. The web
interface of Gmail at https://mail.google.com/

shows a chat gadget at the bottom left corner. If an at-
tacker hijacks the gadget without affecting Gmail and
other Google services, he can fake the victim’s friend list
and chat with the victim to initiate advanced phishing,
intercept communication, or perform other disruptive ac-
tivity. This could be particularly deceptive in a targeted
attack scenario.

We have confirmed this attack. Although the browser
displays everything as one page, the chat gadget and
Gmail content are actually loaded with different URLs
then composed together. Both the chat gadget and Gmail
use cookies for authentication. If an attacker injects his
Google session cookies in a way that the injected cookies
shadow the original ones only at the chat gadget related
URLs, then the attacker can put his chat gadget on the
victim’s screen, without disturbing the victim’s use of
Gmail and other Google services.

We demonstrated this attack by injecting a total of 25
cookies: five session cookies “SID/SSID/HSID/APISID/
SAPISID”, each with five specific paths. Meanwhile
most Google services are not affected because the spe-
cific paths of the injected cookies do not match with their
URL paths. This is sufficient to cause the chat window
to load with the attacker’s cookies, while all other com-
ponents are loaded as the victim.

Case-2: “Invisible” Google search history steal-
ing. Another attack is to use cookie shadowing to steal
Google search history (which is automatically logged
and retrievable with the login cookie) without being no-
ticed. We assume that a user has visited https://

www.google.com/, which shows the search box and her
profile name and icon. When she types in the search
box, browser-side script issues AJAX requests to https:
//www.google.com/search to get search results.

Our original goal was to only shadow the session
cookies of the AJAX request, so that we could steal
search history without affecting the web interface loaded
by https://www.google.com/. But it turned out we
could not achieve this. We first injected three relevant
session cookies “SID/SSID/HSID” with path “/search”.
However, this attempt failed because we found the server
unusually preferred the last-ordered cookie, and the in-
jected cookies were ranked before the legitimate ones
because of the specific path. We then found out a way
to only shadow the session cookies of the AJAX re-
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quest on Safari by exploiting its cookie header limita-
tion (see Case-5 in Section 5.1.5 for the details). How-
ever, the server seemed to check whether session cook-
ies under https://www.google.com/search are con-
sistent with those under https://www.google.com/.
Once receiving inconsistent session cookies from the
AJAX request, it navigated the web interface to https:

//www.google.com/search, which still showed the at-
tacker’s profile name and icon.

Our final attack was to inject session cookies with do-
main scope “www.google.com” and path “/”, so that for
non-Safari browsers, the attacker could steal the victim’s
search history. Although this attack affects the web in-
terface, causing to show the attacker’s profile name and
icon, it does not affect most other Google services. We
also verified an invisible attack by spoofing the victim’s
profile name and icon.

5.1.2 Sub-session Hijacking Attacks

The two cases above show a common pattern: the at-
tacker intends to limit the effective scope of injected ses-
sion cookies as small as possible to reduce the visibility
of his attack.

Essentially, web applications require one or more
request-reply pairs with different URLs, which we view
as different sub-sessions. In a normal case, when a user
views a web page or performs a certain action through
a series of pages, the corresponding sub-sessions carry-
ing the same user authentication tokens are attributed to
the user’s account. However, when using cookies as au-
thentication tokens, the cookie-URL matching rules and
implementations often allow the attacker to selectively
associate one or more sub-sessions to the attacker’s ac-
count by cookie shadowing. That is why we call this type
of attack sub-session hijacking attacks.

The impact of such attacks varies by the applications.
In general, the attacker’s strategy is to select a minimum
set of sub-sessions that achieve his attack goals mean-
while keep the visibility of the attack as small as pos-
sible. However such attack could be made difficult by
some implementation choices.

First, in general, a victim could notice a sub-session
hijacking attack if she views abnormal changes of some
visual elements on her screen. Typically such elements
include username, email, a profile icon etc., which we
refer to as ID-indicators. If a website uses less URLs in
one page or one certain functionality, and makes the im-
portant URLs related with the ID-indicators, the attacker
is less likely to perform sub-session hijacking without
being noticed. For example, in Case-2, the attacker has
to hijack both of the URL that shows the search interface,
and the AJAX request that performs the search. This lim-
itation causes the expose of his profile name and icon,

which may be noticed by the victim. However, if the at-
tacker can only hijack an AJAX request which is not re-
lated to the interface, especially ID-indicators, the attack
could be launched invisibly.

Second, explicit and session dependent verifiers could
bind separate URLs together, so that the attacker needs
to hijack more URLs. One example is using a session
dependent nonce to counter CSRF attacks. Suppose the
attacker wants to steal some sensitive information sub-
mitted by a form which is fetched from URL GetForm

then submitted through URL SubmitForm. If the CSRF
protection of the form is session dependent, e.g. a nonce
associated with user session embedded in the form and
verified when submitting, the attacker must hijack both
GetForm and SubmitForm so that the CSRF verifica-
tion does not fail. Otherwise he only needs to hijack
SubmitForm.

It turns out that sub-session hijacking can be a pow-
erful attack against today’s websites. Because many
web applications do not adopt mechanisms to bind sub-
sessions together, and, for many operations, hijacking
one sub-session is sufficient to cause serious conse-
quences. Below we describe three common functional-
ities that are often vulnerable to sub-session hijacking,
demonstrated with real-world cases.

5.1.3 Payment Account Stealing

Many websites require users to associate one or more
payment accounts to pay their bills or online purchases.
If the attacker hijacks the payment account submission
form, he could get sensitive information, or even spend
money using the victim’s payment account.

Case-3: Credit card stealing on China UnionPay.
China UnionPay, a government-owned financial corpo-
ration in China, has an online third-party payment ser-
vice in which users can add their credit/debit cards. Al-
though the process of adding a card involves four URLs
as well as authentication via text message, all the URLs
merely use one session cookie “uc s key” for authentica-
tion and the actual data submission is performed at one
URL that is not related to any ID-indicator. We have
verified that by shadowing the session cookie at the sub-
mission URL, the attacker can hijack China UnionPay’s
credit card association invisibly to obtain the victim’s
(obfuscated) credit card number and its spending history
when the victim uses this interface in the future.

5.1.4 Online Deposit Hijacking

A common feature in many Chinese websites is the abil-
ity to deposit money from an online bank (or a third-party
payment service like Alipay) into a website for future
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spending. We found this feature is particularly vulnera-
ble to sub-session hijacking.

The process of online deposit usually includes six
steps: 1) the user enters deposit amount; 2) the website
generates an ID as a unique identifier of this transaction;
3) the website redirects the user to the selected online
bank with the transaction ID; 4) the user authenticates
and confirms to withdraw money from the online bank;
5) the online bank notifies the website with the transac-
tion ID and redirects the user back to the website; 6) the
website receives the notification from the online bank,
and adds the corresponding amount on the user’s account
according to the transaction ID. The bank site only shows
the transaction ID on its interface which is usually an un-
meaningful string. If the attacker can hijack the step 2 to
associate the transaction ID with his account without be-
ing noticed, the victim user is likely to finish all steps on
the online bank because there is no abnormal visual indi-
cation. Once the victim does so, the money is deposited
to the attacker’s account.

Case-4: Deposit hijacking on JD.com. JD.com is a
popular E-commerce website in China. In its implemen-
tation of the online deposit feature, the second step uses
an AJAX request that is not related to any ID-indicator.
We have verified that by shadowing JD.com’s session
cookie “ceshi3.com” at the AJAX request, the attacker can
hijack the online deposit invisibly, redirecting funds from
the victim into the attacker’s jd.com account.

5.1.5 Account Hijacking in SSO Association

Single Sign On (SSO) is a technique where an Identity
Provider (IdP) provides authentication assertions for a
logged-in user to relying parties (RP) for them to authen-
ticate the user. SSO usually enables automatic login on
the relying party, providing a better user experience and
in some cases better security. This is a popular technique
deployed by a number of large websites such as Google
and Facebook as IdPs, and many other web sites as rely-
ing parties. Popular web protocols used for SSO imple-
mentation include OpenID [10] and OAuth [14].

Under certain conditions, SSO systems face a threat
called association violation [31], in which a victim ac-
count on an RP is associated with an attacker’s account
on an IdP, so that the attacker gains control of the vic-
tim’s account on the RP. This is likely to happen when 1)
the victim is logged-in in the IdP as the attacker, 2) the
RP has a feature for its users to associate with their ac-
counts on the IdP, 3) the feature is implemented through
redirections without further confirmation. The first con-
dition can be mounted by cookie injection, and the web-
sites satisfying the latter two conditions are not hard to
find.

Case-5: Account hijacking against Google OAuth

and BitBucket. BitBucket, a popular code hosting
service, provides account association with Google by
OAuth. If a user is already logged in with Google
and has authorized BitBucket to access her Google pro-
file through OAuth, the association is accomplished
with two forth-and-back redirections with https://

accounts.google.com/o/oauth2/auth without con-
firmation except a final message saying “You’ve success-
fully connected your Google account”.

Our goal is to hijack the Google OAuth URL to in-
visibly cause an association violation. There are 5 rel-
evant session cookies: “SID/SSID/HSID” with domain
scope “.google.com” and path “/”, and “LSID/LSOSID”
with domain scope “.accounts.google.com” and path “/”.
This is challenging because the server seemingly has
deployed specific defense to counter cookie injection.
First, accounts.google.com has enabled HSTS with
includeSubDomains. Second, if we inject cookies with
the same names, the server redirects us to a “CookieMis-
match” warning page.

We successfully launch the attack on Safari by tak-
ing advantage of Safari’s quirks. First, we exploit the
HSTS implementation bug (Section 4.2) to inject the at-
tacker’s five session cookies with domain scope “.ac-
counts.google.com” and path “/o/oauth2/”. Recall that
Safari ranks cookies by domain specificness then by path
specificness, therefore the injected cookies shadows the
legitimate ones. Then, we make use of Safari’s 8 KB
limitation on the cookie header (see Section 4.1) to get
around the same name cookie detection. To achieve
this, we inject a number of cookies with specific names
and domain/path scopes, so that they are ranked be-
tween the injected session cookies and the legitimated
session cookies. We control the length of these cookies
to “overflow” the cookie list so that Safari truncates the
legitimated session cookies when issuing requests to the
OAuth URL. This allows us to bypassed all restrictions.

5.2 Cookies as References to Session Inde-
pendent States

Session fixation is a well-known attack in which an at-
tacker holds a session ID, then persuades a victim to au-
thenticate with that ID so that he gains control of the
victim’s account [21]. Cookie injection can be used to
exploit vulnerable websites that use cookies to store ses-
sion IDs. Standard defenses, e.g. regenerating session ID
after login, have been widely adopted.

However, we found that, although some websites have
implemented defenses for typical session fixation at-
tacks, they still have similar vulnerabilities for cookie
injection. The root cause is that they associate impor-
tant server-side states with long-term cookies. More-
over, they do not bind these states with user sessions.
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The attacker can fixate such cookies by cookie injec-
tion (e.g., through cookie overwriting) in order to access
and manipulate the associated states. Interestingly, most
of the vulnerable websites we found vulnerable are E-
commerce websites.

Case-6: Shopping cart tracking/manipulation on
popular E-commerce websites. We demonstrate this
type of issues on 3 popular E-commerce websites:
Apple, eBay, and JD.com. These websites allow unreg-
istered visitors to add items in shopping carts. For better
user experience, they never expire the shopping carts
on the server side, and use long-term cookies on the
browser side as references. We have verified that if the
attacker fixates the corresponding cookies using cookie
injection, he can track or manipulate shopping carts of
the unregistered visitors.

We also found similar problems on Amazon, which
are much more serious in terms of the real-world
consequences, because they compromise security for
registered users.5

Case-7: Browsing history and purchase track-
ing/hijacking on Amazon. Amazon’s E-commerce
websites use two long-term cookies “session-id” and
“ubid-main” to associate with a user’s browsing history
and the ongoing purchase. Surprisingly, these important
states are not associated with the user session (Not as its
name suggests, “session-id” is not used for user authen-
tication). Once the attacker fixates the two cookies, he
can launch various attacks remotely.

The first exploitation is to track and manipulate the
user’s browsing history. Amazon keeps all previous
viewed items in a user’s browsing history. Upon fixat-
ing the two referencing cookies, the attacker can track
what the victim have viewed on Amazon in real-time. He
can also inject unwanted items into the browsing history,
which affects the recommendation system.

Moreover, from what we observed, we infer that Ama-
zon keeps a session independent data structure for an
on-going purchase, which stores the user, the purchased
items, the total amount, the delivery address, and other
payment information. The structure is likely created by
clicking the “proceed to checkout” button, and released
after clicking of the “place your order” button. This
structure is associated with the same two cookies refer-
encing the browsing history. By fixating the two cookies
and consequently gaining access of the data structure, the
attacker has various ways to manipulate the victim’s pur-
chase remotely. Below we describe two exploitations:

• Tracking of all purchases. First, the attacker can

5However, we note that many E-commerce sites, including Ama-
zon, use mixed content, and thus are also vulnerable to attackers inject-
ing scripts into the insecure domain that remain in the browser cache.

track all purchases of the victim. To do so, he first
creates an on-going purchase, of which the internal
data structure is also shared with the victim. Later,
when the victim makes a purchase, the information
is updated to the shared data structure, consequently
retrieved by the attacker. On Amazon China, the at-
tacker can see all information of the victim’s pur-
chase including items, amount, the victim’s name,
delivery address, and cellphone number. On Ama-
zon U.S., the delivery address and cellphone num-
ber are not visible by the attacker.

• Potential hijacking of purchases. When detecting
an ongoing purchase by the victim, the attacker can
change the delivery address so that the purchase is
paid by the victim but sent to the attacker. If the
victim confirms the hijacked purchase, she cannot
even see where the purchase is hijacked to in her
order history, because Amazon only shows “Gift-
ing address”. The attacker can even manipulate the
purchase in such a way that it is paid by the vic-
tim, delivered to the attacker, and only recorded in
the attacker’s order history. The only limitation of
the attack is that if the delivery address is new to
the payment option, Amazon requires the victim to
confirm the card number, however the interface is
arguably not alarming. On Amazon China, this lim-
itation does not apply if the victim chooses to pay
with a third-party service like Alipay.

5.3 Cookies reflected into HTML

Another common practice is to store auxiliary variables
like preferred language or username as cookies, and re-
flect these cookies into HTML or script snippets. If not
implemented carefully, this practice could make websites
vulnerable to various attacks in face of cookie injection.

5.3.1 XSS via Cookie Injection

A direct threat is XSS: if reflected cookies are not
sanitized sufficiently, the attacker can embed malicious
scripts in reflected cookies to launch XSS attacks through
cookie injection.

Case-8: XSS via cookie injection on China Con-
struction Bank, Amazon Cloud Drive, eBay and oth-
ers. We found a number of websites do not validate re-
flected cookies sufficiently. Using cookie injection, we
successfully mounted XSS against China Construction
Bank, Amazon Cloud Drive, eBay and several other web-
sites.

Case-9: Insufficient cookie validation on Bank of
America. Among the XSS vulnerabilities we found, the
one on the Bank of America website is fairly unique. We
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found that one cookie with path “/” on Bank of Amer-
ica’s website could be exploited to inject XSS. At first,
our naı̈ve exploitation by overwriting the cookie with a
XSS payload failed. The limitation was that the website
performed a strict validation on the cookie at the login
URL. Only if the cookie was absent would the website
set a clean value on the cookie from the response of the
login URL, then used it in subsequent requests without
validation. Our naı̈ve exploitation was prevented by the
strict validation at the login URL.

We found a technique to bypass the limitation, so that
the XSS payload can be buried into the victim’s browser
and triggered when next time the victim logs in by in-
jecting multiple cookies. We injected two cookies. The
first one had the same 3-tuple identifier as the legitimate
one, but with an expired time to ensure the legitimate
cookie was discarded and absent at the login URL. The
second injected cookie contained the XSS payload and
had a different cookie path “/myaccount” that matched
with the first URL after login. Although the server set a
clean cookie in the response of the login URL, the spe-
cific path of the second injected cookie not only avoid
being overwritten by the clean cookie, but also shadowed
the clean cookie in subsequent requests, triggering a suc-
cessful XSS attack.

This case implies a possible misconception that per-
forming a complete cookie validation on one “entry
point” is sufficient. In fact, because of the asymmetry
between cookie read and write operations, every different
URL might bring different and unexpected cookie values
no matter how server set cookies in previous responses.
Developers must treat every request as a new entry point
and carefully validate all associated cookies.

5.3.2 BREACH Attacks through Cookie Injection

In 2002, Kelsey observed that when combining encryp-
tion with some compression algorithms, the size of com-
pressed data can be used as a side channel, potentially
causing plaintext leakage under certain conditions [20].
Rizzo and Duong found a real-world case in 2012, named
as CRIME attack, in which an active network attacker
initiates encrypted HTTP requests from a victim browser
with different URLs as partially-chosen plaintexts, then
infer embedded secrets like session cookies by observing
the sizes of the compressed and encrypted requests [29].
Rizzo and Duong also mentioned that a similar attack
could also be mounted to infer secrets in encrypted
HTTP responses. This was explored and demonstrated
by Gluck et al., named as the BREACH attack [12].

BREACH requires the attacker to be able to 1) inject a
partially-chosen plaintext into the HTTP response of one
webpage, and 2) measure the size of the compressed then
encrypted response. An active network attacker satisfies

the second condition. If a webpage contains a reflected
cookie, the attacker can abuse it with cookie injection
as the first vector to launch the BREACH attack to infer
secrets in this webpage.

Case-10: BREACH attacks on phpMyAdmin and
MediaWiki. We found phpMyAdmin, a popular open
source web application for remote database manage-
ment, reflects a cookie for language preference after
sanitization in error page if its value is invalid. The
BREACH attack using this cookie can reliably infer the
CSRF token in the error page, enabling further CSRF at-
tacks. Similarly, MediaWiki reflects a cookie into its lo-
gin form, also allowing the BREACH attack to infer the
CSRF token in the login page.

5.4 Summary
These exploitations show that cookie injection enables
undesired and complicated interactions among cookie
implementations, web applications, and various known
threats. It is clear that our empirical assessment only
touches a part of the whole problem space. Neverthe-
less, we believe these cases demonstrate that the security
implications of cookie’s lack of integrity are not well and
widely understood by the community, and current cookie
practices have widespread problems when cookie injec-
tion is taken into consideration.

Report and Response. We have reported all vulner-
abilities to the affected websites. Some have acknowl-
edged (e.g., Amazon), and some (e.g., Bank of America)
have fixed the issues.

6 Possible Defenses

Some existing techniques can help mitigate this threat,
including full HSTS, public suffix list, defensive cookie
practices, and anomaly detection.

Full HSTS and Public Suffix List. We strongly
recommend that websites deploy full HSTS to prevent
cookie injection from active network attackers, as this
provides complete protection once a site is pinned by a
user visit. The community should also make the effort to
raise the awareness of cookie injection attacks, and clar-
ify the different levels of security provided by HTTPS,
HSTS, and full HSTS. For websites that host shared do-
mains, the best practice is to use separate domains and
register them on the public suffix list. Efforts also should
be made to increase the awareness of cookie injection
from shared domains and the public suffix list.

Defensive Cookie Practices. For websites that can-
not enable full HSTS, and have concerns about cookie
injection from related domains, defensive cookie prac-
tices may mitigate certain cookie injection threats. For
example, frequently invalidating session cookies could
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reduce the risk of sub-session hijacking. Instead of using
cookies, Websites can also use new features in HTML5
like localStorage and sessionStorage to facilitate
browser-side state management, which does not have
cookie’s integrity deficiencies, although these mecha-
nisms are less convenient for cross-protocol and cross-
domain state sharing.

Anomaly Detection. Websites should consider de-
tecting same name cookies in the cookie header, as we
discussed in the accounts.google.com case. This is
reasonable because same name cookies should not be
considered a legitimate use according to both the spec-
ification and the inconsistent implementations. This de-
tection would protect non-Safari users from attacks using
cookie shadowing.

6.1 Proposed Browser Enhancements

We propose several browser-side enhancements to mit-
igate cookie injection attacks. Our proposals do not re-
quire any server-side change, so they would benefit many
legacy websites.

6.1.1 Mitigating Active Network Attackers

Currently, Chrome, Firefox and Safari, but not Internet
Explorer, have deployed the HSTS support. We believe
that if all major browsers could deploy it, websites with
full HSTS would be capable of defending against ac-
tive network attackers in most cases. However, deploy-
ing full HSTS needs all subdomains to support HTTPS
with valid certificates. There are a number of practical
hurdles for websites to satisfy such a strict requirement.
For example, Google cannot enable full HSTS, because
it is required to support non-HTTPS access for manda-
tory adult-content filtering at school and some other lo-
cations [13]. Kranch and Bonneau also reported the cur-
rent incapability of Facebook and Twitter to deploy full
HSTS [22]. Hence, we believe full HSTS is not likely to
be adopted widely in the near future.

To protect a site which cannot deploy full HSTS, a
browser must not allow an HTTP connection to replace
or shadow secure cookies, effectively adding an HSTS-
like pin for any secure cookie. We propose to modify the
semantics of the existing cookie store by adding a “do
not send” flag and changing the cookie store behavior
with the following semantics. We believe these semantic
change should provide protections while minimizing the
disruption to existing sites:

1. A browser MUST NOT accept a cookie presented
in an HTTP response with the secure flag set, nor
overwrite an unexpired secure cookie, except the
case in 5.

2. Cookies with the secure flag MUST be given
higher priority over non-secure cookies.

3. A browser MUST only send the highest priority
cookie for any cookie name.

4. In removing cookies due to a too-full cookie store,
the browser MUST NOT remove a secure cookie
when there are non-secure cookies that can be re-
moved.

5. The browser MUST allow an HTTP connection
to clear a secure cookie by setting an already-
expired expiration date, but the browser MUST
NOT remove the cookie from the store. Instead,
the browser MUST set the “do not send” flag and
maintain the original expiration date.

6. The browser MUST NOT send a cookie with the
“do not send” flag, nor send any non-secure cookie
with the same name.

The first rule prevents an active network attacker from
injecting or replacing secure cookies. The second and
third rules combined prevent an active network attacker
from shadowing a secure cookie. The fourth rule pre-
vents an attacker from flooding the cookie store to evict
secure cookies. The fifth and sixth rules are subtle but
necessary: mixed-content sites might have a “logout”
button in HTTP which clears secure session cookies.
We wish to enable this functionality without allowing at-
tackers to remove and replace a secure cookie.

Taken together, our proposals should add HSTS-like
pinning to secure cookies within the existing cookie
store. If a cookie was set with secure flag, an active
network attacker can only delete it, which largely miti-
gates cookie injection attacks 6.

Compatibility. We implemented the first three rules
as a Chrome extension7, and used the extension to
manually examined the Alexa top 40 websites. We
found one broken case: the signing out operation on
http://www.bing.com/ results in a request-reply with
http://login.live.com/logout.srf which expires
several secure session cookies under its SSO IdP do-
main live.com. Allowing HTTP to clear secure cook-
ies should improve compatibility with such signing-out
practice.

We also crawled the Alexa top 100,000 domains with
both HTTP and HTTPS. In total, 48,039 domains re-
sponded with cookies. 152 (0.32%) domains returned
secure cookies over HTTP; 570 (1.19%) domains re-
sponded with cookies that have same name yet different

6The non-conforming cookie name behaviors of PHP, ASP, and
ASP.NET described in Section 4.1 still expose some possibilities for
cookie shadowing. We suggest vendors to fix these incorrect imple-
mentations.

7https://github.com/seccookie/ExtSecureCookie
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domains and/or paths. These numbers suggest secure
cookies over HTTP (incompatible with the first rule) and
same name cookies (related to the second and third rules)
are rare in real-world websites. We manually examined
10 domains in each case with our extension and did not
observe evidence of broken behaviors.

While the results from our compatibility testing are
promising, we acknowledge they are preliminary. First,
we may have missed subtle incompatibility issues in our
manual testing. Second, some incompatibility behaviors
may only occur with logged-in sessions and/or specific
paths, which our testing may have failed to uncover. We
hope our limited experiments will motivate browser ven-
dors to conduct large-scale in-depth compatibility evalu-
ation.

6.1.2 Mitigating Web attackers

A domain can set cookies with a more specific domain
scope (e.g. host-only) to prevent cookie stealing by XSS
from sibling domains. But this currently has no effect
on cookie injection since injected cookies with shared
domain scopes yet longer paths are effective for cookie
shadowing, and longer paths are available in most cases
if an adversary is in control of a related domain. Combin-
ing the second rule of the above proposals, we suggest:

7. When issuing a request, the browser MUST rank the
cookie list by a) presence of the secure flag, and b)
specificity of the domain scope.

Together with the third rule presented above, this
should enable developers to prevent cookies from being
overwritten or shadowed by using specific domain scope
(together with the secure flag when using HTTPS). We
have also implemented this policy in the same Chrome
extension mentioned above.

7 Related Work

Comparison to Previous Work. We are aware of sev-
eral research papers that are directly related to cookie’s
weak SOP and integrity problem [4, 30, 24, 23, 5, 2,
32], and some other papers that are comparable to our
work [17, 22]. Among the directly related research,
Barth’s [2] and Zalewski’s work [32] focused on explain-
ing the cause of the cookie integrity problem. Most pre-
vious research only briefly touched cookie integrity as
a relevant subproblem rather than main topic [4, 30, 24,
23]. Bortz et al. ’s research is close to ours. Especially,
they introduced the notion of a related domain attacker
which we use throughout this paper. However, their work
is limited to high-level discussion [5]. In summary, pre-
vious research has discussed the problem of cookie’s lack

of integrity, its root cause, and its security implications.
However, prior understanding of the subtlety, prevalence,
and severity of this problem in the real world is limited.
We take a much closer look at the problem space, pro-
vide a number of new empirical assessments which we
believe will help the community understand the problem
more deeply and know the status quo better. Specifically,
we conduct a detailed measurement of full HSTS adop-
tion and reveal the threat to CDN customers. Prior to our
work, Kranch and Bonneau recently studied full HSTS
deployment practice but within a different context [22].
The cookie related problems revealed in our assessment
of browser and server libraries are largely unknown, ex-
cept a few fragmented knowledge from Lundeen’s [23]
and Lundeen et al. ’s work [24]. The attack cases we
present also supplement previous discussion on poten-
tial exploitations in both breadth and depth. Our close-
up study also leads us to find promising cookie isolation
enhancements that only require browser-side adoption.
In contrast, the previous proposed defenses need both
browser- and server-side changes [4, 5].

Broadly, our work can be viewed as an in-depth case
study of inconsistent access control policies in web.
Jackson and Barth’s [17] and Singh et al. ’s work [30]
explored this general problem, and each provided vari-
ous instances. One example illustrated by Jackson and
Barth is the ability of JavaScript to read all cookies with
matching domain scopes regardless of their paths [17].
This behavior has now been noted explicitly in the cur-
rent specification [2].

Security Related Cookie Measurement. Zhou and
Evans studied the rare deployment of the HTTPOnly

cookies at the time [33]. They believed that the require-
ment of both client and server changes played an impor-
tant hurdle in its adoption. Kranch and Bonneau found
many websites deploy HSTS yet do not marked their
cookies with the secure flag, which are vulnerable to
cookie theft in certain conditions [22]. These two mea-
surements were concerned with cookie’s confidentiality,
while our work looks at the other property, i.e. cookie’s
integrity. Singh et al. measured the real-world usages
of secure cookies (0.07%, 62 out of 89,222 sites) over
HTTP and same name cookies (they called duplicate
cookies) (5.48%, 4,893 out of 89,222 sites) [30]. Our
assessment obtains similar results.

8 Conclusions

Cookies lack integrity. Although long known in commu-
nity lore, the community has under-appreciated the im-
plications. We have attempted to systematically evaluate
the implications of cookie integrity, including evaluating
weaknesses and evaluation artifacts in both browser and
server libraries, building real-world attacks against ma-
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jor sites including Google and Bank of America, includ-
ing subtle account-hijack attacks and XSS attacks buried
in injected cookies, and developing an alternate browser
cookie policy that mitigates the threat from network-
level attackers. We expect our work to raise the aware-
ness of the problem, and to provide a context for further
discussion among researchers, developers and vendors.
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