Design and Evaluation of a Real-Time URL Spam Filtering Service

Kurt Thomas®, Chris Grier'T, Justin Ma®, Vern Paxson*T, Dawn Song*
{kthomas, grier, jtma, vern, dawnsong}@cs.berkeley.edu

* University of California, Berkeley

Abstract

On the heels of the widespread adoption of web services
such as social networks and URL shorteners, scams, phishing,
and malware have become regular threats. Despite extensive
research, email-based spam filtering techniques generally fall
short for protecting other web services. To better address this
need, we present Monarch, a real-time system that crawls
URLs as they are submitted to web services and determines
whether the URLs direct to spam. We evaluate the viability
of Monarch and the fundamental challenges that arise due to
the diversity of web service spam. We show that Monarch can
provide accurate, real-time protection, but that the underlying
characteristics of spam do not generalize across web services.
In particular, we find that spam targeting email qualitatively
differs in significant ways from spam campaigns targeting
Twitter. We explore the distinctions between email and Twitter
spam, including the abuse of public web hosting and redirec-
tor services. Finally, we demonstrate Monarch’s scalability,
showing our system could protect a service such as Twitter—
which needs to process 15 million URLs/day—for a bit under
$800/day.

1. Introduction

In recent years, the Internet has seen a massive proliferation
of web services, including social networks, video sharing sites,
blogs, and consumer review pages that draw in hundreds of
millions of viewers. On the heels of the widespread adoption
of these services, phishing, malware, and scams have become
a regular threat [1]-[3]. Bypassing protection mechanisms
put in place by service operators, scammers are able to
distribute harmful content through the use of compromised
and fraudulent accounts [4], [5]. As spam evolves beyond
email and becomes a regular nuisance of web services, new
defenses must be devised to safeguard what is currently a
largely unprotected space.

While email spam has been extensively researched, many
of the solutions fail to apply to web services. In particular,
recent work has shown that domain and IP blacklists currently
in use by social network operators and by URL shortening ser-
vices [6]-[9] perform too slowly (high latency for listing) and
inaccurately for use in web services [5], [10], [11]. Alternative
solutions, such as account-based heuristics that are specifically
designed to identify automated and suspicious behavior in web
services [12]-[14], focus on identifying accounts generated by
spammers, and thus have limited utility in detecting misuse of

1 International Computer Science Institute

compromised accounts. They also can incur delays between
a fraudulent account’s creation and its subsequent detection
due to the need to build a history of (mis-)activity. Given
these limitations, we seek to design a system that operates
in real-time to limit the period users are exposed to spam
content; provides fine-grained decisions that allow services to
filter individual messages posted by users; but functions in a
manner generalizable to many forms of web services.

To this end we design Monarch, a real-time system that
crawls URLs as they are submitted to web services and deter-
mines whether the URLSs direct to spam content. For our study,
we define spam to include scams advertising pharmaceuticals,
adult content, and other solicitations, phishing that attempts to
capture account credentials, and pages attempting to distribute
malware. By restricting our analysis to URLs, Monarch can
provide spam protection regardless of the context in which a
URL appears, or the account from which it originates. This
gives rise to the notion of spam URL filtering as a service.
Monarch frees other web services from the overhead of rein-
venting spam classifiers and the accompanying infrastructure
components.

The architecture of Monarch consists of three core elements:
a front-end that accepts URLs submitted by web services
seeking a classification decision, a pool of browsers hosted on
cloud infrastructure that visits URLSs to extract salient features,
and a distributed classification engine designed to scale to
tens of millions of features that rapidly returns a decision for
whether a URL leads to spam content. Classification builds
upon a large foundation of spam characteristics [15]-[24] and
includes features drawn from the lexical properties of URLs,
hosting infrastructure, and page content (HTML and links).
We also collect new features including HTTP header content,
page frames, dynamically loaded content, page behavior such
as JavaScript events, plugin usage, and a page’s redirection
behavior. Feature collection and URL classification occur at
the time a URL is submitted to our service, with the overall
architecture of Monarch scaling to millions of URLS to satisfy
the throughput expected of large social networks and web mail
providers.

In this paper, we evaluate the viability of Monarch as
a real-time filtering service and the fundamental challenges
that arise from the diversity of web service spam. We show
that Monarch can provide accurate, real-time protection, but
that the underlying characteristics of spam do not generalize
across web services. In particular, we leverage Monarch’s
feature collection infrastructure to study distinctions between
11 million URLs drawn from email and Twitter. We find that
spam targeting email is qualitatively different from Twitter

spam, requiring classifiers to learn two distinct sets of rules
to ensure accuracy. A basic reason for this distinction is that
email spam occurs in short-lived campaigns that quickly churn
through spam domains, while spam on Twitter consists of long
lasting campaigns that often abuse public web hosting, generic
redirectors, and URL shortening services.

Our evaluation also includes an analysis of which URL
features serve as the strongest indicators of spam and their
persistence as spam evolves. We find that classification re-
quires access to every URL used to construct a landing page,
HTML content, and HTTP headers to ensure the best accuracy.
In contrast, relying solely on DNS entries or the IP address of
spam infrastructure achieves much less accuracy. Furthermore,
without regular retraining and access to new labeled spam
samples, accuracy quickly degrades due to the ephemeral
nature of spam campaigns and their hosting infrastructure.

We deploy a full-fledged implementation of Monarch to
demonstrate its scalability, accuracy, and run-time performance
at classifying tweet and email spam URLs. Using a modest
collection of cloud machinery, we process 638,000 URLs per
day. Distributed classification achieves an accuracy of 91%
(0.87% false positives) when trained on a data set of nearly
50 million distinct features drawn from 1.7 million spam
URLs and 9 million non-spam URLs, taking only one hour
to produce a model. While the current false positive rate is
not optimal, we discuss several techniques that can either
lower or ameliorate their impact in Section 6.1. During live
classification, each URL takes on average 5.54 sec to process
from start to finish. This delay is unavoidable and arises from
network requests made by the browser, which is difficult to
speed up; only 1% of overhead comes from instrumenting
the browser for feature collection. The cloud infrastructure
required to run Monarch at this capacity costs $1,587 for a
single month. We estimate that scaling to 15 million URLs per
day would cost $22,751 per month, and requires no changes
to Monarch’s architecture.

In summary, we frame our contributions as:

¢ We develop and evaluate a real-time, scalable system for
detecting spam content in web services.

o We expose fundamental differences between email and
Twitter spam, showing that spam targeting one web
service does not generalize to other web services.

o We present a novel feature collection and classification
architecture that employs an instrumented browser and a
new distributed classifier that scales to tens of millions
of features.

o« We present an analysis of new spam properties illu-
minated by our system, including abused free hosting
services and redirects used to mask spam web content.

o We examine the salience of each feature used for detect-
ing spam and evaluate their performance over time.

2. Architecture

In this work we present the design and implementation of
Monarch, a system for filtering spam URLs in real-time as

BR =

Web Services
Social Networks,

H O URL Stream
1 Webmail, Blogs, Reviews

Fig. 1: Intended operation of Monarch. Web services provide URLs
posted to their sites for Monarch to classify. The decision for whether
each URL is spam is returned in real-time.

they are posted to web applications. Classification operates
independently of the context where a URL appears (e.g., blog
comment, tweet, or email), giving rise to the possibility of
spam URL filtering as a service. We intend the system to
act as a first layer of defense against spam content targeting
web services, including social networks, URL shorteners, and
email.

We show the overall intended operation of Monarch in
Figure 1. Monarch runs as an independent service to which any
web service can provide URLs to scan and classify. During
the period it takes for Monarch’s classification to complete,
these services can either delay the distribution of a URL,
distribute the URL and retroactively block visitors if the URL
is flagged as spam (risking a small window of exposure), or
employ a heavier-weight verification process to enforce even
stricter requirements on false positives than are guaranteed by
classification.

2.1. Design Goals

To provide URL spam filtering as a service, we adopt six
design goals targeting both efficiency and accuracy:

1) Real-time results. Social networks and email operate as
near-interactive, real-time services. Thus, significant de-
lays in filtering decisions degrade the protected service.

2) Readily scalable to required throughput. We aim to
provide viable classification for services such as Twitter
that receive over 15 million URLs a day.

3) Accurate decisions. We want the capability to emphasize
low false positives in order to minimize mistaking non-
spam URLs as spam.

4) Fine-grained classification. The system should be ca-
pable of distinguishing between spam hosted on public
services alongside non-spam content (i.e., classification
of individual URLs rather than coarser-grained domain
names).

5) Tolerant to feature evolution. The arms-race nature of
spam leads to ongoing innovation on the part of spam-
mers’ efforts to evade detection. Thus, we require the
ability to easily retrain to adapt to new features.

6) Context-independent classification. If possible, decisions
should not hinge on features specific to a particular
service, allowing use of the classifier for different types
of web services.

Email
Stream \
Tweet

/

URL Aggregation

Dispatch
Queue

Crawling
Instances

Feature Collection

Training

Blacklists, | !

n Feature Annotation H

0o Extractors E

Feature i ’ ! Live E
Database s 0! :
! parse Feature | ;! Classifier ,

. ! Vectors -H’ ,

Feature Extraction Classification

Fig. 2: System flow of Monarch. URLs appearing in web services are fed into Monarch’s cloud infrastructure. The system visits each URL
to collect features and stores them in a database for extraction during both training and live decision-making.

2.2. System Flow

Figure 2 shows Monarch’s overall internal system flow.
URLs posted to web services are fed into a dispatch queue
for classification. The system visits each URL to collect its
associated raw data, including page content, page behavior,
and hosting infrastructure. It then transforms these raw features
into meaningful boolean and real-valued features and provides
these results to the classifier for both training and live decision-
making. During live classification, Monarch’s final decision is
returned to the party that submitted the URL; they can then
take appropriate action based on their application, such as
displaying a warning that users can click through, or deleting
the content that contained the URL entirely. We now give an
overview of each component in this workflow.

URL Aggregation. Our current architecture aggregates URLs
from two sources for training and testing purposes: links
emailed to spam traps operated by a number of major email
providers and links appearing in Twitter’s streaming APIL. In
the case of Twitter, we also have contextual information about
the account and tweet associated with a URL. However, we
hold to our design goal of remaining agnostic to the source
of a URL and omit this information during classification.
We examine how removing Twitter-specific features affects
accuracy in Section 6.

Feature Collection. During feature collection, the system
visits a URL with an instrumented version of the Firefox
web browser to collect page content including HTML and
page links, monitor page behavior such as pop-up windows
and JavaScript activity, and discover hosting infrastructure.
We explore the motivation behind each of these features in
Section 3. To ensure responsiveness and adhere to our goal
of real-time, scalable execution, we design each process used
for feature collection to be self-contained and parallelizable.
In our current architecture, we implement feature collection
using cloud machinery, allowing us to spin up an arbitrary
number of collectors to handle the system’s current workload.

Feature Extraction. Before classification, we transform the
raw data generated during feature collection into a sparse

feature vector understood by the classification engine. Data
transformations include tokenizing URLs into binary features
and converting HTML content into a bag of words. We
permanently store the raw data, which allows us to evaluate
new transformations against it over time.

Classification. The final phase of the system flow produces a
classification decision. Training of the classifier occurs off-
line and independent of the main system pipeline, leaving
the live decision as a simple summation of classifier weights.
During training, we generate a labeled data set by taking URLSs
found during the feature collection phase that also appear in
spam traps or blacklists. We label these samples as spam, and
all other samples as non-spam. Finally, in order to handle
the millions of features that result and re-train daily to keep
pace with feature evolution, we develop a distributed logistic
regression, as discussed in Section 4.

3. Feature Collection and Extraction

Classification hinges on having access to a robust set of
features derived from URLs to discern between spam and
non-spam. Previous work has shown that lexical properties
of URLs, page content, and hosting properties of domains are
all effective routes for classification [15], [16], [22]-[24]. We
expand upon these ideas, adding our own sources of features
collected by one of three components: a web browser, a DNS
resolver, and IP address analysis. A comprehensive list of
features and the component that collects them can be found
in Table 1. A single monitor oversees multiple copies of each
component to aggregate results and restart failed processes.
In turn, the monitor and feature collection components are
bundled into a crawling instance and replicated in the cloud.

3.1. Web Browser

Within a crawling instance, a web browser provides the
primary means for collecting features for classification. Due
to real-time requirements, a trade-off arises between expedited
load times and fidelity to web standards. Given the adversarial
nature of spam, which can exploit poor HTML parsing or the
lack of JavaScript and plugins in a lightweight browser [25],

[Source Features

[Collected By

Initial URL,

Domain tokens, path tokens, query parameters, is obfuscated?, number of subdomains, length of

Web browser

Final URL domain, length of path, length of URL (From here on out, we denote this list as URL features)
Redirects URL features for each redirect, number of redirects, type of redirect Web browser
Frame URLs URL features for each embedded IFrame Web browser

Source URLs

URL features for every outgoing network request; includes scripts, redirects, and embedded content

Web browser

HTML Content

Tokens of main HTML, frame HTML, and script content

Web browser

Page Links

URL features for each link, number of links, ratio of internal domains to external domains

‘Web browser

JavaScript Events

Number of user prompts, tokens of prompts, onbeforeunload event present?

‘Web browser

Pop-up Windows

URL features for each window URL, number of windows, behavior that caused new window

‘Web browser

Plugins URL features for each plugin URL, number of plugins, application type of plugin Web browser
HTTP Headers Tokens of all field names and values; time-based fields are ignored Web browser
DNS IP of each host, mailserver domains and IPs, nameserver domains and IPs, reverse IP to host match? | DNS resolver
Geolocation Country code, city code (if available) for each IP encountered IP analysis
Routing Data ASN/BGP prefix for each IP encountered IP analysis

TABLE 1: List of features collected by Monarch

[26], our system employs an instrumented version of Firefox
with JavaScript enabled and plugin applications installed in-
cluding Flash and Java. As a URL loads in the browser, we
monitor a multitude of details, including redirects, domains
contacted while constructing a page, HTML content, pop-up
windows, HTTP headers, and JavaScript and plugin execution.
We now explain the motivation behind each of these raw
features and the particulars of how we collect them.

Initial URL and Landing URL. As identified by earlier
research [16], [23], the lexical features surrounding a URL
provide insight into whether it reflects spam. The length
of a URL, the number of subdomains, and terms that ap-
pear in a URL all allow a classifier to discern between
get.cheap.greatpills.com and google.com. However, given the
potential for nested URLs and the frequent use of shortening
services, simply analyzing a URL presented to our service
does not suffice. Instead, we fetch each URL provided to the
browser, allowing the browser to log both the initial URL
provided as well as the URL of the final landing page that
results after executing any redirects.

Redirects. Beyond the initial and final landing URL, the
redirect chain that occurs in between can provide insight into
whether a final page is spam. Suspiciously long redirect chains,
redirects that travel through previously known spam domains,
and redirects generated by JavaScript and plugins that would
otherwise prevent a lightweight browser from proceeding all
offer insight into whether the final landing page reflects spam.
To capture each of these behaviors, the web browser monitors
each redirect that occurs from an initial URL to its final
landing page. This monitoring also includes identifying the
root cause of each redirect; whether it was generated by a
server 30X HTTP response, meta refresh tag, JavaScript event,
or plugin (e.g., Flash).

Sources and Frames. In the case of mashup pages with spam
content embedded within a non-spam page, the URL of a final
page masks the presence of spam content. This is particularly
a problem with URL shortening services, including At.ly and
ow.ly, which embed shortened URLs as IFrames. To recover

information about embedded content, the web browser mon-
itors and logs all frames, images, and ad URLs it contacts
during the construction of a page. The browser also collects
a list of all outgoing network requests for URLs, regardless
whether the URL is for a top level window or frame, and
applies a generic label called sources.

HTML Content. Beyond features associated with URLs, the
content of a page often proves indicative of the presence of
spam [24], [27], [28]. This includes the terms appearing on
a page and similar layout across spam webpages. To capture
page content, the web browser saves a final landing page’s
HTML in addition to the HTML of all subframes on the page.
Naturally, we cannot collect HTML features for image-based
spam or for media content such as PDFs.

Page Links. The links appearing on a final landing page offer
some insight into spam. While the web browser only follows
URLs that automatically load (it does not crawl embedded
links such as HREFs), if a page contains a URL to a known
spam page, then that can help to classify the final landing page.
Similarly, search engine optimization techniques where a page
comes stuffed with thousands of URLs to an external domain
also suggests misbehavior. To capture both of these features,
the web browser parses all links on a final landing page. Each
link is subjected to the same analysis as frames and redirects.
Afterwards, we compute the ratio of links pointing at internal
pages versus external domains.

JavaScript Events. In addition to the content of a page,
observing an attempt to force the user to interact with a
page—such as pop-up boxes and prompts that launch before a
user navigates away from a page—strongly indicates spam. To
identify this behavior, the web browser instruments all dialog
messages that would normally require some user action to
dismiss, including alerts, input boxes, and onbeforeunload
events. When a dialog box occurs, the browser silently returns
from the event, logging the text embedded in the dialog. If a
return value is expected such as with an input box, the browser
provides a random string as a response. The browser saves

as features the number of dialogs that occur, the text of the
dialogs, and the presence of an onbeforeunload event.

Pop-up Windows. As with pop-up dialogs, pop-up windows
are a common feature of spam. Whenever a pop-up window
occurs, the browser allows the window to open, instrumenting
the new page to collect all the same features as if the URL had
originated from the dispatch queue. It records the parent URL
that spawned the pop-up window, along with whether the page
was launched via JavaScript or a plugin. After all windows
have finished loading (or upon a timeout), the browser saves
the total number of pop-up windows spawned and the features
of each window and associates them with the parent URL.

Plugins. Previous reports have shown that spammers abuse
plugins as a means to redirect victims to a final landing
page [26], [29]. To capture such plugin behavior, our browser
monitors all plugins instantiated by a page, the application type
of each plugin (e.g., Java, Flash), and finally whether a plugin
makes any request to the browser that leads to an outgoing
HTTP request, causes a page to redirect, or launches a new
window.

HTTP Headers. The HTTP headers that result as the browser
loads a landing page provide a final source of information.
Header data offers insight into the servers, languages, and
versions of spam hosts, in addition to cookie values and
custom header fields. We ignore HTTP fields and values
associated with timestamps to remove any bias that results
from crawling at particular times.

3.2. DNS Resolver

While spammers rapidly work through individual domain
names during the course of a campaign, they often reuse
their underlying hosting infrastructure for significant peri-
ods [17], [18], [20], [23]. To capture this information, once the
web browser finishes processing a page, the crawler instance
manager forwards the initial, final, and redirect URLs to a
DNS resolver. For each URL, the resolver collects hostnames,
nameservers, mailservers, and IP addresses associated with
each domain. In addition, we examine whether a reverse
lookup of the IP addresses reported match the domain they
originated from. Each of these features provides a means for
potentially identifying common hosting infrastructure across
spam.

3.3. IP Address Analysis

Geolocation and routing information can provide a means
for identifying portions of the Internet with a higher prevalence
of spam [17]. To extract these features, we subject each IP
address identified by the DNS resolver to further analysis in
order to extract geolocation and routing data. This includes
identifying the city, country, ASN, and BGP prefix associated
with each address.

3.4. Proxy and Whitelist

To reduce network delay, Monarch proxies all outgoing
network requests from a crawling instance through a single
cache containing previous HTTP and DNS results. In addition,
we employ a whitelist of known good domains and refrain
from crawling them further if they appear during a redirect
chain as a top-level window; their presence in IFrames or pop-
up windows does not halt the surrounding collection process.
Whitelists require manual construction and include trusted,
high-frequency domains that do not support arbitrary user
content. Our current whitelist contains 200 domains, examples
of which include nytimes.com, flickr.com, and youtube.com.
Whitelisted content accounts for 32% of URLs visited by
our crawlers. The remaining content falls into a long tail
distribution of random hostnames, 67% of which appear once
and 95% of which appear at most 10 times in our system.
While we could expand the whitelist, in practice this proves
unnecessary and provides little performance improvement.

3.5. Feature Extraction

In preparation for classification, we transform the un-
processed features gathered during feature collection into a
meaningful feature vector. We first canonicalize URLs to
remove obfuscation, domain capitalization, and text encod-
ing. Obfuscation includes presenting IP addresses in hex or
octet format, or embedding path-traversal operations in the
URL path. By reducing URLs to a canonical form, we can
assure that common URL features match consistently across
occurrences and cannot be masked by lexical transformations
that would otherwise result in the same browser behavior. To
compensate for potential lost information, we also include a
boolean feature reflecting the presence of an obfuscated URL.

Once canonicalized, we split a URL into its basic compo-
nents of domain, path, and query parameters, each of which
we tokenize by splitting on non-alphanumeric characters. We
apply a similar process to HTML and any text strings such
as HTTP headers, where we tokenize the text corpus into
individual terms and treat them as an unsorted bag of words.
We then convert the results of tokenization into a binary
feature vector, with a flag set for each term present. Rather
than obscuring the origin of each token, we construct separate
feature groups to indicate that a feature appeared in a redirect
versus HTML content. Given the potential for millions of
features, we represent feature vectors as sparse hash maps,
which only indicate the presence of a feature. Finally, we
provide these sparse maps to the classifier for training and
decision making.

4. Distributed Classifier Design

For Monarch, we want a classifier that we can train
quickly over large sets of data. Our first design decision
along these lines was to use linear classification, where the
output classification model is a weight vector 0 that describes

a hyperplane that separates data points placed in a high-
dimensional space. We choose linear classification because
of its simplicity, scalability and interpretability — for these
reasons, linear classifiers have become common-place for web
service providers interested in large-scale anti-phishing and
anti-spam classification [24], [30].

In addition to quick training, we want the classifier to fit
in memory. With these goals in mind, we design our training
algorithm as a parallel online learner with regularization to
yield a sparse weight vector. In particular, we combine the
strategies of iterative parameter mixing [31] and subgradient
L1-regularization [32]. Although more sophisticated algo-
rithms exist that could yield higher accuracy classifiers at the
expense of more training time, we favor a design that can yield
favorable classification accuracies with less training time.

4.1. Notation

The problem of identifying spam URLs is an instance of
binary classification. For a given URL, the data point & € R?
represents its feature vector in a high-dimensional space with
d features. Because 7 is sparse (typically 1,000-1,500 nonzero
entries out of an extremely large feature space of d > 107),
we represent the feature vector as a hash map. We label the
data point with an accompanying class label y € {—1,+1}.
y = —1 represents a non-spam site, and a y = +1 represents
a malicious site.

To predict the class label of a previously unseen example
Z (representing the URL’s feature vector), we train a linear
classifier characterized by weight vector « trained offline on
a labeled set of training data. During testing or deployment,
we compute a predicted label as the sign of the dot product
between the weight vector and the example: § = sign(Z -).
If the predicted label § = +1 but the actual label y = —1,
then the error is a false positive. If § = —1 but y = +1, then
the error is a false negative.

4.2. Logistic Regression with L1-regularization

For training the weight vector i, we use logistic regression
(LR) with Ll-regularization [33]. Given a set of n labeled
training points {(Z;,y;)}, the goal of the training process
is to find «/ that minimizes the following objective function:

n
F@@) = log(1 + exp|—y; (& - 6;)]) + All]|1.)
i=1
The first component of the objective constitutes the log-
likelihood of the training data as a function of the weight
vector—it is an upper bound on the number of mistakes made
during training, and solving this proxy objective is a tractable
alternative to directly minimizing the training error. For a
single example (Z;,y;), we can minimize the value of log(1+
exp[—y;(&; - W;)]) if the classification margin y;(Z; - ;) is a
large positive value. (The margin is proportional to the distance
between Z; and the classifier’s decision boundary—a positive

Algorithm 1 Distributed LR with L1-regularization
Input: Data D with m shards
Parameters:)\ (regularization factor), I (no. of iterations)
Initialize: 1« =0
fori=1to I do
(gradient) §) = LRsgd(w, D;) for j = 1..m
(average) 0 = W — & Z;-":l g\
(shrink) w,, = sign(wg) - max(0, |wy| — A) for a = 1..d
end for

Algorithm 2 Stochastic gradient descent for LR (LRsgd)
Input: % (weight vector), D; (data shard)
Parameters: 7 (learning rate)

Initialize: ¢y =W
for t =1 to |D;| do
Get data point (x,y;) from D;
Compute margin z = y4(Zs - (W — Ge—1))
Compute partial gradient h=y(l+e 2t = 1)
Gt = Ge—1 +1h
end for
Return: gp

value means it is on the correct side of the boundary, and
a negative value means it is on the incorrect side.) Thus, a
solution that minimizes f(w) would ideally yield a positive
classification margin for as many examples as possible.

The second component is the regularization—it adds a
penalty to the objective function for values where the L1 norm
of @ is large (||w]; = Z?zl w;). Ll-regularization tends
to yield sparse weight vectors—where there are relatively
few nonzero feature weights. This is useful for applications
that may be memory-constrained and require sparse solutions.
(By contrast, using the L2 norm, another popular form of
regularization, would yield solutions whose weights have small
magnitudes but that tend to be non-sparse.) The parameter A
governs the amount of regularization: a higher A\ gives the
second component of Equation 1 more weight relative to the
first component and will yield a more sparse solution.

Many optimization strategies exist for minimizing the ob-
jective in Equation 1. We had particular interest in a strategy
amenable to learning over large-scale data sets in a short
amount of time. We settled on a combination of recently-
developed distributed learning and regularization techniques,
which we describe in the next section.

4.3. Training Algorithm

We first divide the training data into m shards (which occurs
by default storing data on certain distributed file systems
such as the Hadoop Distributed File System [34]). Then,
we distribute the initial model weight vector w to the m
shards for training by stochastic gradient descent (Algorithm 1,
“gradient” step).

Within each shard, we update the weight vector using

a stochastic gradient descent for logistic regression (Algo-
rithm 2). We update the weight vector one example at a time
as we read through the shard’s data (this is also known as
online learning). Under the constraint where we can only read
each data item once within a shard, updating the model incre-
mentally after every example typically has good convergence
properties. As a performance optimization, we return the sum
of the partial gradients rather than the updated weight vector
itself.

After the m shards update their version of the weight
vector, we collect the partial gradients §(*)..5(™) and average
them (Algorithm 1, “average” steps). Then, we perform L1-
regularization (Algorithm 1, “shrink” step) on the averaged
weight vector using a truncation function with threshold A
— this only applies to feature weights corresponding to
binary features. In particular, all feature weights w; with
magnitude less than or equal to A are set to 0, and all other
weights have their magnitudes reduced by A. This procedure
reduces the number of nonzero weight vector entries, allowing
the resulting weight vector to occupy less memory. Because
there are fewer real-valued features (about 100) than binary
features (about 107), we do not regularize the feature weights
corresponding to real-valued features.

After the shrinkage step, we distribute the new weight vector
W to the m shards again to continue the training process. The
process repeats itself for I iterations.

A number of practical issues arise in getting the distributed
logistic regression to scale to large-scale data. We describe
how we implement our classifier in Section 5.4.

4.4. Data Set and Ground Truth

Our data set for training and testing the classifier consists
of three sources: URLs captured by spam traps operated by
major email providers, blacklisted URLs appearing on Twitter,
and non-spam URLs appearing on Twitter that are used to
represent a non-spam data sample. In total, we use Monarch’s
feature collection infrastructure over the course of two months
to crawl 1.25 million spam email URLs, roughly 567,000
blacklisted Twitter URLs, and over 9 million non-spam Twitter
URLs. Due to blacklist delay, generating our spam set of
Twitter URLs requires retroactively checking all our Twitter
URLs against 5 blacklists: Google Safebrowsing, SURBL,
URIBL, Anti-Phishing Work Group (APWG), and Phishtank.
If at any point after a URL is posted to Twitter its landing
page, any of its redirects, frame URLs, or any of its source
URLs become blacklisted, we treat the sample as spam. A
breakdown of the categories of spam identified on Twitter can
be seen in Table 2; 36% of blacklisted URLs were flagged as
scams, 60% as phishing, and 4% as malware. A breakdown
for email categories is not available, but the sample is known
to contain scams, phishing, and malware.

In general, we lack comprehensive ground truth, which
complicates our overall assessment of Monarch’s performance.
We may misclassify some true spam URLSs as nonspam given
absence of the URL in our spam-trap and blacklist feeds.

[Blacklist | Detected URLs |

Anti-Phishing Work Group 350,577
Google Safebrowsing (Phishing)' 12
Google Safebrowsing (Malware)! 22,600
Phishtank 46,203
SURBL (Scams) 51,263
SURBL (Malware, Phishing) 7,658
URIBL (Scams) 189,047
Total Samples 667,360
Total Unique 567,784

TABLE 2: Blacklist results for URLs appearing on Twitter that were
flagged as spam.

Thus, we may somewhat underestimate false negatives (spam
that slips through) seen in live operation, and overestimate
false positives (legitimate URLs tagged as spam). In practice,
building a training set of spam and non-spam samples remains
a challenge for Monarch, requiring either user reports or spam
traps operated by the web services seeking protection. How-
ever, for the purposes of evaluating Monarch’s effectiveness
at identifying spam, blacklists and email spam traps provide
a suitable source of ground truth.

5. Implementation

We implement each of the four components of Monarch
as independent systems operating on Amazon Web Services
(AWS) cloud infrastructure. For exact specifications of the
hardware used for our system, we refer readers to the AWS
EC2 instance documentation [35].

5.1. URL Aggregation

URL aggregation and parsing is written in Scala and exe-
cutes on a single EC2 Extra Large instance running Ubuntu
Linux 10.04. The aggregation phase for Twitter URLs parses
tweets from the Twitter Streaming API [36] and extracts URLs
from the tweet text. The email spam URLs we process are
provided to us post processing, and require no additional
parsing. We place incoming URLs into a Kestrel queue [37]
that keeps the most recent 300,000 URLs from the Twitter
stream and email URLs to supply feature collection with a
steady workload of fresh URLs. A full-fledged implementation
of our system would require that the queue keeps every
submitted URL, but for the purposes of evaluating Monarch,
we only need enough URLs to scale to the system’s throughput
and to generate large data sets for classification.

5.2. Feature Collection

As previously framed, feature collection consists of four
components: a web browser, DNS resolver, IP address anal-
ysis, and a monitor to handle message passing and aggregate

1. Twitter uses Google’s Safebrowsing API to filter URLs appearing in
tweets. URLs in our data set were either obfuscated to prevent detection, or
were not present in the blacklist at the time of posting.

results. Feature collection runs in parallel on 20 EC2 High-
CPU instances each running Ubuntu Linux 10.04 and execut-
ing 6 browsers, DNS resolvers, and IP analyzers each. For web
browsing we rely on Firefox 4.0b4 augmented with a custom
extension written in a combination of XML and JavaScript
to tap into Firefox’s API [38] which exposes browser-based
events. We collect plugin-related events not exposed to the API
by instrumenting Firefox’s NPAPI [39] with hooks to interpose
on all message passing between plugins and the browser. If
a URL takes more than 30 seconds to load, we enforce a
timeout to prevent delaying classification for other URLs.
DNS resolution occurs over Linux’s native host command,
while geolocation and route lookups use the MaxMind GeolP
library [40] and Route Views [41] data respectively. A monitor
written in Python aggregates the results from each of these
services, generating its output as JSON text files stored in
AWS S3.

5.3. Feature Extraction

Feature extraction is tightly coupled with the classification
and training phase and does not run on separate hardware.
Until the extraction phase, we store features in raw JSON
format as key-value pairs. During extraction, we load the
JSON content into a Scala framework, transform each into
meaningful binary and real-valued features, and produce a
sparse hash map stored in memory.

5.4. Classifier

Before training begins, we copy the raw feature data from
Amazon S3 to a Hadoop Distributed File System (HDFS) [34]
residing on the 50-node cluster of Amazon EC2 Double-Extra
Large instances. Files in HDFS are automatically stored in
shards of 128 MB, and we use this pre-existing partitioning
(as required in the “Input” line of Algorithm 1). Within
each shard, we randomize the order of the positive and
negative examples—this gives the stochastic gradient descent
in Algorithm 2 (which incrementally computes its partial
gradient) better convergence rates compared to the situation
of processing a long, contiguous block of positive examples
followed by a long, contiguous block of negative examples.

We implement Algorithms 1 and 2 using Spark, a distributed
computation framework that provides fault-tolerant distributed
collections [42]. Spark provides map-reduce and shuffle oper-
ations, allow us to cache the data in memory across the cluster
between iterations. We take advantage of these capabilities to
construct an efficient distributed learner.

The first step of the training implementation is to normalize
the real-valued features. In particular, we project real values to
the [0, 1] interval—doing so ensures that real-valued features
do not dominate binary features unduly (a common practice in
classification). We perform a map-reduce operation to compute
the ranges (max/min values) of each real-valued feature. Then,
we broadcast the ranges to the slave nodes. The slaves read
the raw JSON data from HDFS, perform feature extraction

to convert JSON strings into feature hash maps, and use the
ranges to complete the normalization of the data vectors. At
this point, the data is ready for training.

For the “gradient” step in Algorithm 1, we distribute m tasks
to the slaves, whose job is to map the m shards to partial
gradients. The slaves then compute the partial gradients for
their respective shards using Algorithm 2.

Because the number of features is quite large, we want
to avoid running Algorithm 1’s “average” and “shrink™ steps
entirely on the master—the amount of master memory avail-
able for storing the weight vector « constitutes a resource
bottleneck we must tend to.> Thus, we must avoid aggregating
all of the partial gradients at the master at once and find an
alternate implementation that exploits the cluster’s parallelism.

To achieve this, we partition and shuffle the partial gradients
across the cluster so that each slave is responsible for a
computing the “average” and “shrink” steps on a disjoint
subset of the feature space. We split each gradient into P
partitions (not to be confused with the initial m data shards).
Specifically, we hash each feature to an integer key value from
1 to P. Then, we shuffle the data across the cluster to allow
the slave node responsible for feature partition p € {1..P} to
collect its partial gradients. At this point the slave responsible
for partition p performs the “average” and “shrink™ steps.
When these computations finish, the master collects the P
partitions of the weight vector (which will have a smaller
memory footprint than before shrinking) and joins them into
the final weight vector « for that iteration.

6. Evaluation

In this section we evaluate the accuracy of our classifier
and its run-time performance. Our results show that we can
identify web service spam with 90.78% accuracy (0.87% false
positives), with a median feature collection and classification
time of 5.54 seconds. Surprisingly, we find little overlap
between email and tweet spam features, requiring our classifier
to learn two distinct sets of rules. We explore the underlying
distinctions between email and tweet spam and observe that
email is marked by short lived campaigns with quickly chang-
ing domains, while Twitter spam is relatively static during
our two month-long analysis. Lastly, we examine our data set
to illuminate properties of spam infrastructure including the
abuse of popular web hosting and URL shorteners.

6.1. Classifier Performance

We train our classifier using data sampled from 1.2 million
email spam URLs, 567,000 blacklisted tweet URLs, and 9
million non-spam URLs. In all experiments, we use the fol-
lowing parameters for training: we set the number of iterations
to I = 100, the learning rate to 1 = 1, and the regularization
factor to A = 1%’7 (where m is the number of data shards).

2. In our application, the slaves are able to compute the partial gradient over
their respective shards without memory exhaustion. However, if the partial
gradient computation were to bottleneck the slave in the future, we would
have to add a regularization step directly to Algorithm 2.

[Training Ratio [Accuracy [FP | FN |

1:1 94.14% | 4.23% 7.50%
4:1 90.78% | 0.87% | 17.60%
10:1 86.61% | 0.29% | 26.54%

TABLE 3: Results for training on data with different non-spam to
spam ratios. We adopt a 4:1 ratio for classification because of its low
false positives and reasonable false negatives.

Overall Accuracy. In order to avoid mistaking benign URLSs
as spam, we tune our classifier to emphasize low false positives
and maintain a reasonable detection rate. We use a technique
from Zadrozny et al. [43] to adjust the ratio of non-spam
to spam samples in training to tailor false positive rates. We
consider non-spam to spam ratios of 1:1, 4:1, and 10:1, where
a larger ratio indicates a stronger penalty for false positives.
Using 500,000 spam and non-spam samples each, we perform
5-fold validation and randomly subsample within a fold to
achieve the required training ratio (removing spam examples to
increase a fold’s non-spam ratio), while testing always occurs
on a sample made up of equal parts spam and non-spam.
To ensure that experiments over different ratios use the same
amount of training data, we constrain the training set size to
400,000 examples.

Table 3 shows the results of our tuning. We achieve lower
levels of false positives as we apply stronger penalties, but
at the cost of increased false negatives. We ultimately chose
a 4:1 ratio in training our classifier to achieve 0.87% false
positives and 90.78% overall accuracy. This choice strikes a
balance between preventing benign URLs from being blocked,
but at the same time limits the amount of spam that slips past
classification. For the remainder of this evaluation, we execute
all of our experiments at a 4:1 ratio.

To put Monarch’s false positive rate in perspective, we
provide a comparison to the performance of mainstream
blacklists. Previous studies have shown that blacklist false
positives range between 0.5-26.9%, while the rate of false
negatives ranges between 40.2-98.1% [11]. Errors result from
a lack of comprehensive spam traps and from low volumes of
duplicate spam across all traps [44]. These same performance
flaws affect the quality of our ground truth, which may skew
our estimated false positive rate.

For web services with strict requirements on false positives
beyond what Monarch can guarantee, a second tier of heavier-
weight verification can be employed for URLs flagged by
Monarch as spam. Operation can amortize the expense of
this verification by the relative infrequency of false positives.
Development of such a tool remains for future work.

Accuracy of Individual Components. Classification relies on
a broad range of feature categories that each affect the overall
accuracy of our system. A breakdown of the features used for
classification before and after regularization can be found in
Table 4. From nearly 50 million features we regularize down to
98,900 features, roughly half of which are each biased towards
spam and non-spam. We do not include JavaScript pop-ups
or plugin related events, as we found these on a negligible

[Feature Type | Unfiltered [[Filtered | Non-spam [Spam |

HTML terms 20,394,604 50,288 22,083 | 28,205
Source URLs 9,017,785 15,372 6,782 8,590
Page Links 5,793,359 10,659 4,884 5,775
HTTP Headers 8,850,217 9,019 3,597 5,422
DNS records 1,152,334 5,375 2,534 2,841
Redirects 2,040,576 4,240 2,097 2,143
Frame URLs 1,667,946 2,458 1,107 1,351
Initial/Final URL 1,032,125 872 409 463
Geolocation 5,022 265 116 149
AS/Routing 6,723 352 169 183
[All feature types [49,960,691 H 98,900 [43,778 [55,122]

TABLE 4: Breakdown of features used for classification before and
after regularization.

| Feature Type [Accuracy [FP | FN |
Source URLs 89.74% 1.17% 19.38%
HTTP Headers 85.37% 1.23% | 28.07%
HTML Content 85.32% 1.36% | 28.04%
Initial URL 84.01% 1.14% | 30.88%
Final URL 83.59% 2.34% | 30.53%
IP (Geo/ASN) 81.52% 2.33% | 34.66%
Page Links 75.72% 15.46% | 37.68%
Redirects 71.93% 0.85% | 55.37%
DNS 72.40% 25.77% 29.44%
Frame URLs 60.17% 0.33% | 79.45%

TABLE 5: Accuracy of classifier when trained on a single type
of feature. Sources, headers, and HTML content provide the best
individual performance, while frame URLs and DNS data perform
the worst.

number of pages.

To understand the most influential features in our system,
we train a classifier exclusively on each feature category. For
this experiment, we use the data set from the previous section,
applying 10-fold validation with training data at a 4:1 non-
spam to spam ratio and the testing set again at a 1:1 ratio.
Any feature category with an accuracy above 50% is consid-
ered better than a classifier that naively guesses the majority
population. The results of per-feature category training are
shown in Table 5. Source URLSs, which is an amalgamation of
every URL requested by the browser as a page is constructed,
provides the best overall performance. Had our classifier relied
exclusively on initial URLs or final landing page URLs,
accuracy would be 7% lower and false negatives 10% higher.
Surprisingly, DNS and redirect features do not perform well on
their own, each achieving approximately 72% accuracy. The
combination of all of these features lowers the false positive
rate while maintaining high accuracy.

Accuracy Over Time. Because criminals introduce new mali-
cious websites on a continual basis, we want to determine how
often we need to retrain our classifier and how long it takes for
the classifier to become out of date. To answer these questions,
we evaluate the accuracy of our classifier over a 20 day period
where we had continuous spam and non-spam samples. We
train using two different training regimens: (1) training the
classifier once over four days’ worth of data, then keeping
the same classification model for the rest of the experiment;
(2) retraining the classifier every four days, then testing the

15

— © — Retraining Error
— 8 — Retraining FP
—©— Static Error
10} | —%— Static FP
S
S
L 5
E — - -
0 -ttt i
9/12-9/15 9/16-9/21 9/22-9/25 9/25-9/29

4-day training periods

Fig. 3: Performance of classifier over time. Regular retraining is
required to guarantee the best accuracy, else error slowly increases.

model on the subsequent four days of data. The data for each
four-day window consists of 100,000 examples sampled at a
4:1 non-spam to spam ratio. We repeat this experiment four
times by resampling each window’s data, and take the average
result.

Figure 3 shows the results for our time-sensitive evaluations.
The error of the statically trained classifier gradually increases
over time, whereas the classifier retrained daily maintains
roughly constant accuracy. This indicates that in a deployment
of Monarch, we will need to retrain the classifier on a continual
basis. We explore the temporal nature of features that cause
this behavior further in Section 6.3.

Training Across Input Sources. One of the primary chal-
lenges of training a classifier is obtaining labeled spam sam-
ples. Consequently, if a single labeled data set generalized to
all web services, it would alleviate the problem of each web
service being required to obtain their own spam samples. For
instance, a great deal of time and effort could be saved if
spam caught by passive email spam traps were applicable to
Twitter where we currently are forced to crawl every link and
retroactively blacklist spam URLs. However, spam targeting
one web service is not guaranteed to be representative of spam
targeting all web services. To this end we ask: how well can
an email-trained classifier perform on Twitter data? How well
can a Twitter-trained classifier perform on email data?

Table 6 displays the results of an experiment where we
train our classifier on matching and mismatched data sources.
We construct a 5-fold data set containing 400,000 non-spam
samples and 100,000 tweet spam samples. Then, we copy
the 5 folds but replace the 100,000 tweet spam samples
with 100,000 email spam examples. We perform 5-fold cross
validation to obtain classification rates. For a given testing
fold, we test on both the tweet spam and email spam version
of the fold (the non-spam samples remain the same in both
version to ensure comparable results with respect to false
positives).

Using a mixture of Twitter spam and non-spam samples,
we are able to achieve 94% accuracy, but let 22% of spam

[Training Set | Testing Set [Accuracy [FP | FN |
Tweet spam Tweet spam 94.01% 1.92% | 22.25%
Tweet spam Email spam 80.78% 1.92% | 88.14%
Email spam Tweet spam 79.78% 0.55% | 98.89%
Email spam Email spam 98.64% 0.58% 4.47%

TABLE 6: Effects of training and testing on matching and mismatch-
ing data sets. Email and tweet spam are largely independent in their
underlying features, resulting in low cross classification accuracy.

[Training Method [Accuracy [FP | FN |
With Tweet Features 94.15% 1.81% | 22.11%
Without Tweet Features 94.16% 1.95% | 21.38%

TABLE 7: Effects of including contextual Twitter information.
Omitting account and tweet properties from classification has no
statistically significant effect on accuracy (the error rates are within
one standard deviation of each another).

tweets slip past our classifier. This same training regimen
utterly fails on email, resulting in 88% of email spam going
uncaught. These results are mirrored on a mixed data set
of email spam and non-spam samples. We can achieve an
accuracy of 98.64% with 4.47% false negatives when we train
a classifier to exclusively find email spam. When we apply
this same classifier to a testing set of Twitter spam, 98% of
spam samples go uncaught.

These results highlight a fundamental challenge of spam
filtering. Within the spam ecosystem, there are a variety of
actors that each execute campaigns unique to individual web
services. While Monarch’s infrastructure generalizes to any
web service, training data is not guaranteed to do the same.
We require individual labeled data sets from each service in
order to provide the best performance. A second unexpected
result is the difficulty of identifying tweet spam compared to
email spam. On matched training and testing sets, email spam
classification achieves half the false negatives of tweet spam
classification and a fifth of the false positives. We explore the
underlying reason for this discrepancy in Section 6.3.

Context vs. Context Free Training. Because spam URLs
can appear on different web services such as email, social
networks, blogs, and forums, the question arises whether using
context-aware features can improve classification accuracy
at the cost of generalizability. To investigate this issue, we
compare the error rate of classifying Twitter spam URLs (we
exclude email spam) with and without account-based features.
These features include account creation time, a tokenized
version of tweet text, a tokenized version of an account’s
profile description, the number of friends and followers an
account has, the number of posts made by an account, a
tokenized screen name, the account’s unique Twitter ID, the
application used to access Twitter (e.g., web, Twitter’s API, or
a third-party application), hashtags present in the tweet, and
“mentions” present in the tweet. Comprehensive historical data
such as the ratio of URLSs to posts is unavailable.

We perform 5-fold cross validation over a data set con-
taining 400,000 non-spam samples and 100,000 tweet spam
samples. The results of the experiment are shown in Table 7.

Even if Twitter account features are included, accuracy is
statistically identical to training without these features. This
contrasts with previous results that rely on account-based
features to identify (fraudulent) spam accounts [12]-[14], but
agrees with recent studies that have shown compromised
accounts are the major distributors of spam [5], [11] which
would render account-based features obsolete.

While this result is not guaranteed to generalize to all web
services, we have demonstrated that strong performance for
filtering email and Twitter spam is achievable without any
requirement of revealing personally identifiable information.
Omitting contextual information also holds promise for iden-
tifying web spam campaigns that cross web service boundaries
without significant loss of accuracy due to disparate contextual
information.

6.2. Run Time Performance

In addition to Monarch’s accuracy, its overall performance
and cost to execute are important metrics. In this section we
measure the latency, throughput, and the cost of Monarch,
finding a modest deployment of our system can classify URLs
with a median time of 5.54 seconds and a throughput of
638,000 URLs per day, at a monthly cost of $1,600 on cloud
machinery.

Latency. We measure latency as the time delta from when
we receive a tweet or email URL until Monarch returns a
final decision. Table 8 shows a breakdown of processing time
for a sample of 5,000 URLs. URL aggregation takes 5 ms
to parse a URL from Twitter’s API format (email requires no
parsing) and to enqueue the URL. Feature collection represents
the largest overhead in Monarch, accounting for a median
run time 5.46 seconds. Within feature collection, crawling
a URL in Firefox consumes 3.13 seconds, while queries
for DNS, geolocation and routing require 2.33 seconds. The
majority of the processing time in both cases occurs due to
network delay, not execution overhead. The remaining 70ms
are spent extracting features and summing weight vectors for
a classification decision.

Given that Firefox browsing incurs the largest delay, we
investigate whether our instrumentation of Firefox for feature
collection negatively impacts load times. We compare our
instrumented Firefox against an uninstrumented copy using
a sample of 5,000 URLs on a system running Fedora Core 13
machine with a four core 2.8GHz Xeon processor with 8GB
of memory. We find instrumentation adds 1.02% overhead,
insignificant to the median time it takes Firefox to execute all
outgoing network requests which cannot be reduced. Instru-
mentation overhead results from interposing on browser events
and message passing between the browser and monitoring
service, accounting on average 110KB of log files.

Throughput. We measure the throughput of Monarch for a
small deployment consisting of 20 instances on Amazon’s EC2
infrastructure for crawling and feature collection. The crawling

Component

[Median Run Time (seconds)

URL aggregation 0.005
Feature collection 5.46
Feature extraction 0.074
Classification 0.002

[Total [5.54]

TABLE 8: Breakdown of the time spent processing a single URL.

[Component | AWS Infrastructure | Monthly Cost |
URL aggregation 1 Extra Large $178
Feature collection 20 High-CPU Medium $882
Feature extraction — $0
Classification 50 Double Extra Large $527
Storage 700GB on EBS $70

[Total [[$1,587 |

TABLE 9: Breakdown for the cost spent for Monarch infrastructure.
Feature extraction runs on the same infrastructure as classification.

and feature extraction execute on a high-CPU medium instance
that has 1.7GB of memory and two cores (5 EC2 compute
units), running a 32-bit version of Ubuntu Linux 10.04. Each
instance runs 6 copies of the crawling and feature collection
code. We determined that the high-CPU medium instances
have the lowest dollar per crawler cost, which make them the
most efficient choice for crawling. The number of crawlers that
each instance can support depends on the memory and CPU
the machine. Using this small deployment, we can process
638,000 URLs per day.

Training Time. For the experiments in Section 6.1, we trained
over data sets of 400,000 examples (80 GB in JSON format).
The training time for 100 iterations of the distributed logistic
regression took 45 minutes. Although we do not fully explore
the effects of different data sizes or algorithm parameters on
training time, we note that the following factors can increase
the training time: a higher number of iterations, a larger
training set (both with respect to number of examples and total
number of nonzero features), a smaller regularization factor A
(which increases the amount of data communicated throughout
the cluster by decreasing the sparsity of the partial gradients
and weight vectors), and a smaller number of cluster machines.

For example, if we wanted to train on a larger number
of examples, we could lower the number of itertations and
increase the regularization factor to limit the training time.
Being aware of these tradeoffs can help practitioners who want
to retrain the classifier daily.

Cost. Using our deployment of Monarch as a model, we
provide a breakdown of the costs associated with running
Monarch on AWS for a month long period, shown in Table 9.
Each of our components executes on EC2 spot instances that
have variable prices per hour according to demand, while
storage has a fixed price. URL aggregation requires a single
instance to execute, costing $178 per month. For a throughput
of 638,000 URLs per day, 20 machines are required to
constantly crawl URLs and collect features, costing $882 per
month. Besides computing, we require storage as feature data

accumulates from crawlers. During a one month period, we
collected 1TB worth of feature data, with a cost of $.10 per
GB. However, for live execution of Monarch that excludes
the requirement of log files for experimentation, we estimate
only 700GB is necessary to accommodate daily re-training at
a monthly cost of $70. We can discard all other data from
the system after it makes a classification decision. Finally,
daily classifier retraining requires a single hour of access to 50
Double-Extra Large instances, for a total of $527 per month.
In summary, we estimate the costs of running a URL filtering
service using Monarch with a throughput of 638,000 URLs
per day to be approximately $1,600 per month. We can reduce
this cost by limiting our use of cloud storage (switching from
JSON to a compressed format), as well as by reducing the
processing time per URL by means of better parallelism and
code optimizations.

We estimate the cost of scaling Monarch to a large web
service, using Twitter as an example. Twitter users send 90
million tweets per day, 25% (22.5 million) of which contain
URLSs [45]. After whitelisting, deploying Monarch at that scale
requires a throughput of 15.3 million URLs per day. The
URL aggregation component is already capable of processing
incoming URLs at this capacity and requires no additional
cost. The crawlers and storage scale linearly, requiring 470
instances for feature collection and approximately 15 TB of
storage for a week’s worth of data, costing $20,760 and $1,464
per month respectively. The classifier training cost remains
$527 per month so long as we use the same size of training
sample. Alternatively, we could reduce the number of training
iterations or increase the regularization factor A to train on
more data, but keep training within one hour. This brings the
total cost for filtering 15.3 million URLs per day to $22,751
per month.

6.3. Comparing Email and Tweet Spam

We compare email and tweet spam features used for
classification and find little overlap between the two. Email
spam consists of a diverse ecosystem of short-lived hosting
infrastructure and campaigns, while Twitter is marked by
longer lasting campaigns that push quite different content. We
capture these distinctions by evaluating two properties: feature
overlap between email and tweet spam and the persistence of
features over time for both categories. Each experiment uses
900,000 samples aggregated from email spam, tweet spam,
and non-spam, where we use non-spam as a baseline.

Overlap. We measure feature overlap as the log odds ratio that
a feature appears in one population versus a second population.
Specifically, we compute |log(p1g2/p2qg1)|, where p; is the
likelihood of appearing in population ¢ and ¢; = 1 — p;. A log
odds ratio of 0 indicates a feature is equally likely to be found
in two populations, while an infinite ratio indicates a feature
is exclusive to one population. Figure 4 shows the results of
the log odds test (with infinite ratios omitted). Surprisingly,
90% of email and tweet features never overlap. The lack of

Association between email, tweets, and nonspam

™ — — — email & nonspam
5 40f| — — tweet &nonspam
e email & tweet
<
o I
= 30 -
kS ~
— s
o /
o 20 P o
g / e
Y -7

8 10 -
(0]
a e

0 L L J

0 0.5 1 1.5 2 25 3
Log odds ratio of feature frequency

Fig. 4: Overlap of features. Email and Twitter spam share only 10%
of features in common, indicating that email spammers and Twitter
spammers are entirely separate actors.

correlation between the two indicates that email spammers are
entirely separate actors from Twitter spammers, each pushing
their own campaigns on distinct infrastructure. Consequently,
the classifier must learn two separate sets of rules to identify
both spam types.

Equally problematic, we find 32% of tweet spam features
are shared with non-spam, highlighting the challenge of classi-
fying Twitter spam. In particular, 41% of IP features associated
with tweet spam are also found in nonspam, a result of shared
redirects and hosting infrastructure. In contrast, only 16% of
email spam IP features are found in non-spam, allowing a
clearer distinction to be drawn between the two populations.

Persistence. We measure feature persistence as the time delta
between the first and last date a feature appears in our data
set, shown in Figure 5. Email spam is marked by much shorter
lived features compared to tweet spam and non-spam samples.
Notably, 77% of initial URL features appearing in email
disappear after 15 days. The same is true for 60% of email
DNS features, compared to just 30% of IP features associated
with email spam hosting. Each of these results highlights the
quick churn of domains used by email campaigns and the long
lasting IP infrastructure controlled by email spammers. This
same sophistication is unnecessary in Twitter, where there is
no pressure to evade blacklists or spam filtering.

6.4. Spam Infrastructure

Email spam has seen much study towards understanding the
infrastructure used to host spam content [18], [46]. From our
feature collection, we identify two new properties of interest
that help to understand spam infrastructure: redirect behavior
used to lead victims to spam sites, and embedding spam
content on benign pages.

Redirecting to spam. Both Twitter and email spammers use
redirects to deliver victims to spam content. This mechanism

Feature Persistance

100 |

o — — — emall J

a 80t| — — tweet L

@ nonspam [

o 1

=] —

= 60 -~

@ (

©

o 40

> P

(o] I

< \

g 20 ;

g e
e)
0 10 20 40

Length of time feature exists (days)

Fig. 5: Persistence of URL features. Email spam features are shorter
lived compared to tweet spam, a result of short-lived campaigns and
domain churn.

is dominated by tweet spam where 67% of spam URLs in
our data set use redirects, with a median path length of 3.
In contrast, only 20% of email spam URLs contain redirects,
with a median path length of 2. Further distinctions between
email and tweet spam behavior can be found in the abuse
of public URL shorteners. Table 10 shows the top ten URL
shortening services used for both email and tweet spam. The
majority of email spam in our data set redirects through
customized infrastructure hosted on arbitrary domains, while
Twitter spammers readily abuse shortening services provided
by bit.ly, Twitter, Google, and Facebook. Despite efforts by
URL shorteners to block spam [8], [9], we find that widespread
abuse remains prevalent.

Apart from the use of redirectors to mask initial URLs,
we also examine domains that are commonly traversed as
shortened URLs resolve to their final landing page. The top
two destinations of URLs shortened by bit.ly are publicly
available services provided by google.com and blogspot.com.
Together, these two domains account for 24% of the spam first
shortened by bit.ly. In the case of google.com, spam URLs
embed their final landing page behind an arbitrary redirector
operated by Google. This masks the final spam landing site
from bit.ly, rendering blacklisting performed by the service
obsolete. The second most common service, blogspot.com, is
abused for free spam hosting rather than as a redirector. Each
blog contains scam advertisements and other solicitations.
By relying on Blogspot, spammers can evade domain-based
blacklists that lack the necessary precision to block spam
hosted alongside benign content.

Each of these are prime examples of web services currently
being abused by spammers and serve as a strong motivation
for the need of a system like Monarch.

Page content. Another phenomenon we frequently observe
in Twitter spam is the blacklisting of content within a page.
For the majority of sites, this is a web advertisement from
a questionable source. We have observed popular news sites
with non-spam content displaying ads that cause a variety

[Domain | Email spam | Twitter spam |

bit.ly 1% 41%
t.co 0% 4%
tinyurl.com 3% 4%
ow.ly 0% 4%
goo.gl 0% 3%
su.pr 0% 3%
fb.me 0% 2%
dlvr.it 0% 2%
0s7.biz 0% 1%
is.gd 0% 1%

TABLE 10: Top 10 URL shortening services abused by spammers.

Feature Category | % Blacklisted | % Exclusive

Initial URL 16.60% 0.05%
Final URL 23.33% 2.62%
Top-level Window Redirect URL 34.25% 4.41%
Content Redirect URL 3.99% 1.35%
Frame Content URL 14.85% 6.87%
Link URLs 28.28% 7.03%
Source URLs 100% 42.51%

TABLE 11: Breakdown of the locations of blacklisted URLs. We
mark a page as spam if it makes any outgoing request to a blacklisted
URL.

of spam popups, sounds, and video to play. Table 11 shows
a breakdown of the locations containing blacklisted URLSs
specifically for Twitter. The column labeled exclusive indicates
the percent of URLs that can be blacklisted exclusively based
on a URL in that location. For example, 0.05% of Twitter spam
can be blacklisted using only an initial URL posted to the
site. Since the category source URLs is a superset of all other
URLs, 100% of pages can be blacklisted; however, looking
exclusively at URLs which are not part of other categories,
we find that 42.51% of source URLSs lead to blacklisting. This
indicates a page included an image, stylesheet, plugin, script,
or dynamically retrieved content via JavaScript or a plugin that
was blacklisted. These scenarios highlight the requirement of
analyzing all of a webpages content to not overlook spam
with dynamic page behavior or mash-up content that includes
known spam domains.

7. Discussion

In this section we discuss potential evasive attacks against
Monarch that result from running a centralized service. While
we can train our system to identify spam and have shown the
features we extract are applicable over time, classification ex-
ists in an adversarial environment. Attackers can tune features
to fall below the spam classification threshold, modify content
after classification, and block our crawler. We do not propose
solutions to these attacks; instead, we leave to future work an
in depth study of each attack and potential solutions.

Feature Evasion. When Monarch provides a web service
with a classification decision, it also provides attackers with
immediate feedback for whether their URLs are blocked. An
attacker can use this feedback to tune URLs and content
in an attempt to evade spam classification, as discussed in

previous studies [47]-[49], but not without consequences and
limitations. The simplest changes an attacker can make are
modifications to page content: HTML, links, and plugins.
Known spam terms can be transformed into linguistically
similar, but lexically distinct permutations to avoid detection,
while links and plugins can be modified to imitate non-spam
pages. Page behavior poses a more difficult challenge; by
removing pop-up windows and alert prompts, a spammer po-
tentially reduces the effectiveness of eliciting a response from
victims. Finally, hosting infrastructure, redirects, and domains,
while mutable, require a monetary expense for dynamism. We
leave evaluating how susceptible our classification system is to
evasion to future work, but note that email spam classification
and intrusion prevention systems both exist in adversarial
environments and maintain wide-spread adoption.

Time-based Evasion. In Monarch’s current implementation,
feature collection occurs at the time a URL is submitted to
our system; URLs are not re-crawled over time unless they
are resubmitted. This raises the potential for an attacker to
change either page content or redirect to new content after a
URL has been classified. For this attack to succeed, a URL’s
redirects and hosting infrastructure must appear benign during
classification and allow subsequent modification. An attacker
that simply masks his final landing page, but re-uses known
hostile redirect infrastructure may still be identified by the
classifier. Furthermore, static shorteners such as bit.ly cannot
be used because the landing page cannot be changed after
shortening. To circumvent both of these limitations, an attacker
can rely on mutable content hosted on public infrastructure
typically associated with non-spam pages, such as Blogspot,
LiveJournal, and free web hosting. In this scenario, an at-
tacker’s blog contains non-spam content during classification
and is subsequently modified to include spam content or a
JavaScript redirect to a new hostile landing page.

Crawler Evasion. Rather than an attacker modifying content
to evade classification, an adversary can alter HTTP and DNS
behavior to prevent our crawler from ever reaching spam
pages. Potential attacks include relying on browser user-agent
detection or other forms of browser fingerprinting [50] to
forward our crawler to non-hostile content and regular users to
a hostile copies. Alternatively, the IP addresses of Monarch’s
crawlers can be learned by an attacker repeatedly posting
URLSs to our service and tracking the IPs of visitors. A list of
crawler IP addresses can then be distributed as a blacklist, with
attackers either blocking access or redirecting our crawlers to
non-spam content.

8. Related Work

Web Service-specific Defenses. Of the threats facing web
services, social networks in particular have garnered particular
attention. In a recent study, Gao et al. showed that 10% of links
posted to Facebook walls are spam while 97% of accounts
participating in the campaigns are compromised users [4]. The

same is true of Twitter, where at least 8% of links posted are
spam and 86% of the accounts involved are compromised [5].
To counter this threat, a number of service-specific solutions
have been proposed to classify spam accounts based on post
frequency, the number of URLs an account posts, and the
ability of an account to acquire friends [12]-[14]. Accuracy
for these techniques varies between 70-99% for detecting
spam accounts, with sample sizes ranging between 200—-1500
spam accounts. However, many of the metrics used to detect
spammers can be readily evaded. Spammers can randomize the
template behind spam messages posted to social networks, post
benign messages to skew the ratio of URLs to posts, befriend
other spammers to mimic the average friend counts of regular
users, and generate dormant spam accounts prior to the onset
of a spam campaign to avoid heuristics targeting account age.

While Twitter and Facebook rely on similar account heuris-
tics for identifying automated spammers [51], [52], these
heuristics have limited utility in identifying compromised
accounts and incur a delay between a fraudulent account’s
detection and creation to develop a history of (mis-)activity.
In contrast, Monarch operates independently of account prop-
erties, generalizes to all web services that receive URL spam,
and requires no monitoring window.

Characterizing Spam. Monarch builds on a large founda-
tion of previous efforts to characterize spam properties. This
includes the lexical characteristics of phishing URLs [16],
the locality of email spammer IP addresses [17], hosting
infrastructure and page layout that is shared across email spam
campaigns [18], and the content of spam websites [27]. In
turn, these properties have been used to develop techniques
to detect algorithmically generated spam domains [21] and to
identify spam domains based on nameserver and registration
times [20]. We expand upon these properties, adding our own
study of spam behavior including a comparison between email
and tweet spam as well as services abused by each.

Detecting Scams, Phishing, and Malware. Detecting scams,
phishing, and malware based on URL and page properties is by
no means new. Particular attention has been paid to identifying
phishing URLs, where a number of solutions rely on HTML
forms, input fields, page links, URL features, and hosting
properties for detection [15], [28], [53]. Malware, specifically
drive-by-downloads, has also been the target of recent study,
with most solutions relying on exposing sandboxed browsers
to potentially malicious content [54], [55]. An exception is
Wepawet, which relies on detecting anomalous arguments
passed to plugins to prevent attacks [56]. Our own system
generalizes to all forms of scams, phishing, and malware and
allows for real-time URL submission by web services.

Of the closest works to our own, Ma et al. show that
one can classify spam URLs based on lexical structure and
underlying hosting infrastructure including DNS and WHOIS
information [22], [23]. We employ these same metrics in
our system, but crawl URLs to resolve redirect URLs that
would otherwise obscure the final landing page and its hosting

infrastructure. A similar approach is taken by Wittaker et
al. [24] for specifically classifying phishing pages. We expand
upon their research and generalize Monarch to detect all forms
of spam, adding features such as JavaScript behavior, redirect
chains, and the presence of mashup content, while developing
our own classification engine and collection infrastructure to
fulfill real-time requirements.

Spam Filtering and Usability Challenges. In this paper, we
particularly focus on providing accurate decisions for whether
a URL directed to spam content. However, a second challenge
remains for web services, as they must decide how to appropri-
ately address spam content. Currently, Twitter and Facebook
prevent messages containing known spam content from being
posted [57], [58], while bit.ly implements a warning page that
users must click past to access potentially harmful content [9].
Warnings provide users with an opportunity to bypass false
positives, but burden users with making (un-)informed security
decisions.

The effectiveness of warnings in the context of phishing
sites was examined in several studies [59], [60], the re-
sults of which showed that unobtrusive warning messages
are ineffective compared to modal dialogs and active, full-
screen warnings. These works lead to a discussion of the
best approach for educating users of security practices and
making informed decisions [61]. While advances in usability
are orthogonal to Monarch, web services relying on Monarch’s
decisions can take heed of these studies when determining the
best mechanism for conveying the potential harm of a URL
to users.

9. Conclusion

Monarch is a real-time system for filtering scam, phishing,
and malware URLs as they are submitted to web services.
We showed that while Monarch’s architecture generalizes to
many web services being targeted by URL spam, accurate clas-
sification hinges on having an intimate understanding of the
spam campaigns abusing a service. In particular, we showed
that email spam provides little insight into the properties of
Twitter spammers, while the reverse is also true. We explored
the distinctions between email and Twitter spam, including the
overlap of spam features, the persistence of features over time,
and the abuse of generic redirectors and public web hosting.
We have demonstrated that a modest deployment of Monarch
on cloud infrastructure can achieve a throughput of 638,000
URLSs per day with an overall accuracy of 91% with 0.87%
false positives. Each component of Monarch readily scales to
the requirements of large web services. We estimated it would
cost $22,751 a month to run a deployment of Monarch capable
of processing 15 million URLs per day.

10. Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0311808, 0832943,

0448452, 0842694, 0627511, 0842695, 0831501, 0433702,
0905631, CCF-0424422, and CNS-0509559. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This
work is partially supported by the Office of Naval Research
under MURI Grant No. N000140911081. This material is
based upon work supported by the MURI program under
AFOSR Grant No: FA9550-08-1-0352. This research is also
supported by gifts from Sun Microsystems, Google, Microsoft,
Amazon Web Services, Cisco Systems, Cloudera, eBay, Face-
book, Fujitsu, Hewlett-Packard, Intel, Network Appliance,
SAP, VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152 and
07-010), and the University of California Industry/University
Cooperative Research Program (UC Discovery) grant COMO07-
10240.

We thank Matei Zaharia and John Duchi for discussions
about the distributed learning implementation. We also thank
our shepherd Ben Livshits and our anonymous reviewers for
their valuable feedback.

References

[1] G. Cluley, “This you????: Phishing attack hits twitter users.”
http://www.sophos.com/blogs/gc/g/2010/02/24/phishing-attack-hits-
twitter-users/, 2010.

[2] E. Mills, “Facebook hit by phishing attacks for a second day,” CNET
News, 2009.

[3] John E. Dunn, “Zlob Malware Hijacks YouTube,” 2007. http://www.
peworld.com/article/133232/z1ob_malware_hijacks_youtube.html.

[4] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao, “Detecting and
characterizing social spam campaigns,” in Proceedings of the Internet
Measurement Conference (IMC), 2010.

[5] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: the un-

derground on 140 characters or less,” in Proceedings of the ACM

Conference on Computer and Communications Security (CCS), 2010.

Kim Zetter, “Trick or Tweet? Malware Abundant in Twitter URLs,”

Wired, 2009.

[7]1 B. Stone, “Facebook Joins With McAfee to Clean Spam From Site,”
New York Times, 2010.

[8] HootSuite, “Kapow! HootSuite
Malware, and Spam,” 2010.
hootsuite-fights-malware-phishing/.

[9] bitly, “Spam and Malware Protection,” 2009. http://blog.bit.ly/post/

138381844/spam-and-malware-protection.

A. Ramachandran, N. Feamster, and S. Vempala, “Filtering spam with

behavioral blacklisting,” in Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007.

S. Sinha, M. Bailey, and F. Jahanian, “Shades of grey: On the effective-

ness of reputation-based blacklists,” in 3rd International Conference on

Malicious and Unwanted Software, 2008.

F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detecting

Spammers on Twitter,” in Proceedings of the Conference on Email and

Anti-Spam (CEAS), 2010.

K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers:

social honeypots+ machine learning,” in Proceeding of the International

ACM SIGIR Conference on Research and Development in Information

Retrieval, 2010.

G. Stringhini, C. Kruegel, and G. Vigna, “Detecting Spammers on

Social Networks,” in Proceedings of the Annual Computer Security

Applications Conference (ACSAC), 2010.

C. Ludl, S. McAllister, E. Kirda, and C. Kruegel, “On the effectiveness

of techniques to detect phishing sites,” Detection of Intrusions and

Malware, and Vulnerability Assessment, 2007.

[6

=

Fights the Evils of Phishing,

http://blog.hootsuite.com/

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]

[40]

D. McGrath and M. Gupta, “Behind phishing: an examination of phisher
modi operandi,” in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, 2008.

S. Venkataraman, S. Sen, O. Spatscheck, P. Haffner, and D. Song, “Ex-
ploiting network structure for proactive spam mitigation,” in Proceedings
of 16th USENIX Security Symposium on USENIX Security Symposium,
2007.

D. Anderson, C. Fleizach, S. Savage, and G. Voelker, “Spamscatter:
Characterizing internet scam hosting infrastructure,” in USENIX Secu-
rity, 2007.

A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G. Voelker,
V. Paxson, N. Weaver, and S. Savage, “Botnet Judo: Fighting spam with
itself,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2010.

M. Felegyhazi, C. Kreibich, and V. Paxson, “On the potential of proac-
tive domain blacklisting,” in Proceedings of the USENIX Conference on
Large-scale Exploits and Emergent Threats, April 2010.

S. Yadav, A. Reddy, A. Reddy, and S. Ranjan, “Detecting Algorith-
mically Generated Malicious Domain Names,” in Proceedings of the
Internet Measurement Conference (IMC), 2010.

J. Ma, L. Saul, S. Savage, and G. Voelker, “Beyond blacklists: learning
to detect malicious web sites from suspicious urls,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2009.

J. Ma, L. Saul, S. Savage, and G. Voelker, “Identifying suspicious URLs:
an application of large-scale online learning,” in Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

C. Whittaker, B. Ryner, and M. Nazif, “Large-Scale Automatic Classifi-
cation of Phishing Pages,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2010.

K. Chellapilla and A. Maykov, “A taxonomy of JavaScript redirection
spam,” in Proceedings of the 3rd International Workshop on Adversarial
Information Retrieval on the Web, 2007.

Dan Goodin, “Scammers skirt spam shields with help from Adobe
Flash,” The Register, 2010. http://www.theregister.co.uk/2008/09/04/
spammers_using_adobe_flash/.

A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam
web pages through content analysis,” in Proceedings of the 15th Inter-
national Conference on World Wide Web, 2006.

Y. Zhang, J. Hong, and L. Cranor, “Cantina: a content-based approach to
detecting phishing web sites,” in Proceedings of the 16th international
conference on World Wide Web, 2007.

K. Thomas and D. M. Nicol, “The Koobface botnet and the rise of
social malware,” in Proceedings of The 5th International Conference on
Malicious and Unwanted Software (Malware 2010), 2010.

K. Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature Hashing for Large Scale Multitask Learning,” in Proceedings
of the International Conference on Machine Learning (ICML), pp. 681—
688, June 2009.

R. McDonald, K. Hall, and G. Mann, “Distributed Training Strategies
for the Structured Perceptron,” in Proceedings of the North American
Association for Computing Linguistics (NAACL), (Los Angeles, CA),
June 2010.

J. Duchi and Y. Singer, “Efficient Online and Batch Learning Using
Forward Backward Splitting,” Journal of Machine Learning Research,
vol. 10, pp. 2899-2934, Dec. 2009.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY:
Springer, 2009.

Hadoop, “Hadoop Distributed File system.” http://hadoop.apache.org/
hdfs/, 2010.

Amazon Web Services, “Amazon EC2 Instance Types,” 2009. http:
/laws.amazon.com/ec2/instance-types/.

Twitter, “Twitter API wiki” http://apiwiki.twitter.com/Twitter-API-
Documentation, 2010.

Twitter, “Building on open source.” http://blog.twitter.com/2009/01/
building-on-open-source.html, 2010.

Mozilla, “API & Language References.” https://addons.mozilla.org/
en-US/developers/docs/reference, 2010.
Mozilla, “Netscape plugin APL”
plugins/, 2004.

MaxMind, “Resources for Developers.” http://www.maxmind.com/app/
api, 2010.

http://www.mozilla.org/projects/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]
[52]

(53]

(54

[55]

[56]

(571
[58]

[59]

[60]

[61]

Advanced Network Technology Center, “Univeristy of Oregon route
views project.” http://www.routeviews.org/, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2nd USENIX Conference on Hot topics in Cloud Computing, (Boston,
MA), June 2010.

B. Zadrozny, J. Langford, and N. Abe, “Cost-Sensitive Learning by
Cost-Proportionate Example Weighting,” in Proceedings of the IEEE
International Conference on Data Mining (ICDM), (Melbourne, FL),
Nov. 2003.

S. Sinha, M. Bailey, and F. Jahanian, “Improving spam blacklisting
through dynamic thresholding and speculative aggregation,” in Pro-
ceedings of the 17th Annual Network & Distributed System Security
Symposium, 2010.

L. Rao, “Twitter seeing 90 million tweets per day, 25 percent con-
tain links.” http://techcrunch.com/2010/09/14/twitter-seeing-90-million-
tweets-per-day/, September 2010.

T. Holz, C. Gorecki, F. Freiling, and K. Rieck, “Detection and mitigation
of fast-flux service networks,” in Proceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSSO0S8), 2008.
N. Dalvi, P. Domingos, S. Mausam, and D. Verma, “Adversarial classi-
fication,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 2004.

D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the
International Conference on Knowledge Discovery in Data Mining,
2005.

M. Barreno, B. Nelson, R. Sears, A. Joseph, and J. Tygar, “Can
machine learning be secure?,” in Proceedings of the ACM Symposium
on Information, Computer and Communications Security, 2006.

P. Eckersley, “How Unique Is Your Web Browser?,” in Privacy Enhanc-
ing Technologies (PET), 2010.
Twitter, “The twitter rules.”
18311-the-twitter-rules, 2010.

C. Ghiossi, “Explaining Facebook’s Spam Prevention Systems.” http:
//blog.facebook.com/blog.php?post=403200567130, 2010.

S. Garera, N. Provos, M. Chew, and A. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of the
2007 ACM Workshop on Recurring Malcode, 2007.

N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your
iFRAMEs point to us,” in Proceedings of the 17th Usenix Security
Symposium, pp. 1-15, July 2008.

Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King, “Automated Web patrol with Strider HoneyMonkeys: Finding
Web sites that exploit browser vulnerabilities,” in Proceedings of the
2006 Network and Distributed System Security Symposium (NDSS),
February 2006.

M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious JavaScript code,” in Proceedings of
the 19th International Conference on World Wide Web, 2010.
F-Secure, “Twitter now filtering malicious URLSs.” http://www.f-
secure.com/weblog/archives/00001745.html, 2009.

Facebook, “Explaining Facebook’s spam prevention
http://blog.facebook.com/blog.php?post=403200567130, 2010.
M. Wu, R. Miller, and S. Garfinkel, “Do security toolbars actually
prevent phishing attacks?,” in Proceedings of the SIGCHI conference
on Human Factors in computing systems, 2006.

S. Egelman, L. Cranor, and J. Hong, “You’ve been warned: an empirical
study of the effectiveness of web browser phishing warnings,” in
Proceeding of the Conference on Human Factors in Computing Systems,
2008.

C. Herley, “So long, and no thanks for the externalities: The rational
rejection of security advice by users,” in Proceedings of the 2009
Workshop on New Security Paradigms Workshop, 2009.

http://support.twitter.com/entries/

systems.”

