
Detecting Stealthy, Distributed SSH Brute-Forcing

Mobin Javed† and Vern Paxson†�

†University of California, Berkeley �International Computer Science Institute

Abstract
In this work we propose a general approach for detecting dis-
tributed malicious activity in which individual attack sources each
operate in a stealthy, low-profile manner. We base our approach on
observing statistically significant changes in a parameter that sum-
marizes aggregate activity, bracketing a distributed attack in time,
and then determining which sources present during that interval
appear to have coordinated their activity. We apply this approach
to the problem of detecting stealthy distributed SSH bruteforcing
activity, showing that we can model the process of legitimate users
failing to authenticate using a beta-binomial distribution, which en-
ables us to tune a detector that trades off an expected level of false
positives versus time-to-detection. Using the detector we study the
prevalence of distributed bruteforcing, finding dozens of instances
in an extensive 8-year dataset collected from a site with several
thousand SSH users. Many of the attacks—some of which last
months—would be quite difficult to detect individually. While a
number of the attacks reflect indiscriminant global probing, we also
find attacks that targeted only the local site, as well as occasional
attacks that succeeded.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: MANAGEMENT OF COMPUT-
ING AND INFORMATION SYSTEMS—Security and Protection

Keywords
Scanning; SSH; Brute-forcing; Distributed

1. INTRODUCTION
A longstanding challenge for detecting malicious activity has

been the problem of how to identify attacks spread across numer-
ous sources, such that the individual activity of any given source
remains modest, and thus potentially not particularly out of the or-
dinary. These scenarios can arise whenever a detector employs a
threshold used to flag that a given candidate attack source has ex-
hibited a suspiciously high level of activity (e.g., when conducting
scanning or DoS flooding). Attackers can respond to such detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516719.

procedures by employing multiple sources in order to thin out their
activity to prevent any single source from exceeding the threshold;
their attack becomes distributed and therefore potentially stealthy,
i.e., hard to detect based on any individualized analysis.

In this work we present a general strategy for potentially de-
tecting such stealthy activity, which consists of two basic steps.
First, we employ the statistical technique of change-point detec-
tion to identify times during which a global property has shifted—
indicating that, in aggregate, a site’s activity reflects the pres-
ence of problematic activity. We then determine the range of time
over which this activity occurred and, within that interval, identify
which sources appear to have contributed to the activity.

In particular, we apply this approach to the problem of detect-
ing distributed SSH brute-forcing: attackers employing a number
of systems that each try different username/password combinations
against a site’s SSH login servers, hoping that one of them will
stumble across a working combination made possible by a careless
user. The threat of SSH brute-forcing is well-known: indeed, any
SSH server open to general Internet access receives incessant prob-
ing by hostile remote systems that energetically attempt to locate
instances of weak authentication [5]. The degree to which such at-
tempts also occur in a stealthy slow-but-steady fashion, however,
has attracted little study. The difference between single energetic
probes and stealthy distributed ones is significant: defenders can
easily detect the former, and therefore either block the activity or
investigate it (to ensure none of the attempts succeeded). The lat-
ter, however, poses a much more difficult detection problem. If
each host in a distributed brute-forcing attack itself only attempts
username/password logins at a low rate, then distinguishing hos-
tile activity from the inevitable login failures made by legitimate
user errors becomes much more difficult. Yet the distinction is vi-
tal: a pattern of attempt/attempt/attempt/success made by a legit-
imate user simply reflects a set of typos, or a password that took
a few stabs to remember; but by a distributed SSH brute-forcer, it
provides the only slender indication of success amongst a mass of
probing that in aggregate predominantly failed.

We aim to both provide an exemplar of our general strategy in
terms of detecting distributed (but coordinated) SSH brute-forcing
attacks, as well as developing an assessment of the prevalence of
such attacks as seen over years of data. In terms of our two-step
approach, we first identify attack epochs during which in aggre-
gate we can with statistical confidence determine that some sort
of SSH brute-forcing event occurred. Here, we employ change-
point detection framed in terms of a parameter that summarizes
the network/server activity of groups of remote hosts—in particu-
lar, the aggregate login failure rate. Our second step classifies the
hosts appearing during the detected epochs as either participants or
non-participants in the activity, based on both individual past his-

tory and “coordination glue”, i.e., the degree to which a given host
manifests patterns of probing similar to that of other hosts during
the epoch.

We develop and evaluate our detector on 8 years of SSH login
records collected via central syslogging at the Lawrence Berkeley
National Laboratory, a large (≈ 4,000 employees and visitors) re-
search facility. We measure and quantify the duration, intensity
and behavior of the detected attacks. We find multiple large-scale
coordinated attacks from botnets, the longest one spanning about
1.5 months. All the attacks we detect would have been completely
missed by a point-wise host-based detector. We correlate these at-
tacks with data from several other sources, finding that half of the
large-scale incidents at the site are part of global attacks, with a sig-
nificant average overlap of ≈ 70% attack hosts appearing at multi-
ple sites in the same time span.

We organize the rest of the paper as follows. We begin with
related work in § 2. § 3 details the characteristics of the dataset
we use in developing and evaluating our detector. § 4 frames our
detection approach. In § 5 we develop a model of the process by
which legitimate users make authentication errors when attempting
to log in, which serves as the basis for parameterizing our SSH
password brute-force detector. We discuss our evaluation results
and findings in § 6, and summarize in § 7.

2. RELATED WORK
The literature relevant to our work lies in three domains: (i) coor-

dinated attack detection, (ii) SSH brute-force attack detection, and
(iii) studies of the prevalence of SSH brute-forcing activity.

The detection of coordinated attacks has received little treatment
in the literature. The earliest work of which we are aware is that
of Staniford et al., who correlate anomalous events using simulated
annealing for clustering [17]. Gate’s work on coordinated scan de-
tection is the most prominent subsequent effort in this domain [8].
Given an input set of scan sources, Gate’s algorithm extracts the
subset of hosts that appear coordinated by using a set-covering ap-
proach; the premise is that the attacker divides the work among
the coordinating scanning hosts in a manner that maximizes in-
formation gain while minimizing work overlap. For our purposes
this work has two limitations: (i) the individual attack hosts re-
quire pointwise identification, and thus the approach will not find
stealthy attacks, and (ii) the algorithm lacks a procedure for deter-
mining when a site is under attack. Other work has addressed the
somewhat similar problem of detecting DDoS attacks, but these de-
tection approaches face a difficult problem of how to differentiate
attack participants from legitimate users [19, 16].

With regard to SSH brute-forcing, host-based detection tech-
niques such as DenyHosts [2], BlockHosts [1], BruteForce-
Blocker [9], fail2ban [12], and sshguard [3] block hosts that cross
a threshold for failed attempts in a specified amount of time. Other
work has developed network-based approaches. Kumagai et al.
propose an increase in the number of DNS PTR record queries
to detect SSH dictionary attacks [13]. This increase results from
the SSH server logging the fully qualified domain names of the
SSH clients attempting access. This work does not discuss how
to establish detection thresholds, nor does it present an evaluation
of the system’s accuracy. Vykopal et al. develop flow signatures
for SSH dictionary attacks [18]. They show that a large number
of short flows having a few bytes transferred in both directions
and appearing together in a short duration of time are indicative
of failed login attempts, providing the means to then detect brute-
force attacks from flow data. Hellemons also studied the possibility
of using only flow data to detect SSH brute-force attacks, model-
ing the brute-force attacks as consisting of three phases: scanning,

brute-force and die-off (in case of successful compromise) [11].
They monitor the ranges of three parameters—flows-per-second,
packets-per-flow and bytes-per-packet—to identify these phases.
Both of these works test their detectors only on simulated dictio-
nary attacks, and do not address how to distinguish instances of
forgotten usernames/passwords from brute-forcers. More gener-
ally, none of these brute-force detection approaches have the ability
to detect stealthy coordinated attacks.

Malecot et al. use information visualization techniques to de-
tect distributed SSH brute-force attacks [14]. For each local host,
the remote IP addresses that attempt to log in are displayed using
a quadtree—a tree data structure formed by recursively subdivid-
ing two dimensional space into four quadrants. The procedure per-
forms 16 iterations to map 32-bit IP addresses onto a quadtree, each
time deciding the next sub-quadrant by looking at the next two bits
of the IP address. The analyst then visually compares quadtrees for
different local hosts to identify as coordinated attackers remote IP
address(es) that appear in quadtrees of multiple local hosts.

Finally, regarding the prevalence of SSH brute-force attacks,
Bezut et al. studied four months of SSH brute-force data collected
using three honeypot machines [6]. They find recurring brute-
forcing activity, sometimes with several weeks in between, indicat-
ing that the attacks target a wide range of IP address space. Owens
et al. performed a measurement study of SSH brute-force attacks
by analyzing data from honeypots on three networks—a small busi-
ness network, a residential network, and a university network—for
eleven weeks during 2007–2008 [15]. They find that the number of
login attempts during different attacks varied from 1 or 2 to thou-
sands. More than a third of the attacks consisted of ten or fewer
login attempts. They find instances of both slow and distributed at-
tacks designed to evade detection. They also find that precompiled
lists of usernames and passwords are shared across different attack-
ers, identifying five such dictionaries. Their study reveals that only
11% of the attempted passwords are dictionary words.

3. DATASETS AND DATA FILTERING
We evaluate our detector on eight years of SSH login data col-

lected at the Lawrence Berkeley National Laboratory (LBNL), a
US national research laboratory. The temporal breadth of this
dataset allows us to study attack patterns at the site across the years.
We also draw upon SSH datasets from four other sites spread across
the IP address space (and several geographic locations) to assess
whether attacks we detect at LBNL reflect targeted behavior or in-
discriminant probing. We refer to these sites as HONEY, RSRCH-
LAB, HOMEOFF, and CAMPOFF, and describe them below. In this
section we present these datasets and discuss ways in which we
filtered the data for our subsequent analysis.

3.1 Main dataset
Table 1 provides summary statistics for our main dataset, LBNL.

This site’s systems primarily reside in two /16 address blocks (from
two separate /8’s). Only a small fraction of the address space runs
externally accessible SSH servers, providing access to both individ-
ual user machines and compute clusters. The benign SSH activity
in this data consists of interactive as well as scripted logins.

For this site we have datasets collected at two vantage points:
(i) logs collected by a central syslog server that records informa-
tion about login attempts reported by (most of) the SSH servers,
and (ii) flow data for SSH port 22 collected by border monitoring.
For each login attempt, the syslog data provides the time, client

Time span Jan 2005–Dec 2012
SSH servers 2,243
Valid users 4,364
Distinct valid user/server pairs 10,809
Login attempts 12,917,223
Login successes 8,935,298
Remote clients 154,318
Attempts using passwords 5,354,833

successes 1,416,590
remote clients 119,826

SSH border flows 215,244,481
remote clients seen in flows 140,164

High-rate brute-forcers 7,476
Mean attempts per high-rate brute-forcer 382.84
Mean daily password login attempts 486.13 (σ = 182.95)
Mean daily users 116.44 (σ = 32.41)

Table 1: Summary of LBNL syslog and flow data.

and server1 IP addresses, username on the server, whether the login
succeeded, and the authentication type used. The flow data sup-
plements this perspective by providing contact information (but no
details) for attempts to access IP addresses that do not run an SSH
server, or that run an SSH server that does not log via the central
syslog server. This data thus enables us to establish the complete2

set of machines targeted by an attack.
Filtering. For the central syslog data, we work with the subset

of SSH authentication types vulnerable to brute-forcing (i.e., we
omit those using public key authentication), about half of the at-
tempts. We perform all of the characterizations and analyses in the
remainder of the paper in terms of this subset.

In addition, we filter this dataset to remove individual brute-
forcers that we can readily detect using a per-host threshold for the
number of failed login attempts per remote host within a window
of time. Given the ease of detecting these brute-forcers, they do not
reflect an interesting problem for our detector, though they would
heavily dominate the data by sheer volume if we kept them as part
of our analysis.

To identify and remove such brute-forcers, we need to empiri-
cally establish reasonable thresholds for such a per-host detector.
We do so by analyzing the process by which legitimate users make
password authentication failures, as follows. We assume that any
user who makes repeated failed login attempts followed by a suc-
cessful attempt reflects a legitimate user. (This assumption may
allow consideration of a few successful SSH brute-forcers as “le-
gitimate”, but these are very rare and thus will not skew the results.)

Figure 1 plots the number of failed attempts such users make
prior to finally succeeding. We see that instances exceeding
10 failed attempts are quite rare, but do happen occasionally. Ac-
cordingly, we consider 20 failed attempts as constituting a conser-
vative threshold. We manually analyzed the instances of legitimate
users falling after this cutoff (the upper right tail in the figure) and
found they all reflect apparent misconfigurations where the user
evidently set up automation but misconfigured the associated pass-
word. Thus, we deem any client exhibiting 20 or more failures
logging into a single server (with no success) over a one-hour pe-
riod with as a high-rate brute-forcer, and remove the client’s entire

1 Some of the syslog records log the server’s hostname rather than
its IP address. For these we correlated the records against the site’s
DNS and DHCP logs to resolve to IP addresses.
2 The flow data has some gaps, though we have it in full for each
attack we identified. These gaps are the source of observing fewer
“remote clients seen in flows” than “Remote clients” in Table 1.

1 2 5 10 20 50 100

0.
6

0.
8

1.
0

Number of failed login attempts

E
C

D
F

●

●

●
● ●

● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ● ● ●●

Figure 1: Empirical CDF of the number of failed login attempts per hour
until a success for legitimate user login efforts with forgotten or mistyped
usernames/passwords.

1 5 10 50 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of attempts/users

E
C

D
F

● ● ● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●● ● ●

Figure 2: Empirical CDFs for benign password-based SSH usage in LBNL
data. Left to right: (i) valid users per hour, (ii) successful logins per hour,
(iii) valid users per day, (iv) successful attempts per day.

activity from our dataset. Table 1 summarizes the brute-forcers re-
moved using this definition.

Finally, to give a sense of the volume of activity that remains af-
ter these filtering steps, Figure 2 shows the empirical CDF of the
hourly and daily numbers of successful logins. A typical day sees
500 successful logins (maximum seen: 1,200) involving 117 dis-
tinct users (maximum: 197).

3.2 Correlation datasets
The HONEY dataset reflects five manually identified SSH brute-

forcing “campaigns” (our term for ongoing instances, as discussed
later) as captured by 2 SSH honeypot servers in Norway [4]. Ta-
ble 2 summarizes these campaigns, which for the most part we
characterize as large-scale, persistent, and stealthy. For all but the
last campaign, many of the remote clients would evade detection
by our simple per-host detector.

The RSRCHLAB dataset reflects flow data from the International
Computer Science Institute, a research organization in Berkeley,
CA, with a /23 address block. The dataset spans the same time as
that of LBNL, though due to the limitations of flow data, we cannot

Attack Episode Days Remote Login Avg. attempts
clients attempts per remote client

Oct 2009–Jan 2010 78 4,158 44,513 10 (σ=24)
Jun 2010–Aug 2010 56 5,568 23,009 4 (σ=7)

Oct 2011 6 338 4,773 14 (σ=16)
Nov 2011 13 252 4,903 20 (σ=24)
Apr 2012 6 23 4,757 206 (σ=760)

Table 2: Summary of attacks in the HONEY data.

Aggregate Site
Analyzer

Attack Participants
Classifier

sshd logs
(password/ keyboard-

interactive logins) CUSUM detector
Failure ratio per

event

Singleton attack
epochs filter

Past History
Forgotten/mistyped

passwords & usernames

Distributed
attack

epochs

Past history of successful logins
(any authentication type)

+
Blacklist

Coordination glue

Figure 3: System diagram of our distributed SSH brute-forcing detector

establish how many coordinated attacks exist in it. We discuss our
correlation strategy for this dataset in § 6.

HOMEOFF and CAMPOFF capture inbound SSH flow data for a
home office (HOMEOFF) and a campus office (CAMPOFF), both in
Cleveland, OH (but in separate netblocks). The data likewise spans
Jan 2005–Dec 2012, and again due to its limitation to flow data, we
cannot identify coordinated attacks in these datasets.

4. DETECTION
We structure our detection approach as the sequential application

of two components. In general terms, the Aggregate Site Analyzer
first monitors the site’s activity to detect when an attack of some
sort occurs. Upon detection, the Attack Participants Classifier an-
alyzes the activity to identify who participated in the attack (which
remote systems). In this section we develop both the general detec-
tion framework and our particular implementation of it for detect-
ing and analyzing distributed SSH brute-forcing attacks. Figure 3
presents a system diagram for this latter specific context.

4.1 Aggregate Site Analyzer
This component detects the general presence of a coordinated,

distributed attack based on complete view of a site’s activity. We
based the approach on devising a site-wide parameter that aggre-
gates information from individual users/machines/events at the site.
The Aggregate Site Analyzer monitors the probability distribution
of this parameter for excessive change and flags the deviations as
attacks. Often a single party can by itself induce significant change
in the parameter. In this case (which arises for detecting SSH brute-
forcing) we need to employ a filtering step to omit singleton attacks
from the alarms, if our overall goal is focused on detecting dis-
tributed activity.

One important design question concerns the accumulation gran-
ularity of the site-wide parameter, i.e., over what sort of collec-
tion of activity do we compute it. For example, if the parameter
relates to arrival rates, then windows of time will often be natu-
ral choices. In other scenarios, we might achieve better results by
defining a normalized parameter amenable to longitudinal compar-
ison. To illustrate, consider the scenario where the two consecutive
time windows have 50 and 4 attempts, respectively. If these also
have 25 and 2 problematic attempts, then we would equate them
as having equivalent failure rates; but if we expect failures to ap-
pear somewhat rarely, we would like to treat the first instance as
much more striking than the second, as the latter only needs some

modest degree of stochastic fluctuation to occur. Thus, comparing
ratios across time can prove misleading.

Given that, for detectors that monitor failure ratios we can ben-
efit from a different accumulation granularity: if we compute the
site-wide parameter in terms of events—defined as the occurrence
of n attempts—then we needn’t worry about the effects of stochas-
tic fluctuation that can manifest when using windows of time. In
addition, such time-variant events have the property that they allow
for faster detection of high-rate attacks, as the detector does not
need to wait a fixed amount of time before detecting the attack.

In the case of detecting distributed SSH brute-force attacks, we
can define an apt site-wide parameter, Global Failure Indicator
(GFI) as:

GFI = Number of failed login attempts per event

where an event occurs every n login attempts to the site. These
n attempts represent a collection of users authenticating to the site,
where the number of users will generally vary across events. (Note,
while we could normalize GFI by dividing by n, we leave it as a
count rather than a ratio, since our subsequent modeling benefits
from using discrete variables.) We show in § 5 that in the absence
of an attack (i.e., when failures only occur due to mistakes by legit-
imate users), this distribution is well-modeled as beta-binomial.

Brute-force activity perturbs the GFI distribution, shifting its
mean to a higher value. We use sequential change-point detec-
tion to detect significant increases in the mean GFI. In comparison
to threshold-based detection, sequential change-point schemes can
detect small incremental effects that cumulatively lead to an even-
tual change of mean. This property enables the detector to detect
stealthy attacks. Specifically, we use a Cumulative Sum (CUSUM)
change-detection algorithm, as prior work has shown its sensitivity
to small shifts in the mean [10].

CUSUM Algorithm. CUSUM models significant changes as
shifts in the mean of a random variable from negative to positive.
To use it requires transforming an original random variable Y to an
associated value Z that has a negative mean under normal opera-
tion. One achieves this by subtracting the empirical mean µ of Y
plus a small reference value k, i.e., Zn = Yn−µ− k. To do so we
need to compute µ based on data that describes normal operation
(no attack underway); see § 5 for how we identify such activity.
Finally, note that with little modification to the general framework
we can for convenience select k so that Zn is integer-valued rather

than real-valued. We do so for our subsequent development of the
detector.

We then accumulate Zn over time using the following (again
discrete) test statistic: Sn = max(0, Sn−1 +Zn), where S0 = 0.
In the case of no change, the value of Sn hovers around zero, but
in the face of a change (increase), Sn starts to accumulate in the
positive direction.

By convention, one terms the situation of the mean correspond-
ing to normality as in-control. When the mean shifts by an amount
∆µ, one terms the situation out-of-control, which corresponds to
an attack in our problem domain. Note that the choice of ∆µ is
specific to the problem we design the detector to detect. In some
situations, we might desire a small ∆µ, while in others we might
only have interest in detecting changes corresponding to a large
value of ∆µ. In practical terms, we achieve a given target ∆µ by
setting two detector parameters, k and H , as discussed below.

The algorithm flags an out-of-control situation when Sn crosses
an operator-set threshold, H . The subsequent appearance of an
event with normal mean marks the return of the situation to in-
control, and we reset the test statistic Sn to zero at this point. Thus,
the CUSUM detector decides whether the mean has shifted or not
according to the decision function Dn:

Dn =

{
1, if Sn > Sn−1 and Sn > H

0, otherwise.

Determining CUSUM parameters and span of change. One
tunes the parameters k and H of CUSUM based on: the amount of
change ∆µ to detect, the desired false alarm rate, and the desired
time to detection. First, a general rule of thumb when designing
a CUSUM detector to detect a mean shift of ∆µ is to set k equal
to half the change in shift [10]. The other parameter, H , controls
both the false alarm rate and the detection speed. A lowerH means
faster detection but a higher false alarm rate.

To assess the balance between these two, we consider the effects
of H on the average number of steps the CUSUM detector takes
to raise an alarm under in-control and out-of-control distributions.
(Note that the first of these corresponds to alarms reflecting false
positives, while the latter corresponds to true positives.) We refer to
these as in-control ARL (Average Run Length) and out-of-control
ARL, respectively, and choose the value of H that results in the
closest match with the desired ARLs.

To determine these ARLs, we can model the CUSUM process as
a Markov chain with finite states X0, X1, . . . , XH , corresponding
to the test statistic values Sn ≤ 0, Sn = 1, Sn = 2, . . . , Sn ≥ H
respectively. (Recall that we constrain Z and thus S to discrete
integer values.) Note that XH is the absorbing state. The transition
probabilities of this Markov chain depend only on the underlying
distribution of the random variable Z:

P [Xi → X0] = P [Z ≤ −i]
P [Xi → Xj] = P [Z = j − i]
P [Xi → XH] = P [Z ≥ H − i]

For the intuition behind this formulation, consider the first equa-
tion. If the cumulative sum has reached i (i.e., Sn = i, corre-
sponding to the state Xi) then the possible ways for progressing
from it to the state X0 (i.e., Sn ≤ 0) are to add a value of Z less
than or equal to −i. A similar perspective holds for the other two
equations. Given the complete transition probability matrix R of
the Markov chain, we can compute the above probabilities and the
in-control ARL as:

in-control ARL = (I− R)−11

where R is the transition probability matrix, I is the (H + 1) ×
(H + 1) identity matrix, and 1 the (H + 1)× 1 matrix of ones [7].

We can likewise compute the out-of-control ARL of the detector
using the same formulation but substituting k′ = k − ∆µ [10].
We can then estimate the point of the true start of a change by
subtracting the value of out-of-control ARL (detection delay) from
the time of detection.

Finally, the Aggregate Site Analyzer reports the information from
CUSUM in the form of attack epochs. An attack epoch constitutes
of: (i) the set of consecutive out-of-control events (i.e., i = 1 . . . n
whereDi = 1), and (ii) the set of previous events also incorporated
into the epoch based on stepping back through the number of events
given by the out-of-control ARL.

Each attack epoch can reflect instances of either singleton or co-
ordinated attacks. The first of these corresponds to a global pertur-
bation of the site-wide variable Y induced by a single source. The
second refers to the perturbation arising due to the combined ac-
tion of multiple sources. Since in this work we focus on distributed
attack epochs, we need at this point to exclude singleton attacks.3

We do so by checking whether CUSUM still flags any events in
the epoch as reflecting an attack even if we remove the remote host
with the highest number of failed login attempts. If so, we mark the
attack epoch as a coordinated attack epoch, and proceed to the sec-
ond component of our analysis. Otherwise, we discard the epoch
as uninteresting (which occurred about 3/4s of the time).

4.2 Attack Participants Classifier
The second component of our general detection approach ad-

dresses how to go from the global site-wide view to that of indi-
vidual entities. Here we employ a set of heuristics to analyze ac-
tivity in the attack epochs flagged by the Aggregate Site Analyzer
to identify who participated in the attack. (The need for heuristics
rather than more principled identification arises almost fundamen-
tally from the problem domain: if we could directly identify partic-
ipants with confidence, we could very likely use the same approach
to develop an effective pointwise detector and not have to employ
a separate approach for detecting stealthy distributed activity in the
first place.)

For our particular problem of detecting distributed SSH brute-
force attacks, the individual entities we wish to identify are re-
mote hosts (clients). In addition to the problem of including re-
mote hosts corresponding to legitimate users within it, a distributed
attack epoch—particularly if spanning a long period of time—can
capture multiple brute-forcers, some of whom might operate in a
coordinated fashion, while others might function independently.
For example, an attack epoch we detect that includes activity from
five remote hosts might in fact be composed of four coordinating
remote hosts and one singleton brute-forcer that happens to probe
the site at the same time.

For each remote host that appears during the attack epoch, we
make a decision about whether to classify it as a legitimate re-
mote host, a singleton brute-forcer (operating alone), or a brute-
forcer working with other hosts as part of a coordinated attack.
This decision might require manual analysis, as sometimes the cat-
egories have significant overlap. To illustrate, Figure 4 diagrams
the characteristics that remote hosts in each of these categories can
manifest. Legitimate users that fail due to forgotten or mistyped
usernames/passwords generally exhibit only a modest number of
attempts, similar to low-rate distributed brute-forcers. A remote

3 Note that such single sources can arise even though we previously
filtered out high-rate brute-forcers (per § 3.1) because these single-
tons might spread their activity across multiple servers, or probe at
a rate lower than the 20 failures/hour threshold.

LOW-RATE
DISTRIBUTED

BRUTEFORCERS

LEGITIMATE
USERS

 SINGLETON
 BRUTEFORCERS

Have past history of successful logins

Forgotten passwords: multiple failed
attempts for same username

Forgotten usernames: multiple failed
attempts for different usernames

Example:
Failed password for john on machine x

Failed password for mjohn on machine x
Failed password for johnm on machine x

Have a high rate of logins compared to
distributed

Low rate - targets a very large address
space; the network being monitored sees

only a few hits

Figure 4: Possible characteristics of remote hosts that fail.

client with no past history of successful logins (see below) pro-
vides us with little indication as to whether it reflects a legitimate
user or a distributed brute-forcer. Likewise, while we can readily
identify singleton brute-forcers that probe at rates higher than dis-
tributed brute-forcers, ones that probe at low rates fall into a grey
area that we find difficult to automatically classify.

Our classification procedure has two parts. First, we make a
set of decisions based on past history. Second, for the remaining
hosts during an attack epoch we assess the degree to which they
evince the same coordination glue: that is, commonality in the set
of servers and/or usernames that the hosts probe. The premise be-
hind this second step comes from assuming that attack hosts in a
distributed attack aim to work together to achieve a particular task:
attackers achieve little utility if their multiple attack hosts do not
effectively focus their work. We might also expect that coordinated
attack hosts probe at similar levels (number of attempts) due to use
of common automation software.

Classifying activity based on past history. To facilitate our
discussion of this step, we use the following notation: L refers to a
Local host; R to a Remote host; and U to a Username. Given that,
we classify activity by analyzing past history as follows:

(1) Forgotten/mistyped passwords: we identify 〈R, U〉 pairs that
have authenticated successfully in the past to any local machine at
the site, and consider such activity benign, removing it from the
attack epoch. (We filter 〈R, U〉 pairs instead of only remote hosts
because multiple users might be behind a NAT.) We can safely fil-
ter out this set because the remote client has already established
its ability to successfully authenticate as the given user, and thus
has no need to try to guess that user’s password. While the current
activity is not necessarily benign (due to the possibility of a ma-
licious login using stolen/compromised credentials), that scenario
lies outside the scope of what we try to detect here.

(2) Forgotten/mistyped usernames: the previous step of filtering
〈R, U〉 pairs will miss instances of benign failures when the user
mistypes or fails to recall their username. To identify such failures,
for each remote host we determine whether it produced a success-
ful login in the past to any internal host using a username closely
related (edit distance = 1) to a username present in the event. If so,
we again mark the 〈R, U〉 pair as benign. (Note that we skip this
step if we have previously identified R as a singleton brute-forcer.)

Identifying coordination glue. After filtering out some activity
on the basis of past history, we then turn to making decisions about
attack participation amongst the remaining activity on the basis of
evidence of “coordination glue”, as discussed above. We expect
to find either a common set-of-local-servers or set-of-usernames as
the coordination glue in most of attacks.

We identify such glue using an approach based on bi-clustering.
We construct a bipartite graph with the remote clients as the first
node set A and either usernames or local servers as the second node
set B. We create an edge between remote client r in node set A and
a username u (local server l) in node set B if r made a login attempt
as u (to l). For each graph we then look for partitions of the graph
that maximize the edges within the partitions and exhibit very few
edges across partitions. We mark nodes belonging to very small
partitions as either legitimate users or coincidental singleton brute-
forcers, and remove them.

Presently we proceed with the above as a manual process, which
we find tractable since the number of attack epochs that emerge
from our various filtering steps is quite manageable. In addition,
we observe that a distributed attack that targets many hosts on the
Internet might lead to activity at the site that exhibits little in the
way of apparent coordination glue. In these scenarios, we also take
into account timing patterns, number of attempts per remote host,
and the presence of an alphabetical progression of usernames as
alternate forms of coordination glue.

5. MODELING USER AUTHENTICATION
FAILURES

To apply the approach developed in the previous section, we
need to model the process by which legitimate users make authen-
tication errors when attempting to log in. We want to achieve this
modeling not simply in a highly aggregated fashion (e.g., by de-
termining a global benign-user failure rate), but distributionally, as
the latter will allow us to form well-grounded estimates of the ex-
pected false positives and time-to-detection behavior of our detec-
tion procedure. In particular, capturing the distribution will allow
us to model GFI (number of failures per event of n login attempts),
and thus to determine the Markov chain probabilities required to
compute average-run-lengths.

Figure 5: Number of logins and failure ratio of remote hosts over the com-
plete dataset. Note that the dataset has been filtered to remove high-rate
brute-forcers that can be detected pointwise using per host detection.

In order to extract a characterization of legitimate login failures
from the LBNL syslog data, we need to first identify clients within
it that do not reflect legitimate users. Figure 5 shows a heat map of
the number of login attempts vs. failure ratio per remote host com-
puted over the complete data for password-based authentication
(except with high-rate brute-forcers already filtered out, per § 3).
The major density of remote clients resides in the lower left and
middle areas of the plot; these mainly depict benign activity. The
top region of the plot is highly dominated by brute-forcers (those
that went slowly or broadly enough to survive the high-rate filter-
ing), with a few legitimate users in the top-left corner, and some
possible misconfigurations throughout. The mid-right region, with
a high number of login attempts and a failure ratio in the range 0.4–
0.6, very likely consists of misconfigured automations. Finally, the
lower-right region captures well-configured automations; these use
scripts that log in repeatedly with the correct password, and thus no
chance of failure, except for intervening interactive access.

We now discuss our techniques to clean the data to remove both
brute-forcers and automations (both well-configured and miscon-
figured) in the data. After doing so, we illustrate a distribution that
fits the cleaned data quite well, providing us with the means to then
model GFI.

Removing brute-forcers. Accurately identifying low-rate
brute-forcers poses a circular problem, as that is exactly what we
ultimately set out to detect in this work. Instead we develop an ap-
proximate procedure to remove the brute-forcers, as follows. We
remove from the dataset all remote hosts that never achieve a suc-
cessful login attempt. The chance that this removes legitimate hosts
is low, because it should be rare that a legitimate user repeatedly at-
tempts to log in and never succeeds.

This heuristic removes all of the brute-forcers except the success-
ful ones. In order to cull them, we remove remote hosts with failure
ratio≥ 0.95 and≥ 20 login attempts. We choose these thresholds
based on our earlier finding that legitimate users extremely rarely
have 20 failed login attempts before success (Figure 1). We find
13 remote hosts whose activity falls within these thresholds. Our
manual investigation of these determined that six of them reflect

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Number of failed logins per 100 logins

P
D

F

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

● ●
●

●
● ●

●
● ● ● ● ● ● ● ● ●

●

●

●

2005
2006
2007
2008
2009

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15 Beta−binomial fit

Binomial fit
Test data

Figure 6: Probability distribution of GFI with n=100 logins.

misconfigurations (established due to periodicity in the attempts),
six eluded classification (activity low enough that they could reflect
either legitimate users or participants in coordinated attacks), and
one brute-forcer that succeeded in breaking in (clearly an attacker
due to employment of a dictionary of generic usernames).

Removing automations and misconfigurations. To find can-
didates for automated activity, we used Zhang’s χ2-based de-
tection [20], which tests for uniformity of when activity occurs
in terms of seconds-of-the-minute and minutes-of-the-hour. The
premise of this approach is that human-initiated activity should be
well-modeled as uniform in terms of these fine-grained timing ele-
ments, but automation will generally sharply deviate due to the use
of periodic execution.

We applied the test on 3-day windows of activity, requiring each
remote client to have at least 50 logins during the window. (We
chose the parameters as reflecting clear automation even if spread
out over a good amount of time). We used a significance level
of 0.001 and a two-sided test in order to detect both non-uniform
and extremely-uniform distributions, as both of these likely corre-
spond to automated activity.

The test flagged 363 instances of remote hosts. We manually
assessed the 79 of these that triggered detection in multiple win-
dows, since these present instances of long-term automations that
can skew our modeling. Doing so found 9 remote hosts that en-
gaged in well-configured long-term automation, and 5 instances
of misconfigured automations that frequently failed.4 As exam-
ples, the well-configured automations included jobs that ran: (i) ev-
ery six minutes for a year, (ii) every ten minutes for two months,
(iii) every half hour for two months.

Deriving the model. Given the cleaned data, Figure 6 then
presents the distribution of GFI (using n = 100 logins) for five
different years. We see a possible trend towards overall less failure
from 2005–2008, but 2009 reverses this drift, so we do not attempt
to model the prevalence of failure as a function of time.

The figure inset shows the empirical density for 2010 along with
two synthetic datasets. First, we fitted a binomial distribution to
the 2010 data and randomly generated a new dataset of equal size
from that distribution. Second, we applied the same process but
4 We found it interesting that in some of these cases, when con-
tacted the local administrators were unaware or had forgotten about
the existence of this automation.

instead used a beta-binomial distribution. We see from the inset
that the actual data exhibits more variance than we can capture us-
ing a binomial model. The beta-binomial model provides a sig-
nificantly better fit as it allows for an extra variance factor termed
over-dispersion. Beta-binomial is the predictive distribution of a
binomial random variable with a beta distribution prior on the suc-
cess probability, i.e., k ∼ Binomial(p, n) where p ∼ Beta(α, β).
Then for a given n, α and β, we have:

k ∼

(
n

k

)
Beta(k + α, n− k + β)

Beta(α, β)

We can interpret the success of this fitting in terms of lack of in-
dependence. If all login attempts were IID, then we would expect
to capture GFI effectively using a binomial distribution. The need to
resort to a beta-binomial distribution indicates that the random vari-
ables lack independence or come from different distributions, such
that the probability of success has a beta-prior instead of being con-
stant. This makes sense intuitively because (i) different users will
have different probabilities of success, and (ii) the login attempts
from a single user are not independent: one failed login attempt
affects the probability of success of the next login attempt (neg-
atively if the user has forgotten their password, positively if they
simply mistyped it).

6. EVALUATION
In this section we apply our detection procedure to the extensive

LBNL dataset. We discuss parameterizing the detector, assess its
accuracy, and characterize the attacks it finds, including whether
the attacks appear targeted or indiscriminant.

6.1 Parameterization
Our procedure first requires selecting a mean shift ∆µ that we

wish to detect. We set this to 10 failed logins per event of 100 lo-
gins, basing our choice on the stealthiest attack we wish to de-
tect without overburdening the analyst. On average this site sees
500 logins per day, so a threshold of ∆µ = 10 bounds the number
of attempts a brute-forcer can on average make without detection
to 45 (9 attempts × 5 events) spread over a day. Fitting our beta-
binomial distribution (§ 5) to the 2005–2008 data yields the param-
eters µ = 7 and σ = 4.24, and so our chosen value corresponds
to a shift in mean of approximately 2σ. (Note that this is different
from stating that we detect a “two sigma” event, because due to
the cumulative nature of the detection process, it takes significantly
more perturbation to the site’s activity than simple stochastic fluc-
tuations to reach this level.)

We choose the other parameter, the decision threshold H , based
on computing ARLs using the Markov chain analysis sketched
in § 4.1. Table 3 shows the in-control and out-of-control ARLs for
k = 5 and varying values of H . (We use k = 5 based on the rule-
of-thumb of setting k = ∆µ

2
[10].) Given these results, we choose

H = 20, as this gives a quite manageable expected false alarm rate
of one-per-3,720 events, which, given that the site produces about
5 events per day, translates to an average of two alarms per year,
and thus an expected 16 false alarms for the complete dataset. This
level detects actual stealthy attacks after 5 events (50 brute-forcer
login attempts, since the computation is for a shift in the mean of
∆µ = 10). In a practical setting, H = 10 (one false alarm per
month) could work effectively.

To validate the assumptions underlying our detection model, we
ran the CUSUM detector on the “cleaned” data (per § 5) to compare
the expected false alarms with empirical false alarms. The detector

H In-control ARL Out-of-control ARL
1 9 1

10 144 3
20 3,720 5
30 99,548 7
40 2,643,440 9

Table 3: In-control and out-of-control ARLs for k = 5 and varying values
of H .

flagged a total of 12 false alarms, reflecting cases where the failure
of benign users lead to the alarm.

6.2 Assessment of Detection
The two components of our detector can each exhibit false

alarms: false coordinated attack epochs and false attack partici-
pants. We can readily identify the former by inspection, as incor-
rect attack epochs can manifest in one of three ways: (i) the epoch
consists of a singleton brute-forcer and a collection of legitimate
users who had failures, (ii) the epoch consists of non-coordinating
brute-forcers having no apparent coordination glue, and (iii) bad
luck: the epoch consists of just legitimate users who failed. The
latter kind of false alarms (false attack participants) pose a harder
challenge to classify, given we lack ground truth. Since LBNL
didn’t itself detect and assess the majority of the attacks we de-
tect, we use the following heuristic to gauge whether our procedure
correctly classified a remote host as a brute-forcer. We inspect the
the host’s login activity in the attack epoch along with its future
activity. If none of this succeeded, we can with high confidence
deem that host as a brute-forcer. For hosts that ultimately succeed,
we confirm whether the success reflected a break-in by checking
whether LBNL’s incident database eventually noted the activity.

Running the procedure over 8 years of data, the Aggregate Site
Analyzer detected a total of 99 attack epochs. After then processing
these with the Attack Participants Classifier, we find nine5 repre-
sent false alarms. We detect a total of 9,306 unique attack hosts
participating in the distributed attack epochs, two of which suc-
ceed in breaking-in. The procedure classified only 37 benign hosts
as attack hosts, reflecting a very low false alarm rate. On days
that include an attack epoch, we find on average about 100 benign
〈R,U〉 pairs filtered out using our past-history assessment, but on
average only about 1.7 “forgotten username” instances detected and
removed.

1 2 5 10 20

0.
0

0.
4

0.
8

Duration of attack (days)

E
C

D
F

● ●●●●●
●●●●

●●●●●●●●●●●
●●●●●

●●●
● ●●●

●●●
●●●
●●●
●●●
●●●●●●●

●●●
●●●

●●●
●●●

●● ●●●
●●●
●● ●● ● ● ●●● ●● ● ●●●

●● ●● ● ●

Figure 7: Empirical CDF of the duration of attacks (number of days)

5Note that this number differs from that found earlier on “cleaned”
data because some of those false alarms coincided with actual at-
tack epochs, and the Attack Participants Classifier then removed
them due to a mismatch of coordination glue.

●● ●●●● ●● ●●● ●●●●●● ●●●●●●●●●
●●●● ● ●● ●●●● ●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●● ●●●

●●

●●

●

●●●

●●

●

●●●

●●●

●

●●●

●

●●●●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●

●●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●●●●

●

●●●●●

●●●●
●

●●●●

●●

●●●

●

●●

●

●●●

●

●●●●

●●

●●●

●●●
●●

●●

●

●

●●

●●●●●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●●●

●

●

●●●

●●

●

●

●

●●

●●●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●●
●●

●
●

●●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●●●●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●●●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●●●

●

●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●●●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●●●

●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●●●●●●●●●
●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●

●

●●

●●●●●●●●●
●

●

●●●●

●

●●●●●●●●●
●●

●

●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●

●

●●●●

●

●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●
●●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●●●●●●●
●

●

●●

●

●●

●

●●●
●

●

●●●

●●

●●●●●

●

●

●●●●

●●

●●●●

●

●●●

●

●●●●●
●

●

●●●

●

●

●●

●●

●

●●

●

●

●●

●●

●●●

●●

●

●●

●

●●

●

●●

●

●●●●

●

●●●●●

●●●●●●
●●●●
●●

●

●

●

●

●●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●●●●

●

●●●●

●●

●●●●●

●

●●●

●●

●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●●

●

●●●

●

●

●

●●

●●

●●●●● ●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●●●●●●●●

●●

●●

●●●●●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●●●
●●

●

●●●

●

●●
●

●

●

●●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●●●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●
●●●●●●●●●●
●●

●●

●●●●

●

●

●

●●●●●●●●●
●●●●●●●●●
●

●

●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●
●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●

●●

●●●●●●●●●
●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●

●

●

●●●●●●●●●
●●●●●●●●

●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●
●●●●●●●●●
●

●

●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●
●●●●

●

●

●

●

●●

●

●●●
●

●

●●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●●●●

●

●●●●

●●●●

●

●●

●●

●

●●

●

●

●●

●●●●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●●

●●●

●●●

●

●

●

●●●●
●●

●

●

●●●

●●

●●●●●●

●

●●

●

●

●

●

●●

●●●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●●

●●●

●●

●

●●

●●

●●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●●●

●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●
●

●●●
●

●
●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●●●
●●

●

●

●●

●●●●●

●

●

●●●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●●

●●

●

●

●●●

●●

●

●●
●●

●●

●●●

●●

●●●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●●

●●

●

●●

●●●●

●

●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●●

●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●●●●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●●
●
●

●
●

●

●

●●
●●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●●●
●

●

●

●●●●

●

●

●

●

●●

●

●●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●●●●

●

●●
●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●●●●● ●●●

●

●●●●●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●

●●●

●

●●●

●●

●●●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●

●

●●●●

●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●
●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●●●

●

●

●●

●

●●

●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●

●

●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●

●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●
●●

●

●●●●●●●

●

●●●●●●●●●
●●●●●

●

●●●●●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●

●

●●●

●

●●●●●●●●

●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●● ●

●

●

●●

●

●●●●●

●●

●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●●●●

●

●

●

●●

●●●

●●●●●●

●

●●

●

●

●

●●

●●

●●●●●
●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●●

●

●

●●

●

●

●●

●

●●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●●

●

●

●

●●●●

●●●●

●●

●

●●●●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●●

●

●●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●●●

●●

●●●●

●●●
●

●

●

●

●

●

●●

●● ●●●

●●●

●●●●●

●

●

●●

●

●●●●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●

●●●●●

●

●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●

●

●●●●●●

●●●●

●●

●

●●●●●●●●●●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●
●●

●

●●

●

●●●●●

●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●

●

●●●●●

●

●●●●●●●●●
●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●●●●●●●●●
●

●

●●●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●
●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●

●●

●

●

●●

●

●

●●●

●

●

●●●●

●

●●●

●●

●●

●

●●●●

●

●

●●●●●●

●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●

●●

●●●

●●

●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●
●●●

●

●

●

●●

●

●●

●

●●●●

●●

●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●

●

●●●●●●●●●●
●●●●●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●●●

●●

●●●●

●●●●●

●

●●

●

●●

●

●

●

●●

●

●

●●●●●●●

●●●

●●●●

●

●

●

●

●●●

●●

●●●●●●●●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●
●●●●●●

●

●

●

●●●●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●●●●●●
●●●

●

●●●●

●●●

●●●●●●●●

●

●●●●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●●

●

●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●
●

●

●●

●

●●●

●

●●●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●●●

●

●●●●

●●

●●●●

●

●●●●●●●●●
●●

●

●●●●●●●●●
●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●●
●●●

●

●●●●●●●●●
●●

●

●●●●●●●●●
●●●

●

●●●●

●

●●

●

●●●●●●●●●
●●●

●

●●●●

●

●●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●

●

●●●●●●

●

●

●●●●●●●●●
●●●●

●

●●●●●●

●

●

●

●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●

●

●●●●●

●●

●●●

●

●

●

●●●●●●●●●
●●●●

●

●●●●●●●●●
●●●●

●

●●●●●●●●●
●●●●●

●

●●●●

●

●●●

●

●●●●●●

●

●

●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●

●●●●●●●●

●

●●●●●●●●●

● ●●●

●

●●

●●●

●●●●●
●●●
●●

●

●
●●●
●●●●●
●●
●●●●●●

●

●●●●
●●●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●●●●●

●

●●
●●

●

●

●

●●
●●●

●

●●

●

●●

●

●

●

●

●●
●

●

●●●

●

●●●●
●●

●

●●●●●●

●

●●●●
●●●●

●

●●
●●

●

●●

●

●●●●
●●●●●
●●●●
●

●

●

●

●●●●●●●●●●
●●

●

●●●

●

●●●●

●

●

●

●●●
●●
●●●●
●●●●●
●●

●

●

●●

●●

●

●●●
●●●●●
●●●●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●●●●●●
●●

●

●

●

●

●

●

●●●●●
●

●

●

●

●●●●
●●●●
●
●●
●

●●

●●●●
●●

●

●

●●●

●

●●●

●

●●●
●●●●

●

●●●●●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●●

●●●

●
●

●

●●●●●
●●●
●●●●●●●
●●

●

●●

●

●●●●●●
●●●●
●●●

●

●

●●●
●

●

●●●●
●●

●

●●●

●

●●
●●●●

●

●

●

●●●●

●

●●●
●●●●

●

●●

●

●●
●●●
●●●●●●
●●

●●

●

●●

●

●●●

●

●

●

●●

●

●●

●

●●●●
●●
●●●●●●●
●

●

● ●●

●

●●

●●●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●●
●
●●●●●

●

●

●●
●
●
●

●

●

●●
●●●
●●●●

●

●●

●

●

●

●

●

●●●
●●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●●●

●

●●
●

●

●

●

●●●

●●
●●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●
●●

●
●●●
●
●●●
●

●

●

●●

●

●

●

●●●●
●●
●

●

●

●●
●●●

●

●●
●●
●●●●

●●

●

●

●●
●●
●

●

●●

●

●

●

●

●●●
●
●●●

●●

●

●

●
●
●
●●●
●●
●
●●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●●

●

●

●
●

●

●

●●
●

●

●
●●

●

●●
●

●

●●
●●●
●●
●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●●●●
●●●
●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●
●●●

●●
●

●

●

●●●

●

●

●
●●
●●
●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●

●●●●●●●●

●

●●

●

●

●

●●●

●●●

●●●

●●

●●

●●

●●●●●●●●●●
●●●●●●●●

●●

●

●

●

●●

●

●

●●●

●

●

●●●●

●●

●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●
●●●

●●

●

●

●●●●●●

●●●

●

●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●

●

●●●●●●●●●
●●●●●●●●●●

●

●

●

●●●●●●●●●
●●

●●●

●●●●●●●●

●

●

●

●●●●●●●●●●
●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●
●●●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●●

●●●

●

●●●

●

●●●●●

●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●●

●

●

●

●

●

●●●●●●●

●

●●●●

●

●●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●
●●

●

●

●●●

●

●●●●●●●●●
●●●●●●●●●
●●●

●

●

●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●
●●●●●●●

●●

●

●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●

●

●●●●●

●●●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●●

●●●●

●●

●

●●

●

●

●

●

●●●

●●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●●●

●

●●●●●●●●●
●●●

●

●●●●●●

●●

●●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●
●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●

●●

●●

●●●●

●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●

●●●●●

●●

●

●●●

●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●

●

●

●●●●

●●

●●

●

●●●●●

●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●

●

●●●●●●●●●
●●●●●

●

●

●●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●

●●●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●
●

●●

●

●

●

●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●●●●

●●●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●

●●

●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●
●●●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●●●

●

●●

●●

●●●●●●

●

●

●●●●

●

●●

●

●●●●●●

●

●●

●●

●●●●●

●

●●●●

●

●

●

●●●●●●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●●●●●

●

●●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●●

●●●●●●

●

●●●●●●●●●
●●●●●●●●

●

●

●

●●●●●●

●●●

●

●

●●●●●

●

●●

●

●

●●●●●●●

●●

●●

●

●

●●

●

●●●●●●●●●
●●●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●

●

●●

●

●●●

●

●

●●●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●
●

●

●●●●●

●

●●●●●●●●●
●●●●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●
●●●●●●●

●

●

●

●●

●●●

●●●

●

●

●

●●●●●●●●●
●●●●

●●

●●●●●●●

●

●●●●●●●●

●

●

●●

●

●

●●●●●●

●●●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●
●●

●

●

●

●●●

●

●●●●●●●●●
●●●●

●●

●●●●●●

●

●●●●

●

●●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●●

●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●●

●

●

●●●

●●●●●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●

●
●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●●●

●●

●

●●●●●
●●●

●●

●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●●

●

●●●

●●

●

●

●

●

●

●●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●●●●●

●

●●●

●●

●●

●●

●

●●●
●●●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●●●●●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●

●●●●●●●

●

●

●

●

●●●
●●●●●●●●

●●●●

●

●

●●

●●●

●

●●●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●●●●●

●

●

●

●●●

●

●●●

●●●
●●●
●

●

●●●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●●●●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●●

●●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●●●

●

●●

●

●●●
●

●●

●

●

●●●

●

●

●●●

●

●

●●

●

●●

●

●

●●●●●

●

●

●●●

●●●●
●●●●

●●

●

●

●

●

●

●●

●●●●

●●

●

●

●●●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●●●●●
●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●●

●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●
●●●●●●● ●●

●●●●●●●●

●●●●●●●●

●

●●

●

●●●

●●

●●

●

●●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●●●●●●●●

●●

●●●

●

●

●●

●

●

●

●●●●●●●●●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●●

●●

●●

●

●●●●●

●

●

●

●●●●●●

●

●●●

●●

●

●

●

●●●

●

●●

●

●●●

●

●

●●

●●

●

●

●●

●

●●●

●

●●

●●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●●●●

●

●●

●

●

●●

●●●●

●

●●

●●

●●

●●

●●●

●

●

●

●●

●

●●

●

●●●●●

●●

●

●

●

●●●

●

●

●●

●●

●●●●

●

●

●

●●●

●

●

●●

●●●

●

●

●

●●

●

●●●●●●

●●●

●●●●●●●●

●

●●●●●●
●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●●●

●●

●

●

●●
●

●

●●

●

●●●

●●●●

●

●●

●●

●

●

●

●

●

●●●●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●●●●

●●

●

●●●●●●●●

●●●

●●●●

●

●

●●●●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●●●●

●

●●●●

●●●●

●

●

●●●●●●●●

●●

●

●●●

●●●●

●

●●●●●●●●●●●●●

●●●

●●

●●●

●

●●●

●●

●●

●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●●●

●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●●

●

●

●●●

●●●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●●●●

●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●●●●●

●●●●●●●●

●●●

●

●●

●

●●

●

●●●●

●

●●

●●●●●
●

●

●

●

●●●●●●●●

●●●

●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●●
●●●

●

●

●

●

●

●●●●●
●

●

●

●
●

●

●●

●●●

●

●

●

●●

●

●●

●●

●●●

●

●●
●

●

●●●

●

●●●●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●

●

●

●●●

●●●●●

●●●●●●●●●●●●●●●
●●

●

●●●

●●

●●●●●●●●

●●

●●

●●●●●●●●●

●●●

●●

●●

●●

●●

●●●

●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●

●

●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●
●●

●●

●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●

●

●●●●●●

●

●●●●●●

●

●●

●●

●●●●●●●●●●●●●
●●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●

●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●

●●●

●

●

●●

●●●

●

●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●
●●●

●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●

●

●●●●●●●●●
●●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●

●

●●

●

●●

●

●

●

●●●●●●●●●
●●●●

●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●

●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●

●

●●●●●

●

●●●●●●●●●
●

●●

●●●●●●●●●
●

●

●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●●●●●●●
●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●●●

●

●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●

●●●●●

●●

●●●●●

●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●●●●●

●●

●●●●●●

●

●

●●●

●●●●●●●●

●●

●

●●

●

●●●

●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●●

●

●●●●●

●●●

●

●

●

●

●●●●●●●●●
●●●●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●

●

●

●●●●●●●

●

●

●●

●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●
●●●●●●●●●
●●●

●

●●●●●●●●●

●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●
●●●●●●●

●●

●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●

●●●●

●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●●

●

●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●

●●

●●

●

●

●●●●●●●●●
●

●

●

●

●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●● ●●●

●●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●

●

●●

●
●

●●●●●●●

●

●●●

●

●

●

●

●

●●●●●

●●

●●

●

●

●●

●

●

●●

●

●●●●●●●●●
●●●●

●

●●●●●

●

●●●●●●●●

●

●

●

●●

●●●●●●●●●
●●●●●

●

●●●●

●

●

●●●●●●●●

●

●

●●

●

●●●●●●

●

●

●

●

●●●

●

●●

●●

●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●
●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●●●

●

●●●●●●●●●
●

●

●●●●●●●●●●

●

●●

●

●
●

●

●

●

●
●

●

●● ●● ● ●●●●●●●●●
●●●●

●
●●
●
●●
●●
●●●●
● ●●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●

●

●●●●

●●

●

●

●●●●●

●

● ●●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●●●
●
●

●

●
●

●●

●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●●
●●

●

●

●

●●●●●●●●●
●●●●●●●●

●

●

●●

●

●

●●●●●●●●

●

●

●

●●●●●●

●●

●
●

●●●●●●

●

●●

●

●●●

●●

●●●●●●●●

●

●●●●

●

●●●●●●●●●
●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●●●●●●
●●●

●

●●●●●●

●

●

●●

●●●●●●●●●●
●●●

●

●

●

●

●
●

●

●

●●

●●●●
●●●
●

●

●●●●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●
●●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●
●
●●●●●
●●

●

●●●
●●

●

●

●
●
●

●

●

●

●●●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●

●
●
●●

●

●

●

●

●

●

●●●

●●

●●●●●

●

●

●

●●●●●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●●●●●

●

●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●●

●

●●

●

●

●

●●●●●●●●●
●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●

●

●

●●●●

●

●●

●●●●

●

●

●

●●

●●

●

●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●●●

●

●●●●●●●
●●●●●●

●

●

●●●

●

●●●

●●

●●●●●

●

●

●●●●●
●●
●

●

●

●

●

●●●●●
●●●

●●●

●●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●●

●●
●
●●
●●●●

●

●●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●●●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●●

●

●●●●

●

●

●

●●●●●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●●
●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●●

●●●

●●●●

●●

●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●●●●●●●●●
●●●●●

●●●

●●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●

●

●●

●

●●

●

●

●●●●●●

●

●

●●

●●●●

●

●

●

●

●●●

●●●

●

●●●●●●

●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●●

●●

●●●

●

●●●●●

●

●●●

●●

●

●●●

●

●●●

●

●

●

●

●●

●●●

●

●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●● ●● ●

●

●●●

●

●●●

●

●●●●

●

●

●

●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●●

●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●●●●

●

●●●●● ●●●●

●

●●●●●●●

●

●●●●●●●●●
●●●●●●●●●

●

●

●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●

●●
●●
●

●

●●
●●
●

●●
●●
●●
●●
● ●

●

●●

●

●

●● ●●● ●●●

0
20

00
40

00
60

00
80

00

A
no

ny
m

iz
ed

 r
em

ot
e

ne
tw

or
k

ad
dr

es
s

M
ay

 2
00

6

S
ep

 2
00

6

Ja
n

20
07

M
ay

 2
00

7

S
ep

 2
00

7

Ja
n

20
08

M
ay

 2
00

8

S
ep

 2
00

8

Ja
n

20
09

M
ay

 2
00

9

S
ep

 2
00

9

Ja
n

20
10

M
ay

 2
01

0

S
ep

 2
01

0

Ja
n

20
11

M
ay

 2
01

1

S
ep

 2
01

1

Ja
n

20
12

M
ay

 2
01

2

S
ep

 2
01

2

Figure 8: Participating attack hosts in the distributed attacks detected from
2005 to 2012 at LBNL.

1 2 3 4 6 7 8 9 10 11 12 24 25 26 29 30

HONEY CAMPOFF RSRCHLAB

Attack Number

P
er

ce
nt

ag
e

ov
er

la
p

0
20

40
60

80
10

0

Figure 9: Percentage overlap of attack hosts seen at LBNL with that at sites
HONEY, CAMPOFF and RSRCHLAB. The figure displays only the subset
of attacks that appear in at least one of the three sites. (Note that none of
the attacks appear in HOMEOFF).

Figure 7 shows the empirical CDF of the span of detected at-
tack epochs. These coordinated attacks often span multiple days,
and sometimes multiple weeks. The majority of the attacks ex-
hibit strong coordination glue in terms of either the set of local ma-
chines probed or the usernames targeted for brute-forcing. Of the
90 true attack epochs, 62 have common-set-of-local-machines glue
and 25 have username-“root” glue. Only 3 epochs did not manifest
any glue we could identify; these epochs probed machines across
a wide range of addresses and using a dictionary of generic user-
names, such as mysql and admin.

Figure 8 shows the attack hosts participating in the various dis-
tributed attack epochs over time, where we number distinct hosts
consecutively starting at 1 for the first one observed. The sig-
nificant overlap of attack hosts across attack episodes shows that
many of these attacks employ the same botnet. We then analyzed
the coordination glue in these attack epochs to consolidate the set
of epochs into attack campaigns. We use the following rules to
group epochs into campaigns based on observing evidence that
the same attacker conducting different attack epochs that work to-
wards the same goal: (i) epochs with the same common-set-of-
local-machines coordination glue, and (ii) epochs appearing on the
same day with username-root coordination glue. Our detector con-
siders these as multiple attack epochs rather than a single attack
because this is indeed how the campaign proceeds, stopping for a
few hours/days and then reappearing. Using these rules, we group

the 62 attacks with common-set-of-local-machines glue into 12 dis-
tinct attack campaigns. Only a few of the 25 epochs group using
heuristic (ii), condensing the root-set to 20 campaigns. This leaves
us with a total of 35 attack campaigns.

Table 4 summarizes the magnitude, scope and stealthiness of the
attacks we detect. All of these attacks were stealthy when observed
from the viewpoint of individual hosts; on average the attack hosts
made ≈ 2 attempts per local machine per hour. We can however
detect a large fraction of these attack campaigns using a point-wise
network-based detector that looks for high-rate hourly activity in
terms of either the total number of failed attempts or the number of
local hosts contacted. Note that we also detect attacks that a site
cannot detect using either host-based or network-based point-wise
detection (campaigns 5, 7 and 8 in Table 4). Finally, two of the
campaigns succeeded, the first of which (campaign 1) as best as we
can tell went undetected by the site.

We also find a difference in the characteristics between attacks
that have set-of-local-machines coordination glue versus the ones
that only have username-root glue. The latter tend to target a wide
range of the site’s address space and often involve just a few at-
tack hosts brute-forcing at a high rate. Attacks having set-of-local-
machines coordination glue often exhibit the pattern of the attack-
ers stopping and coming back. We did not find any sequential pat-
tern in any of these campaigns; rather, the attackers targeted servers
spread across the address space, often including addresses in both
of LBNL’s distinct address blocks. We also did not find any pattern
among the local servers in terms of belonging to the same research
group or compute cluster.

6.3 Establishing the scope of attacks
Next, we attempt to establish which attacks specifically targeted

the LBNL site versus global attacks that indiscriminantly probed
the site. To do so we look for whether the attack hosts of a given
campaign appeared in any of our four correlation datasets, HONEY,
RSRCHLAB, HOMEOFF, and CAMPOFF.

We find that 16 campaigns appear in at least one of these four
datasets. These include five username-root coordination glue at-
tacks and all but one of the attacks with set-of-local-machines co-
ordination. Figure 9 plots the percentage overlap of the attack hosts
detected in the global attacks at LBNL with that at other sites,
showing a high overlap in most cases. We investigated campaign 5,
which does not appear at any of the other sites, and found that it
indeed targeted LBNL, as the attack hosts all probed a set of six
usernames each valid at the site. As shown by the hourly rates in
Table 4, this targeted attack also proceeded in a stealthy fashion,
with each remote host on average making only 9 attempts and con-
tacting 3 local servers per hour. It’s possible that some of the other
campaigns also specifically targeted LBNL, though for them we
lack a “smoking gun” that betrays clear knowledge of the site.

Finally, to give a sense of the nature of global attacks, Fig-
ure 10 shows the timing patterns of login attempts at the LBNL
and HONEY sites during part of campaign 8. From the clear corre-
lation (though with a lag in time), we see that the activity at both
reflects the same rate (which varies) and, for the most part, the same
active and inactive periods.

7. CONCLUSION
In this work we propose a general approach for detecting dis-

tributed, potentially stealthy activity at a site. The foundation of the
method lies in detecting change in a site-wide parameter that sum-
marizes aggregate activity at the site. We explored this approach in
concrete terms in the context of detecting stealthy distributed SSH
brute-forcing activity, showing that the process of legitimate users

ID Appearances Attrs.
Aggregate statistics Per remote avg. hourly characteristics

Attack Local Attempts Locals Per-Local
machines machines contacted attempts

1 2007: [Jul 7-9], [Oct 20-23], [Nov 5-9](2), [Nov 13-18](2) L,!! 431 133 74.68 56.10 1.33
2 2008: [Apr 30 - May 7],[May 8-14](3) L 286 140 98.50 54.80 1.79

3 2008: [Jun 28-29], [Jun 30 - Jul 1] L 969 113 293.30 41.70 7.00[Jul 7-9], [Aug 17-21], [Sep 1-8] (5)
4 2008: [Sep 8-13](3) L 378 257 52.50 40.70 1.28
5 2008: [Sep 16-18] L,S,T 88 12 9.00 2.53 3.57
6 2008: [Sep 23-26](2), [Sep 29 - Oct 2](2) L 185 109 48.50 38.38 1.26
7 2008: [Nov 18-19], [Nov 20 - Dec 29](5) 2009: [Apr 7-9] L,S 1,097 22 16.01 8.04 1.99
8 2009: [Oct 22-23], [Oct 27 - Nov 24](5) L,S 1,734 5 5.60 3.70 1.50
9 2010: [Dec 6 - Jan 10](6), [Jan 11-18], [Jan 20-22], [Mar 4-8] L 3,496 44 38.80 21.50 1.80

10 2010: [Jun 16 - Jul 27](2), [Jul 29 - Aug 11] L 7,445 1,494 90.80 34.50 2.70
11 2010: [Nov 1-6] (2), [Nov 7-8], [Nov 27 - Dec 1], [Dec 15-17] L,! 581 98 140.60 45.47 3.09
12 2011: [Oct 11-19], [Oct 25-29](2), [Nov 4-7], [Nov 17-20] L 377 158 33.93 25.25 1.34
13 2010: [Mar 30 - Apr 1] R,t 78 18,815 999.70 118.91 1.33
14 2010: [Apr 23-26] R,t 130 29,924 2325.57 117.97 1.22
15 2010: [May 7-10] R,t 72 9,300 713.05 67.47 1.36
16 2010: [Sep 20-22] R,t 33 5,380 69.05 60.72 1.14
17 2010: [Dec 27-30] R,t 32 3,881 260.59 43.11 1.34
18 2011: [Feb 10-14](2) R,t 108 7,520 40.45 27.21 1.48
19 2011: [May 16-18] R,t 30 1,621 153.23 19.70 2.02
20 2011: [Jul 21-22] R,t 20 2,556 388.25 38.13 1.18
21 2011: [Aug 2-6] R,t 45 9,465 315.12 21.66 2.41
22 2011: [Aug 7-9] R,t 48 6,516 444.16 17.60 2.18
23 2011: [Aug 17-21](2) R,t 22 3,279 33.07 16.40 2.02
24 2011: [Nov 2-4] R 31 3,446 273.80 20.08 1.02
25 2011: [Nov 30 - Dec 5] R 181 10,467 829.68 18.31 1.03
26 2011: [Dec 18-20] R 258 961 1099.85 14.00 1.02
27 2012: [Jul 20-21] R,t 2 53,219 20,844 11,749 1.06
28 2012: [Aug 27 - Sep 2] R,t 10 1,912 20.84 14.38 1.23
29 2012: [Sep 26-29] R 6 1,971 72.30 13.05 1.59
30 2012: [Oct 8 - Nov 1](4) R,S 190 19,639 5.27 4.97 1.06
31 2012: [Nov 16-18] R,t 3 493 38.36 12.22 2.99
32 2012: [Nov 30 - Dec 2] R,t 3 344 133.00 68.80 1.93
33 2008: [Jan 9-12] X,t 17 63,015 2,846.44 1,761.69 1.61
34 2011: [Apr 8-26] X,t 67 19,158 591.34 87.41 6.76
35 2012: [Dec 14-17] X,t 13 45,738 1,490.26 1,430.67 1.04

Table 4: Characteristics of the detected coordinated attack campaigns. In Appearances, numbers in parentheses reflect how many attack epochs occurred
during the given interval. Attrs. summarizes different attributes of the activity: L = coordination glue was set of local machines, R = coordination glue was
username “root”, X = no discernible coordination glue, S = stealthy, T = targeted, t = possibly targeted but no corroborating evidence, ! = successful, !! =
successful and apparently undetected by the site.

failing to authenticate is well-described using a beta-binomial dis-
tribution. This model enables us tune the detector to trade off an
expected level of false positives versus time-to-detection.

Using the detector we studied the prevalence of distributed brute-
forcing, which we find occurs fairly often: for eight years of data

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

0
50

00
10

00
0

Number of seconds elapsed since Oct 28 16:16:37 PDT 2009

A
tte

m
pt

 N
o.

NATLAB
HONEY

Figure 10: Timing of login attempts at HONEY machine and LBNL sites
during part of attack number 8 (Oct 2009 - Nov 2009). The plot is based on
data for only one of the machines targeted during the attack at LBNL.

collected at a US National Lab, we identify 35 attack campaigns in
which the participating attack hosts would have evaded detection
by a pointwise host detector. Many of these campaigns targeted
a wide range of machines and could possibly have been detected
using a detector with a site-wide view, but we also find instances
of stealthy attacks that would have proven very difficult to detect
other than in aggregate. We correlated attacks found at the site
with data from other sites and found many of them appear at multi-
ple sites simultaneously, indicating indiscriminant global probing.
However, we also find a number of attacks that lack such global
corroboration, at least one of which clearly targeted only the local
site. Some campaigns in addition have extensive persistence, last-
ing multiple months. Finally, we also find that such detection can
have significant positive benefits: users indeed sometimes choose
weak passwords, enabling brute-forcers to occasionally succeed.

Acknowledgments
Our thanks to Mark Allman, Peter Hansteen, and Robin Sommer
for facilitating access to the different datasets required for this
work. Our special thanks to Aashish Sharma for running down

various puzzles and to Partha Bannerjee and James Welcher for
providing crucial support for the processing of the LBNL dataset.

This work was supported by the U.S. Army Research Office un-
der MURI grant W911NF-09-1-0553, and by the National Science
Foundation under grants 0831535, 1161799, and 1237265. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the sponsors.

8. REFERENCES
[1] BlockHosts.

http://www.aczoom.com/blockhosts/.
[2] DenyHosts.

http://denyhosts.sourceforge.net/.
[3] sshguard. http://www.sshguard.net/.
[4] The Hail Mary Cloud Data - Data collected by Peter N. M.

Hansteen (peter@bsdly.net).
http://www.bsdly.net/~peter/hailmary/.

[5] ICS-ALERT-12-034-01 — SSH Scanning Activity Targets
Control Systems.
http://www.us-cert.gov/control_systems/
pdf/ICS-ALERT-12-034-01.pdf, Feburary, 2012.

[6] R. Bezut and V. Bernet-Rollande. Study of Dictionary
Attacks on SSH. Technical report, University of Technology
of Compiegne, http://files.xdec.net/TX_EN_
Bezut_Bernet-Rollande_BruteForce_SSH.pdf,
2010.

[7] D. Brook and D. A. Evans. An approach to the probability
distribution of CUSUM run length. In Biometrika,
volume 59, pages 539–549, 1972.

[8] C. Gates. Coordinated scan detection. In 16th Annual
Network and Distributed System Security Symposium, 2009.

[9] D. Gerzo. BruteForceBlocker. http://danger.rulez.
sk/projects/bruteforceblocker.

[10] D. M. Hawkins and D. H. Olwell. Cumulative sum charts
and charting for quality improvement. Springer, 1998.

[11] L. Hellemons. Flow-based Detection of SSH Intrusion
Attempts. In 16th Twente Student Conference on IT.
University of Twente, January 2012.

[12] C. Jacquier. Fail2Ban. http://www.fail2ban.org.
[13] M. Kumagai, Y. Musashi, D. Arturo, L. Romana,

K. Takemori, S. Kubota, and K. Sugitani. SSH Dictionary
Attack and DNS Reverse Resolution Traffic in Campus
Network. In 3rd International Conference on Intelligent
Networks and Intelligent Systems, pages 645–648, 2010.

[14] E. L. Malecot, Y. Hori, K. Sakurai, J. Ryou, and H. Lee.
(Visually) Tracking Distributed SSH BruteForce Attacks? In
3rd International Joint Workshop on Information Security
and Its Applications, pages 1–8, Feburary, 2008.

[15] J. Owens and J. Matthews. A Study of Passwords and
Methods Used in Brute-Force SSH Attacks. In USENIX
Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2008.

[16] A. V. Siris and F. Papagalou. Application of anomaly
detection algorithms for detecting SYN flooding attacks. In
IEEE GLOBECOM, pages 2050–2054. IEEE, 2004.

[17] S. Staniford, J. A. Hoagland, and J. M. McAlerney. Practical
automated detection of stealthy portscans. In 7th ACM
Conference on Computer and Communications Security,
Athens, Greece, 2000.

[18] J. Vykopal, T. Plesnik, and P. Minarik. Network-based
Dictionary Attack Detection. In International Conference on
Future Networks, 2009.

[19] H. Wang, D. Zhang, and S. K. Detecting SYN flooding
attacks. In 21st Joint Conference IEEE Computer and
Communication Societies (IEEE INFOCOM), pages
1530–1539, 2002.

[20] C. M. Zhang and V. Paxson. Detecting and Analyzing
Automated Activity on Twitter. In Passive and Active
Measurement. Springer, 2011.

http://www.aczoom.com/blockhosts/
http://denyhosts.sourceforge.net/
http://www.sshguard.net/
http://www.bsdly.net/~peter/hailmary/
http://www.us-cert.gov/control_systems/pdf/ICS-ALERT-12-034-01.pdf
http://www.us-cert.gov/control_systems/pdf/ICS-ALERT-12-034-01.pdf
http://files.xdec.net/TX_EN_Bezut_Bernet-Rollande_BruteForce_SSH.pdf
http://files.xdec.net/TX_EN_Bezut_Bernet-Rollande_BruteForce_SSH.pdf
http://danger.rulez.sk/projects/bruteforceblocker
http://danger.rulez.sk/projects/bruteforceblocker
http://www.fail2ban.org

	1 Introduction
	2 Related Work
	3 Datasets and Data Filtering
	3.1 Main dataset
	3.2 Correlation datasets

	4 Detection
	4.1 Aggregate Site Analyzer
	4.2 Attack Participants Classifier

	5 Modeling User Authentication Failures
	6 Evaluation
	6.1 Parameterization
	6.2 Assessment of Detection
	6.3 Establishing the scope of attacks

	7 Conclusion
	8 References

