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Abstract 

We present associative and causal views of differential privacy. Under the associative view, the 
possibility of dependencies between data points precludes a simple statement of differential 
privacy's guarantee as conditioning upon a single changed data point. However, a simple 
characterization of differential privacy as limiting the effect of a single data point does exist 
under the causal view, without independence assumptions about data points. We believe this 
characterization resolves disagreement and confusion in prior work about the consequences of 
differential privacy. It also opens up the possibility of applying results from statistics, 
experimental design, and science about causation while studying differential privacy. 
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We present associative and causal views of differential privacy. Under the as-
sociative view, the possibility of dependencies between data points precludes a
simple statement of differential privacy’s guarantee as conditioning upon a single
changed data point. However, a simple characterization of differential privacy as
limiting the effect of a single data point does exist under the causal view, without
independence assumptions about data points. We believe this characterization
resolves disagreement and confusion in prior work about the consequences of
differential privacy. It also opens up the possibility of applying results from
statistics, experimental design, and science about causation while studying dif-
ferential privacy.

1. Introduction

Differential privacy is a precise mathematical property of an algorithm re-
quiring that it produce almost identical distributions of outputs for any pair
of possible input databases that differs in a single data point. A disagree-
ment has arisen in the literature with some researchers feeling that differ-
ential privacy makes an implicit assumption of independence between data
points (e.g., [1, 2, 3, 4, 5]) and others asserting that no such assumption ex-
ists (e.g., [6, 7, 8, 9]). How can such a disagreement arise about a precise
mathematical property of an algorithm?

We believe that the disagreement is not actually about differential privacy
itself but rather about the meaning of an intuitive consequence of differential
privacy commonly used to explain why it protects privacy. Kasivisiwanathan
and Smith express this intuition as follows [7]:

This definition states that changing a single individual’s data in the database leads
to a small change in the distribution on outputs.

This consequence of differential privacy, used to provide an intuitive charac-
terization of it, does not make explicit the notion of change intended. In more
detail, the above intuitive sentence compares the distribution over the output,
a random variable O, in two hypothetical worlds, the pre- and post-change
worlds. If we let Di be a random variable representing the changed data point
and di and d′i be the pre- and post-change values for Di, then the comparison
is between Pr[O=o when Di=di] and Pr[O=o when Di=d

′
i]. The part of this

characterization of differential privacy that is informal is the notion of when,
which would make the notion of change precise.

This paper contrasts two interpretations of changing inputs and when. The
first we consider is conditioning upon two different values for the changed data
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Num. Conditions on P Point of comparison Relation Appears in

Original Differential Privacy

1 PrA[A(d1, . . . , d·i, . . . , dn)=o] is dp [10]

Associative Variants

4 PrP [D1=d1, . . . , Di=d
·
i, . . . , Dn=dn] > 0 PrP [O=o | D1=d1, . . . , Di=d

·
i, . . . , Dn=dn] ← dp

6 PrP [Di=di] > 0 PrP [O=o | Di=d·i] none [1]

8 indep. Di, PrP [Di=di] > 0 PrP [O=o | Di=d·i] ← dp [1]

Causal Variants

10 PrP [O=o | do(D1=d1, . . . , Di=d
·
i, . . . , Dn=dn)] ↔ dp

12 PrP [O=o | do(Di=d·i)] ← dp

Table 1: Various definitions similar to Dif-
ferential Privacy. The left-most column
gives the number used to identify the defi-
nition, where they are numbered by the or-
der in which they appear later in the text.
The propositions are numbered such that the
number identifying a definition also identi-
fies the proposition showing that definition’s
relationship with differential privacy. The
point of comparison is the quantity computed
twice, once for two different values of the ith
data point, and compared to check whether
they are within a factor of eε of one another.
The check is for all values of the index i and
all pairs of data values di and d′i that can go
in d·i. In one case (Definition 8), the com-
parison just applies to distributions where the
data points are independent of one another.
Some of definitions only perform the com-
parison when changed data point Di having
the value di (and d′i, the changed value) has
non-zero probability under P . Others only
perform the comparison when all the data
points D having the values d (for original and
changed value of di) has non-zero probabil-
ity. do denotes a causal intervention instead
of standard conditioning [11].

point. This interpretation focuses on two different subsets of an input space and
accounts for associations between data points in the database. This associative
interpretation captures what a rational agent would do upon seeing one or the
other input value in a natural, observational setting. Furthermore, as we will
discuss in more detail below, the associative view turns out to match up with
the views of those believing differential privacy has an implicit assumption of
independence, that is, a lack of association.

The second interpretation we consider is intervention in a causal model.
This interpretation models artificially altering inputs, as in an experiment.
While it tracks causal effects by accounting for how the intervention may cause
other values to change, it ignores associations in the database since such arti-
ficial interventions break them. As such, the purported implicit assumption
disappears and this interpretation more tightly characterizes the consequences
of differential privacy.

Table 1 provides an overview of our results about various interpretations of
the key consequence of differential privacy quoted above as an intuitive char-
acterization of it. After reviewing differential privacy (Section 3), we start our
analysis with the associative view using conditioning. We first consider con-
ditioning upon all the data points instead of just the changed one (Section 4).
After dealing with some annoyances involving the inability to condition on
zero-probability data points, we get a precise characterization of differential
privacy’s consequences (Proposition 4). However, this associative definition
does not correspond well to the intuitive characterization of differential pri-
vacy’s key consequences quoted above: whereas the above quoted characteri-
zation refers to just the changed data point, the associative definition refers to
them all blurring the characterization’s focus on change.

We next consider conditioning upon just the single changed data point (Sec-
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tion 5). Doing so produces a stronger definition not implied by differential pri-
vacy (Proposition 6). The definition is, however, implied with the additional
assumption of independence between data points (Proposition 8). We believe
this explains the feeling some have that differential privacy implicitly assumes
such: to get the key characterization of differential privacy’s consequences to
hold appears to require such an assumption.

However, we go on to show that the assumption is not required when using
a causal interpretation of the key consequence of differential privacy quoted
above. As a warm-up exercise, we first consider intervening upon all the data
points after reviewing the key concepts of causal modeling (Section 6). As
before, referring to all data points produces a definition that characterizes dif-
ferential privacy but without the intuitive focus on a single data point we desire
(Proposition 10).

We then consider intervening upon a single point (Section 7). We find that
this causal characterization of differential privacy is in fact implied by differ-
ential privacy without any assumptions about independence (Proposition 12).
An additional benefit we find is that, unlike the associative characterizations,
we need no side conditions limiting the characterization to data points with
non-zero probabilities. This benefit follows from causal interventions being
defined for zero-probability events unlike conditioning upon them. For these
two reasons, we believe that differential privacy is better viewed as a causal
property than as an associative one.

In addition to considering the consequences of differential privacy through
the lenses of association and causation, we also consider how these two ap-
proaches can provide definitions equivalent to differential privacy. Table 2
shows our key results about definitions that are either equivalent to differential
privacy or might be mistaken as such, which, in the sections below, we weave
in with our aforementioned results about characterizations of the consequences
of differential privacy.
When intervening upon all data points, we get equivalence for free from Def-
inition 10 that we already explored as a characterization of the consequences
of differential privacy. This free equivalence does not occur for conditioning
upon all data points since the side condition ruling out zero-probability data
points means those data points are not constrained by Definition 4. Since dif-
ferential privacy is a restriction on all data points, to get an equivalence, the
definition must check all data points. To achieve this, we further require that
the definition hold on all distributions over the data points, not just the nat-
urally occurring one. (Alternatively, we could require the definition to hold
for any one distribution with non-zero probabilities for all data points, such as
the uniform distribution.) We also make similar alterations to the definitions
looking a single data point.

As we elaborate in the conclusion (Section 8), these results open up the pos-
sibility of using all the methods developed for working with causation to work
with differential privacy. Furthermore, we show that the difference between
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Num. P Conditions Point of comparison Relation

Original Differential Privacy

1 PrA[A(d1, . . . , d·i, . . . , dn)=o] is dp

Associative Variants

5 ∀ PrP [D1=d1, . . . , Di=d
·
i, . . . , Dn=dn] > 0 PrP [O=o | D1=d1, . . . , Di=d

·
i, . . . , Dn=dn] ↔ dp

7 ∀ PrP [Di=di] > 0 PrP [O=o | Di=d·i] → dp

9 ∀ indep. Di PrP [Di=di] > 0 PrP [O=o | Di=d·i] ↔ dp

Causal Variants

10 PrP [O=o | do(D1=d1, . . . , Di=d
·
i, . . . , Dn=dn)] ↔ dp

11 ∀ PrP [O=o | do(D1=d1, . . . , Di=d
·
i, . . . , Dn=dn)] ↔ dp

13 ∀ PrP [O=o | do(Di=d·i)] ↔ dp

Table 2: Various definitions similar to Dif-
ferential Privacy. The notation is the same as
in Table 1. The definitions vary in whether
they require performing these comparisons
for just the actual probability distribution
over data points P or over all such distribu-
tions. In one case (Definition 9), the com-
parison just applies to distributions where the
data points are independent of one another.

the two views of differential privacy is precisely captured as the difference
between association and causation. That some fail to get what they want out
of differential privacy (without making an unrealistic assumption of indepen-
dence) comes from the contrapositive of the maxim correlation doesn’t imply
causation: differential privacy ensuring a lack of (strong) causation does not
imply a lack of (strong) association. Given the common confusion of associa-
tion and causation, and that differential privacy does not make its causal nature
explicit in its mathematical statement, we believe our work explains how rea-
sonable researchers can be in apparent disagreement about the meaning (really,
consequences) of differential privacy.

2. Prior Work

The paper coining the term “differential privacy” recognized that causation was
key to understanding differential privacy: “it will not be the presence of her
data that causes [the disclosure of sensitive information]” [12, page 8]. Despite
this causal view being present in the understanding of differential privacy from
the beginning, we believe we are first to make it precise and to compare it
explicitly with an associative view.

Kasivisiwanathan and Smith look at a different way of comparing the two
views of differential privacy [7]. They study the Bayesian probabilities that
an adversary would assign, after seeing the system’s outputs, to a property
holding of a data provider. They compare these probabilities under various
possible inputs that a data provider could provide. For systems with differential
privacy, they show that the Bayesian probabilities hardly change under the
different inputs. This provides a Bayesian interpretation of differential privacy
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without making an assumption of independent data points. Kasivisiwanathan
and Smith also comment that such an assumption would be required when
comparing Bayesian probabilities before and after seeing the system’s output.
We instead work with only physical or frequentist probabilities and instead
find a difference between association and causation.

This work is largely motivated by wanting to explain the difference between
two camps that have emerged around differential privacy. The first camp, as-
sociated with the inventors of differential privacy, emphasizes differential pri-
vacy’s ability to ensure that data providers are no worse off for providing data
(e.g., [12, 7, 8, 9]). The second camp, which formed in response to limitations
in differential privacy’s guarantee, emphasizes that an adversary should not be
able to learn anything sensitive about the data providers after the system re-
leases outputs computed from data from data providers (e.g., [1, 2, 3, 4, 5]).
The second camp notes that differential privacy fails to provide this guarantee
when the data points from different data providers are associated with one an-
other. McSherry provides an informal description of the disagreement between
the camps [8].

We provide a mathematically precise characterization of what each camp
wants and an explanation of how two camps can grow up around the precise
mathematical definition of differential privacy. Noting that the second camp
expresses their desires for privacy in terms of association and conditional prob-
abilities common to information theory and quantitative information flow (see
Smith [13] for a survey), we start by attempting to express differential privacy
in such terms. A clean expression of differential privacy in terms of condi-
tioning upon a single participant’s data point only emerges in cases where data
points are not associated with one another. This result explains the essence
of the second camp’s complaint that “differential privacy mechanisms assume
independence of tuples [i.e., data points] in the database” [5, page 1].

However, we find that the purported assumption is not required to precisely
state differential privacy in terms of causation, where conditioning upon the
data point is replaced by causally intervening upon it. This causal charac-
terization justifies the first camp’s rebuttal that differential privacy provides a
different but meaningful guarantee from the one expected by the second camp.

While not necessary for understanding our technical development, Appendix A
provides a history of the two competing views of differential privacy.

3. Differential Privacy

Kasivisiwanathan and Smith restate the definition differential privacy as fol-
lows [7]:

Databases are assumed to be vectors in Dn for some domain D. The Hamming
distance dH(~x, ~y) onDn is the number of positions in which the vectors ~x, ~y dif-
fer. We let Pr[· ] and E[· ] denote probability and expectation, respectively. Given
a randomized algorithm A, we let A(~x) be the random variable (or, probability
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distribution on outputs) corresponding to input ~x. [. . .]

Definition 1.1 (ε-differential privacy [7]). A randomized algorithm A is said
to be ε-differentially private if for all databases ~x, ~y ∈ Dn at Hamming distance
at most 1, and for all subsets S of outputs,

Pr[A(~x) ∈ S] ≤ eε·Pr[A(~y) ∈ S].

This definition states that changing a single individual’s data in the database leads
to a small change in the distribution on outputs.

(The reference “[7]” in this quote refers to Dwork et al.’s paper, which we
refer to as [10], and not to the reference numbered 7 in the paper you are
currently reading.) For simplicity, we will limit our discussion to the discrete
case, in which checking for membership in a set of outputs can be replaced with
checking for equality to a particular output. We further simplify by limiting
ourselves to the considering data points that range over a finite set D and the
outputs that range over a finite set O. We also rename some of the variables.

Definition 1. A randomized algorithm A is said to be ε-differentially private
(in the discrete case) if for all databases d, d′ ∈ Dn at Hamming distance at
most 1, and for all output values o,

PrA[A(d)=o] ≤ eε ∗ PrA[A(d′)=o] (1)

The probabilities are frequencies that refer to unpredictable and indepen-
dent randomization in the algorithm A. The probabilities do not depend on
anything like the distribution over the databases d or d′, which are values, not
random variables, taken as provided as inputs. We remind us of this, we sub-
scripted Pr with A to make explicit what the frequencies are over, but we will
drop it when there is no risk of confusion.

These two definitions are mathematically precise conditions on the algo-
rithm A. However, going from these conditions to the intuition captured by
the last quoted sentence about changing data is not as transparent as it could
be.

First, it refers to “the database” but where is “the database” represented
in these definitions? In a sense it’s d and d′, but then there’s two of them.
Rather, “the database” appears to refer to the formal argument of A, which
is unseen. By not having the database explicitly named, it is difficult to pre-
cisely discuss changes to it. To make things more explicit, let us name the
database D. Since the database can take on more than one value, D is a ran-
dom variable. Much as d and d′ are vectors of values, the random variable
D ranges over vectors of values. Let Di be a random variable over the ith
such value, that is, the input from the ith individual in the database. D is
related to D1, . . . , Dn informally as D = 〈D1, . . . , Dn〉 and more formally
as D(ω) = 〈D1(ω), . . . , Dn(ω)〉 where ω ranges over the outcome space of
the probability space. Either way, PrP [D=d] = PrP [〈D1, . . . , Dn〉=d] for
all value vectors d representing databases. Here, we subscripted Pr with P
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instead ofA because the data points come from some population P of individ-
uals that determines their frequencies and these frequencies are independent of
the randomization within A. Note, however, that these frequencies are irrele-
vant to the definition of differential privacy since it only refers the frequencies
produced by the randomization within the algorithm A.

Second, the above quote refers to “the distribution on outputs”. Typically,
we think of random variables as having distributions, leading to the question of
which random variable is the output random variable. As before, the obvious
answer of A(d) and A(d′) leads to two random variables instead of one. So,
we react similarly and introduce an explicit nameO for the output and treat that
as the single random variable where informally O = A(D), or more formally,
O(ω) = A(D(ω))(ω), where D(ω) denotes the value that D takes in outcome
ω and A(d)(ω) denotes the output of A when given the input database d and
its randomization is resolved by ω. That is, PrP,A[O=o] = PrP,A[A(D)=o]

where the frequencies depend upon both the population P and algorithm A.
Since O = A(D1, . . . , Dn) and the internal randomness of A is independent
of D, PrP [D1=d1, . . . , Dn=dn] > 0 implies

PrP,A[O=o | D1=d1, . . . , Dn=dn] = PrA[A(d1, . . . , dn)=o] (2)

for all populations P .
Using these explicit random variables we can restate the above quoted char-

acterization of the consequences of differential privacy as

This definition states that changing the value of a single Di in the database D
leads to a small change in the distribution on outputs O.

Let us similarly restate the definition of differential privacy to make the
database explicit. An almost formal attempt might be

Definition 2 (undefined). A randomized algorithmA is said to be ε-differentially
private with an undefined when if for all databases d, d′ ∈ Dn at Hamming dis-
tance at most 1, and for all output values o,

Pr[O=o when D=d] ≤ eε ∗ Pr[O=o when D=d′] (3)

where O = A(D) and D = 〈D1, . . . , Dn〉.

Here, the problem is that “when” is not precisely defined.

4. Differential Privacy as Association with the Whole Database

The obvious way to make “when” precise is with conditioning. We can attempt
to define differential privacy in terms of a comparison of two conditional prob-
abilities where the difference between them is a difference in the conditioned
upon value.

Definition 3 (sometimes undefined). A randomized algorithm A is said to
be ε-differentially private as conditioning on the whole database if for all
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databases d, d′ ∈ Dn at Hamming distance at most 1, and for all output values
o,

Pr[O=o | D=d] ≤ eε ∗ Pr[O=o | D=d′] (4)

where O = A(D) and D = 〈D1, . . . , Dn〉.

This definition is not equivalent to Definition 1 because the conditional
probabilities referenced are not defined whenever Pr[D=d] = 0 since Pr[O=o |
D=d] = Pr[O=o ∧D=d]/Pr[D=d]. (And the same goes D = d′.) That is,
the definition of differential privacy considers databases that might not occur
naturally, but conditioning upon them is undefined.

To avoid this issue, one can restrict his attention to data points with non-zero
probabilities:

Definition 4 (implied, but weaker). A randomized algorithm A is said to be
ε-differentially private as qualified conditioning on the whole database if for
all databases d, d′ ∈ Dn at Hamming distance at most 1, and for all output
values o, if Pr[D=d] > 0 and Pr[D=d′] > 0 then

Pr[O=o | D=d] ≤ eε ∗ Pr[O=o | D=d′] (5)

where O = A(D) and D = 〈D1, . . . , Dn〉.

Definition 4 is implied by differential privacy but is weaker than it, mak-
ing it a characterization of differential privacy’s consequences. It is weaker
since it places no requirements on the behavior ofA for inputs with zero prob-
ability. By being a property about a algorithm operating on a single fixed
distribution over data points, the actual distribution occurring in practice, such
zero-probability data points will exist whenever nature constrains the values
that data points can take on.

Since the definition is only weaker on zero-probability inputs, this change
might seem unimportant. However, it introduces possible information leaks
whenever the adversary does not realize that a particular input has zero prob-
ability. For example, suppose Pr[Di=2] = 0. The behavior of A given Di

with the value 2 is unconstrained by Definition 4 and it might never produce
an output o¬2 that it otherwise produces with non-zero probability. Then, an
adversary will, upon not seeing o¬2 will learn that Di was not 2. If the ad-
versary did not know that Pr[Di=2] = 0, this will be new information for the
adversary.

(We start numbering propositions from 4 to align their numbering with that
of the definitions about which they are.)

Proposition 4. Definition 1 implies Definition 4, but not the other way around.

Proof. Assume Definition 1 holds. Consider any population P , index i, data
points d1, . . . , dn inDn and d′i inD, and output o such that the following hold:
PrP [D1=d1, . . . , Dn=dn] > 0 and PrP [D1=d1, . . . , Di=d

′
i, . . . , Dn=dn] >

0. Since Definition 1 holds,
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PrA[A(d1, . . . , dn)=o] ≤ eε ∗ PrA[A(d1, . . . , di, . . . , dn)=o] (6)

PrP,A[O=o | D1=d1, . . . , Dn=dn] ≤ eε ∗ PrP,A[O=o | D1=d1, . . . , Di=d
′
i, . . . , Dn=dn] (7)

where the second line follows from (2). Thus, Definition 4 holds.
To prove that Definition 4 does not imply Definition 1, consider the case of

a database holding a single data point whose value could be 0, 1, or 2. Suppose
the population P is such that PrP [D1=2] = 0. Consider an algorithm A such
that for the given population P ,

PrA[A(0)=0] = 1/2 PrA[A(0)=1] = 1/2 (8)

PrA[A(1)=0] = 1/2 PrA[A(1)=1] = 1/2 (9)

PrA[A(2)=0] = 1 PrA[A(2)=1] = 0 (10)

The algorithm does not satisfy Definition 1 due to its behavior on the input 2.
However, using (2),

PrP,A[O=0 | D1=0] = 1/2 PrP,A[O=1 | D1=0] = 1/2 (11)

PrP,A[O=0 | D1=1] = 1/2 PrP,A[O=1 | D1=1] = 1/2 (12)

While (2) says nothing about D1=2 since that has zero probability, this is
sufficient to show that the algorithm satisfies Definition 4 since it only applies
to data points of non-zero probability. Thus, the algorithm satisfies Definition 4
but not Definition 1.

We can get a similar definition that is equivalent to differential privacy by
looking at all populations P , where the populations determine various joint
distributions over data points.

Definition 5 (equivalent). A randomized algorithmA is said to be ε-differentially
private as universal qualified conditioning on the whole database if for all pop-
ulations P , if for all databases d, d′ ∈ Dn at Hamming distance at most 1, and
for all output values o, if PrP [D=d] > 0 and PrP [D=d′] > 0 then

PrP,A[O=o | D=d] ≤ eε ∗ PrP,A[O=o | D=d′] (13)

where O = A(D) and D = 〈D1, . . . , Dn〉.

Proposition 5. Definitions 1 and 5 are equivalent.

Proof. Definitions 1 implies Definition 5 by the same reasoning as in the proof
of Proposition 4.

Assume Definition 5 holds. Let P be a population that is i.i.d. and assigns
non-zero probabilities to all the sequences of n data points. Consider any in-
dex i, data points d1, . . . , dn in Dn and d′i in D, and output o. P is such that
PrP [D1=d1, . . . , Dn=dn] > 0 and PrP [D1=d1, . . . , Di=d

′
i, . . . , Dn=dn] >

0 both hold. Thus, since Definition 5 holds for P ,
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PrP,A[O=o | D1=d1, . . . , Dn=dn] ≤ eε ∗ PrP,A[O=o | D1=d1, . . . , Di=d
′
i, . . . , Dn=dn] (14)

PrA[A(d1, . . . , dn)=o] ≤ eε ∗ PrA[A(d1, . . . , di, . . . , dn)=o] (15)

where the second line follows from (2). Thus, Definition 1 holds.

Definition 4 does a reasonable job making precise the intuition behind idea
that changing the value of a singleDi in the databaseD leads to a small change
in the distribution on outputs O. As the informal claim is informally an im-
plication of differential privacy, the formal Definition 4 is a formal implication
of the differential privacy. Definition 5 shows how to get an equivalence out
of a similar definition. However, both of these definitions require condition-
ing upon the whole database, which seems to be a bit much for discussing the
change to a single data point.

5. Differential Privacy as Association with a Single Data Point

By conditioning upon all the data points, Definitions 4 and 5 do not clearly
show that the comparison rests on changing the value of a single database
input Di. Let us consider limiting the conditioning to just the changed value
Di.

Definition 6 (neither implied nor implies). A randomized algorithm A is said
to be ε-differentially private as qualified conditioning on a data point if for all
i, for all data points di and d′i inD, and for all output values o, if Pr[Di=di] >

0 and Pr[Di=d
′
i] > 0 then

Pr[O=o | Di=di] ≤ eε ∗ Pr[O=o | Di=d
′
i] (16)

where O = A(D) and D = 〈D1, . . . , Dn〉.

Definition 6 does not imply Definition 1 for the same reason Definition 4
does not imply Definition 1: the behavior of the algorithm A is unconstrained
on data points with zero probability while differential privacy (Definition 1)
constrains the behavior of the algorithm for even these data points. However,
this definition is even further from differential privacy in that differential pri-
vacy also does not imply it, meaning it is not even an accurate depiction of the
consequences of differential privacy. The reason Definition 1 does not imply
Definition 6 is that conditioning upon Di = di or Di = d′i might provide
information about other data points.

Proposition 6. Definition 1 does not imply Definition 6, nor the other way
around.

Proof. Definition 6 does not imply Definition 1 by the same reasoning as Def-
inition 4 does not imply Definition 1 (the proof for Proposition 4) since that
proof already uses a database of only a single data point.
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To show that Definition 1 does not imply Definition 6, consider an algo-
rithm A that has ε-differential privacy (Definition 1) from using the Laplace
Mechanism with ε noise for the sum of inputs (count of non-zero inputs) [10].
Further, consider a population P that is uniform over binary data points but not
i.i.d. over n > 1 data points. In particular, suppose that data points have zero
probability when they are not all equal. That is, D1 = D2 = · · · = Dn and
PrP [Di=0 | Dj=0] = 1 and PrP [Di=1 | Dj=1] = 1 for all i and j. (For
some settings this counterexample might be unrealistic, raising the question of
whether the implication will continue to not hold if we only allow two data
points to be equal. Appendix C shows that it will.)

PrP,A[O=o | Dn=dn] =
∑
〈d2,...,dn〉∈Dn−1

PrP [∧ni=2Di=di | Dn=dn] ∗ PrA[A(d1, d2, . . . , dn)=o] (17)

= 1 ∗ PrA[A(dn, dn, . . . , dn)=o] +
∑
〈d1,d2,...,dn−1〉∈Dn−1 s.t. ∃i s.t. di 6=dn

0 ∗ PrA[A(d1, d2, . . . , dn)=o] (18)

= PrA[A(dn, dn, . . . , dn)=o] (19)

where (17) follows from Lemma 1 in Appendix B and (18) follows from
PrP [∧ni=2Di=di | Dn=dn] being 0 whenever Di is not dn for any i. Sim-
ilarly,

PrP,A[O=o | Dn=d
′
n] = PrA[A(d′n, d′n, . . . , d′n)=o] (20)

Since A is the Laplace Mechanism with ε noise, for dn = 0, d′n = 1, and
o = 0,

PrA[A(dn, dn, . . . , dn)=o] = en∗ε ∗ PrA[A(d′n, d′n, . . . , d′n)=o] (21)

Since en∗ε > eε, the needed bound does not hold:

PrP,A[O=o | Dn=dn] = en∗ε ∗ PrP,A[O=o | Dn=d
′
n] (22)

> eε ∗ PrP,A[O=o | Dn=d
′
n] (23)

This second issue of conditioning upon Di = di or Di = d′i providing
information about other data points does not go away if we qualify over all
populations in hopes of making a definition equivalent to differential privacy
as we did before.

Definition 7 (too strong). A randomized algorithmA is said to be ε-differentially
private as universal qualified conditioning on a data point if for all populations
P , for all i, for all data points di and d′i in D, and for all output values o, if
PrP [Di=di] > 0 and PrP [Di=d

′
i] > 0 then

PrP [O=o | Di=di] ≤ eε ∗ PrP [O=o | Di=d
′
i] (24)

where O = A(D) and D = 〈D1, . . . , Dn〉.
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Rather than being equivalent to Definition 1, Definition 7 is strictly stronger
than it, and, thus, neither a good characterization of differential privacy nor its
consequences.

Proposition 7. Definition 7 implies Definition 1, but not the other way around.

Proof. Definition 1 does not imply Definition 7 by the same reasoning that
Definition 1 does not imply Definition 6 (Proposition 6).

To show that Definition 7 implies Definition 1, assume thatA satisfies Def-
inition 7. Choose any d1, · · · , dn ∈ Dn and d′i ∈ D. Choose P such that

PrP [D1=d1, . . . , Di=di, . . . Dn=dn] = PrP [D1=d1, . . . , Di=d
′
i, . . . , Dn=dn] =

1
2 (25)

For this distribution, PrP(Di = di) = PrP(Di = d′i) =
1
2 , and for any o

PrP,A[O=o | Di=d
′
i] =

PrP,A[O=o ∧Di=d
′
i]

PrP [Di=d
′
i]

(26)

=
1
2 ∗ PrA[A(d1, . . . , d

′
i, . . . , dn)=o]

1
2

(27)

= PrA[A(d1, . . . , d′i, . . . , dn)=o] (28)

where (27) comes from the randomization of the algorithm being independent
of the population. Similarly,

PrP,A[O=o | Di=di] = PrA[A(d1, . . . , di, . . . , dn)=o] (29)

Thus for any o,

PrA[A(d1, . . . , di, . . . , dn)=o] = PrP,A[O=o | Di=di] (30)

≤ eε ∗ PrP,A[O=o | Di=d
′
i] (31)

= eε ∗ PrA[A(d1, . . . , d′i, . . . , dn)=o] (32)

where (31) holds as A satisfies Definition 7. Together (30) and (32) show that
A satisfies Definition 1.

To remove the possibility of conditioning upon Di = di or Di = d′i provid-
ing information about other data points, we can add a new condition that the
data points are independent of one another.

Definition 8 (implied, but weaker). A randomized algorithm A is said to be
ε-differentially private as qualified conditioning on an independent data point
if for the given population P , if theDi is independent ofDj conditioning upon
a subset of other data points for all i 6= j, for all i, for all data points di and
d′i in D, and for all output values o, if PrP [Di=di] > 0 and PrP [Di=d

′
i] > 0

then

PrP,A[O=o | Di=di] ≤ eε ∗ PrP,A[O=o | Di=d
′
i] (33)

where O = A(D) and D = 〈D1, . . . , Dn〉.
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Proposition 8. Definition 1 implies Definition 8, but not the other way around.

Proof. Definition 8 does not imply Definition 1 by the same reasoning as Def-
inition 4 does not imply Definition 1 (the proof for Proposition 4) since that
proof already uses a database of only a single data point.

Definition 1 implies Definition 8 as follows:

PrP,A[O=o | Di=di] (34)

=
∑
〈d1,...,di−1,di+1,...,dn〉∈Dn−1

PrP
[
∧j∈{1,...,di−1,di+1,...,n}Dj=dj | Di=di

]
∗ PrA[A(d1, . . . , di, . . . , dn)=o] (35)

=
∑
〈d1,...,di−1,di+1,...,dn〉∈Dn−1

PrP
[
∧j∈{1,...,di−1,di+1,...,n}Dj=dj | Di=d

′
i

]
∗ PrA[A(d1, . . . , di, . . . , dn)=o] (36)

≤
∑
〈d1,...,di−1,di+1,...,dn〉∈Dn−1

PrP
[
∧j∈{1,...,di−1,di+1,...,n}Dj=dj | Di=d

′
i

]
∗ eε ∗ PrA[A(d1, . . . , d′i, . . . , dn)=o] (37)

= eε ∗ PrP,A[O=o | Di=d
′
i] (38)

where (35) and (38) follow from Lemma 1 in the Appendix B, (36) follows
from the assumption of independence of Di from Dj for j 6= i, and (37)
follows from A having differential privacy.

To get a definition equivalent to differential privacy, we look at all the pop-
ulations P where the data points are independent of one another.

Definition 9 (equivalent). A randomized algorithmA is said to be ε-differentially
private as universal qualified conditioning on an independent data point if for
all populations P where the Di is independent of Dj conditioning upon subset
of other data points for all i 6= j, for all i, for all data points di and d′i in D,
and for all output values o, if PrP [Di=di] > 0 and PrP [Di=d

′
i] > 0 then

PrP,A[O=o | Di=di] ≤ eε ∗ PrP,A[O=o | Di=d
′
i] (39)

where O = A(D) and D = 〈D1, . . . , Dn〉.

Proposition 9. Definitions 1 and 9 are equivalent.

Proof. Definition 9 implies Definition 1 by the same reasoning that Defini-
tion 7 implies Definition 1 (Proposition 7).

Definition 1 implies Definition 9 by the same reasoning that Definition 1
implies Definition 8 (Proposition 8).

We see that even ifA has differential privacy under Definition 1, it might not
satisfy Definition 6 since learning thatDi = di might shed light on other inputs
Dj where j 6= i. However, if we rule out that possibility, as in Definition 9,
the result holds. This issue corresponds to the claim found in some papers that
differential privacy has an implicit assumption of independence between data
points [1, 5]. In particular, Proposition 9 is nearly identical to Theorem 6.1
from [1]. A minor difference is that our Definition 9 does not require (39) to
hold for points with zero probability, as the probabilities are undefined for such
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points. We believe this condition to have been implicitly assumed in their work
as well.

We will show a way of removing the limitation to independent data points
by viewing differential privacy as causal property. Thus, rather than interpret
this limitation as an implicit assumption of differential privacy, we view it as
indicative of how differential privacy is rather better understood as a causal
property than as an property about association or independence.

6. Differential Privacy as Causation on the Whole Database

Due to differential privacy’s behavior on associated inputs and its require-
ment of considering zero-probability database values, differential privacy is
not a straightforward property about the independence or degree of associa-
tion of the database and the algorithm’s output. The would-be conditioning
upon zero-probability values corresponds to a form of counterfactual reason-
ing asking what the algorithm would had performed had the database taken on
a particular value that it might never actually take on. Experiments with such
counterfactuals that may never naturally occur form the core of causation. The
behavior of differential privacy on associated inputs corresponds to the atom-
icity assumption found in causal reasoning, that one can change the value of an
input without changing the values of other inputs. (More generally, atomicity,
implicit in the structural equation approach to defining causation, allows one
to ask what would happen if the value of a variable changed independently of
changes to any other variables that are not affected by the changed variable.)
With these motivations, we will show that differential privacy is equivalent to
a causal property that makes the change in a single data point explicit.

Before doing so, we will introduce a framework for precisely reasoning
about causation based upon Pearl’s [11] and show an equivalence between dif-
ferential privacy and a causal property on the whole database to echo Propo-
sition 5. The causal equivalence here is simpler than that with Definition 5
since it does not need qualifications around zero probability data points, which
removes the need to quantify over all populations.

To develop such a causal interpretation of differential privacy, we start by
re-interpreting the equation O = A(D). Previously, we viewed it as shorthand
for an observation that two random variables O and A(D) are related such
that O(ω) = A(D(ω))(ω), which says nothing about why this relation holds.
Now, we interpret it as a stronger causal relation asserting that the value of the
output O is caused by the value of the input D, that is, as a causal structural
equation. We will denote this interpretation by O := A(D) since it is closer
to an assignment than equality due to its directionality. In particular, the value
of O might change if the value of D is artificially altered (e.g., by random
assignment in an experiment) but the value of D would not change if O is arti-
ficially altered since causation only flows from causes to effects. To make this
more precise, let do(D=d) denote an intervention setting the value of D to d
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(Pearl’s do notation [11]). Using this notation, Pr[O=o | do(D=d)] repre-
sents what the probability ofO = o would be if the value ofD were set to d by
intervention. Similar to normal conditioning on D = d, Pr[O=o | do(D=d)]

need not equal Pr[O=o]. However, Pr[D=d | do(O=o)] = Pr[D=d] since O
is downstream of D, and, thus, changing O would have no affects on D.

Similarly, we replace D = 〈D1, . . . , Dn〉 with D := 〈D1, . . . , Dn〉. That
is, we consider the value of the whole database to be caused by the values of
its data points and nothing more. Furthermore, we require that theD1, . . . , Dn

only causeD and does not have any other effect. In particular, we do not allow
Di to affectDj for i 6= j. This requirement might seem to prevent one person’s
attribute from affecting another’s, for example, prevent one person’s race from
affecting his child’s race. This is not case since D1, . . . , Dn represent the
data points provided as inputs to the algorithm and not the actual attributes
themselves. One could model these attributes, such as race itself, as random
variables R1, . . . , Rn where Di := Ri for all i and allow Ri to affect Rj
without changing our results. For example, the following causal diagram is
acceptable: However, since we are not focusing on the causes of D1, . . . , Dn,

R1 R2 R3 . . . Rn−1 Rn

D1 D2 D3 . . . Dn−1 Dn

D

O

A

Figure 1: Example Causal Diagram. The ar-
rows ↪→ represent causal relations. The vari-
able at the start of the arrow affects the vari-
able at the end of the arrow. For example, R2

is caused by R1. The absence of an arrow
from one variable to another means the first
does affect the second.

we will model using a probability distribution over their values. Reflecting that
they might that their causes (e.g., R1, . . . , Rn) might have causal relations, we
do not require the distributions over D1, . . . , Dn to be independent.

Recall that Pr[O=o] is the probability of the algorithm’s output being o un-
der the naturally occurring distribution of inputs (and coin flips internal to A),
that Pr[O=o | Di=di] is that probability conditioned upon seeing Di = di,
and that Pr[O=o | do(Di=di)] represents the probability of O = o given
an intervention setting the value of Di to di. The last probability depends
upon how the intervention on Di will flow downstream to D and then O. The
probability differs from the conditional probability in that setting Di to di pro-
vides no information about Dj for j 6= i whereas if Di and Dj are associated,
then seeing the value Di does provide information about Dj . Intuitively, this
lack of information is because the artificial setting of Di to di has no causal
influence on Dj due to the data points not affecting one another and the arti-
ficial setting, by being artificial, tells us nothing about the associations found
in the naturally occurring world. On the other hand, artificially setting R1

to r1 in the causal diagram above (fig. 1) will provide information about D2
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since R1 has an affect on D2 in addition to D1. A second difference is that
Pr[O=o | do(Di=di)] is defined even when Pr[Di=di] is zero. Importantly,
interventions on Dis may not accurately model the choice an individual has
to make while providing their attributes, or any other realizable mechanism
for modifying their attributes. Instead, interventions on Di model changing
the values provided as input to the algorithm which are naturally change-able
without affecting other values in the world.

With the machinery in place to reason about causation, we can get a defini-
tion equivalent to differential privacy very easily.

Definition 10 (equivalent). A randomized algorithmA is said to be ε-differentially
private as intervention on the whole database if for all i, for all data points
d1, . . . , dn in Dn and d′i in D, and for all output values o,

Pr[O=o | do(D1=d1, . . . , Dn=dn)] ≤ eε ∗ Pr[O=o | do(D1=d1, . . . , Di=d
′
i, . . . , Dn=dn)] (40)

where O := A(D) and D := 〈D1, . . . , Dn〉.

Proposition 10. Definitions 1 and 10 are equivalent.

Proof. Pr[O=o | do(D1=d1, . . . , Dn=dn)] = Pr[A(d1, . . . , dn)=o] and

Pr[O=o | do(D1=d1, . . . , Di=d
′
i, . . . , Dn=dn)] = Pr[A(d1, . . . , di, . . . , dn)=o]

from Lemma 2 in Appendix D.

The simple Definition 10 works whereas our attempts with conditional prob-
abilities require considerable complexity because we can causally fix data
points to values with zero probability. For completeness, we will state a more
complex definition that quantifies over all populations:

Definition 11 (equivalent). A randomized algorithmA is said to be ε-differentially
private as universal intervention on the whole database if for all populations
P , for all i, for all data points d1, . . . , dn in Dn and d′i in D, and for all output
values o,

Pr[O=o | do(D1=d1, . . . , Dn=dn)] ≤ eε ∗ Pr[O=o | do(D1=d1, . . . , Di=d
′
i, . . . , Dn=dn)] (41)

where O := A(D) and D := 〈D1, . . . , Dn〉.

Proposition 11. Definitions 1 and 11 are equivalent.

Proof. The proof follows in the same manner as Proposition 10 since that
proof applies to all populations P .

However, Definitions 10 and 11, by fixing every data point, do not capture
the local nature of the decision facing a single potential survey participant.
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7. Differential Privacy as Causation on a Single Data Point

We can define a notion similar to differential privacy that uses a causal inter-
vention on a single data point as follows:

Definition 12 (implied, but weaker). Given a population P , a randomized al-
gorithm A is said to be ε-differentially private as intervention on a data point
if for all i, for all data points di and d′i in D, and for all output values o,

PrP,A[O=o | do(Di=di)] ≤ eε ∗ PrP,A[O=o | do(Di=d
′
i)] (42)

where O := A(D) and D := 〈D1, . . . , Dn〉.

This definition is implied by differential privacy, but it does not imply dif-
ferential privacy. The reason is similar to why Definitions 4 and 6 do not imply
differential privacy (Propositions 4 and 6) in that they all involve a counterex-
ample with a population P that hides the effects of a possible value of the data
point by assigning the value a probability of zero. For the associative defini-
tion, the counterexample involves only a single data point, but, for this causal
definition, the counterexample has to have two data points. The reason is that,
since the do operation acts on a single data point at a time, it can flush out the
effects of a single zero-probability value but not the interactions between two
zero-probability values.

Proposition 12. Definition 1 implies Definition 12, but not the other way
around.

Proof. W.l.o.g., assume i = n.
Assume Definition 1 holds. Then,

Pr[A(d1, . . . , dn−1, dn)=o] ≤ eε ∗ Pr[A(d1, . . . , dn−1, d′n)=o] (43)

for all d1, . . . , dn in Dn and d′n in D. This implies that for any P ,

PrP
[
∧n−1i=1 Di=di

]
∗ PrA[A(d1, . . . , dn−1, dn)=o] ≤ eε ∗ PrP

[
∧n−1i=1 Di=di

]
∗ PrA[A(d1, . . . , dn−1, d′n=o] (44)

for all d1, . . . , dn in Dn and d′n in D. Thus,∑
〈d1,...,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, dn)=o] ≤

∑
〈d1,...,dn−1〉∈Dn−1

eε ∗ PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, d′n)=o]

(45)∑
〈d1,...,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, dn)=o] ≤ eε ∗

∑
〈d1,...,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, d′n)=o]

(46)

PrP,A[O=o | do(Dn=dn)] ≤ eε ∗ PrP,A[O=o | do(Dn=d
′
n)] (47)

where the last line follows from Lemma 3 in Appendix D.
Definition 12 is, however, weaker than differential privacy. Consider the

case of a database holding two data points whose value could be 0, 1, or 2.
Suppose the population P is such that Pr[D1=2] = 0 and Pr[D2=2] = 0.
Consider an algorithm A such that
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PrA[A(d1, d2)=0] = 1/2 PrA[A(d1, d2)=1] = 1/2 when d1 6= 2 or d2 6= 2 (48)

PrA[A(2, 2)=0] = 1 PrA[A(2, 2)=1] = 0 (49)

The algorithm does not satisfy Definition 1 due to its behavior when both of
the inputs are 2.

However, using Lemma 3 in Appendix D,

PrP,A[O=0 | do(D1=0)] = 1/2 PrP,A[O=1 | do(D1=0)] = 1/2 (50)

PrP,A[O=0 | do(D1=1)] = 1/2 PrP,A[O=1 | do(D1=1)] = 1/2 (51)

PrP,A[O=0 | do(D1=2)] = 1/2 PrP,A[O=1 | do(D1=2)] = 1/2 (52)

since PrP [D2=2] = 0. A similar result holds switching the roles of D1 and
D2. Thus, the algorithm satisfies Definition 12 for P but not Definition 1.

Despite being only implied by, not equivalent to, differential privacy, Defi-
nition 12 captures the intuition behind the sentence

This definition states that changing the value of a single Di in the database D
leads to a small change in the distribution on outputs O.

when viewed as characterizing the implications of differential privacy. To get
an equivalence, we can quantify over all populations as we did to get an equiv-
alence for association, but this time we need not worry about zero-probability
data points or independence. This simplifies the definition and makes it a more
natural characterization of differential privacy.

Definition 13 (equivalent). A randomized algorithmA is said to be ε-differentially
private as universal intervention on a data point if all populations P , for all i,
for all data points di and d′i in D, and for all output values o,

PrP,A[O=o | do(Di=di)] ≤ eε PrP,A[O=o | do(Di=d
′
i)] (53)

where O := A(D) and D := 〈D1, . . . , Dn〉.

Proposition 13. Definitions 1 and 13 are equivalent.

Proof. W.l.o.g. and simplicity in notation, assume i = n.
Assume Definition 1 holds. The needed result follows from Proposition 12.
Assume Definition 13 holds. Then, for all P ,

PrP,A[O=o | do(Di=di)] ≤ eε ∗ PrP,A[O=o | do(Di=d
′
i)] (54)∑

〈d1,...,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, dn)=o] ≤ eε ∗

∑
〈d1,...,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ Pr[A(d1, . . . , dn−1, d′n)=o]

(55)
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follows from Lemma 3 in Appendix D.
For any d†1, . . . , d

†
n−1 in Dn−1, let Pd

†
1,...,d

†
n−1 be such that

Pr
Pd
†
1,...,d

†
n−1

[
∧n−1i=1 Di=d

†
i

]
= 1 (56)

For any d†1, . . . , d
†
n in Dn and d′n in D, (55) implies∑

〈d1,...,dn−1〉∈Dn−1

Pr
Pd
†
1,...,d

†
n−1

[
∧n−1i=1 Di=di

]
∗ PrA[A(d1, . . . , dn−1, d†n)=o]

≤ eε
∑
〈d1,...,dn−1〉∈Dn−1

Pr
Pd
†
1,...,d

†
n−1

[
∧n−1i=1 Di=di

]
∗ PrA[A(d1, . . . , dn−1, d′n)=o]

(57)

Thus,

PrA[A(d†1, . . . , d
†
n−1, d

†
n)=o] ≤ eε PrA[A(d

†
1, . . . , d

†
n−1, d

′
n)=o] (58)

since both sides has a non-zero probability for Pr
Pd
†
1,...,d

†
n−1

[
∧n−1i=1 Di=di

]
at

just the single sequences of data point values d†1, . . . , d
†
n−1.

8. Conclusion and Discussion

We have shown that is possible to view differential privacy as an associative
property with an independence assumption but that it is cleaner to view it as
a causal property. We believe this helps to explain why some researchers feel
that differential privacy requires an assumption of independence while other
researchers do not.

Our observation also reduces the benefits and drawbacks of each camp’s
view to those known from studying association and causation. For example,
the first camp’s causal view only requires looking at the system itself (cau-
sation is an inherent property of systems) This difference explains why the
second camp speaks of the distribution over data points despite the definition
of differential privacy not mentioning it.

The causal characterization also requires us to distinguish between an indi-
vidual’s attributes (Ris) and the data that is input to an algorithm (Dis), and
intervenes on the latter. Under the assumption that individuals don’t lie, the as-
sociative interpretation does not require this distinction since conditioning on
one is identical to conditioning the other. This distinction captures an aspect
of the difference between protecting “secrets about you” (Ri) and protecting
“secrets from you” (Di) pointed out by the first camp [8, 9], where differential
privacy protects the latter in a causal sense.

We believe these results have implications beyond explaining the differ-
ences between these two camps. Having shown a precise sense in which dif-
ferential privacy is a causal property, we can use all the results of statistics,
experimental design, and science about causation while studying differential
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privacy. For example, Tang et al. studies Apple’s claim that MacOS uses dif-
ferential privacy and attempt to reverse engineer the degree ε of privacy used
by Apple from the compiled code and configuration files [14]. Consider a ver-
sion of this problem in which the system purportedly providing differential
privacy is a server controlled by some other entity. In this case, the absence of
code and configuration files necessities a blackbox investigation of the system.
From the outside, we can study whether such a system has differential privacy
as advertised by using experiments and significance testing [15] similar to how
Tschantz et al.’s prior work uses it for studying information flow [16]. (For
an application, see [17].) Alternately, using the associative view, we could
approach the problem using observational studies.

In the opposite direction, the natural sciences can use differential privacy as
an effect-size metric, which would inherit all the pleasing properties known of
differential privacy. For example, differential privacy composes cleanly with
itself, both in sequence and in parallel [18]. The same results would also apply
to the effect-size metric that differential privacy suggests.
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Appendices

A. Two Views of Differential Privacy: A Brief History

Here, we briefly recount the history of the two camps surrounding differential
privacy. Having not participated in differential privacy’s formative years, we
welcome refinements to our account.

In 1965, S. L. Warner presented the randomized response method of provid-
ing differential privacy [19]. In 1977, T. Dalenius presented a different view
of privacy, Semantic Privacy [20]. The randomized response model and se-
mantic privacy can be viewed as the prototypes of the first and second camps
respectively, although these early works appeared to have had little impact on
the actual formation of the camps over a quarter century later.

In March 2006, Dwork, McSherry, Nissim, and Smith presented a paper
containing the first modern instance of differential privacy under the name of
“ε-indistinguishable” [10]. The earliest use of the term “differential privacy”
comes from an paper by Dwork presented in July 2006 [12]. This paper of
Dwork explicitly rejects the second camp (page 8):

Note that a bad disclosure can still occur [despite differential privacy], but [dif-
ferential privacy] assures the individual that it will not be the presence of her data
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that causes it, nor could the disclosure be avoided through any action or inaction
on the part of the user.

and further contains a proof that Dalenius’s Semantic Privacy is impossible.
(The proof was joint work with Naor, with whom Dwork later further devel-
oped the impossible result [21].) Furthermore, the paper promotes the first
camp’s view (page 9):

A mechanism K satisfying [differential privacy] addresses concerns that any
participant might have about the leakage of her personal information x: even if
the participant removed her data from the data set, no outputs (and thus conse-
quences of outputs) would become significantly more or less likely. For exam-
ple, if the database were to be consulted by an insurance provider before deciding
whether or not to insure Terry Gross, then the presence or absence of Terry Gross
in the database will not significantly affect her chance of receiving coverage.

Later works further expound upon their position [22, 23].
In 2011, papers started to question whether differential privacy actually pro-

vides a meaningful notion of privacy [24, 1, 25]. These papers point to the fact
that a released statistic can enable inferring sensitive information about a per-
son, similar to the attacks Dalenius wanted to prevent [20], even when that
statistic was computed using a differentially private algorithm. While the ear-
lier work on differential privacy acknowledged this limitation, these papers
provide examples where correlations, or more generally associations, between
data points can enable inferences that some people might not expect to be pos-
sible under differential privacy. They and later work (e.g., [2, 3, 4, 5]) attempt
to find stronger definitions that account for such correlations and provide pro-
tections against such inferential threats. In some cases, these authors assert that
such inferential threats are violations of privacy and not what people expect of
differential privacy. For example, Liu et al.’s abstract states that associations
between data points can lead to “degradation in expected privacy levels” [5].

Those promoting the original view of differential privacy have re-asserted
that differential privacy was never intended to prevent all inferential privacy
threats and that doing so is impossible [6, 7, 8, 9]. McSherry goes the fur-
thest, asserting that inferential privacy is neither privacy nor an appealing con-
cept [8]. He calls it “forgetablity” invoking the European Union’s right to be
forgotten and points out that preventing inferences prevents people using data
and scientific progress. He asserts that people should only have an expecta-
tion to the privacy of data they own, not data about them, and that differential
privacy captures this concept.

We know of no works from the second camp that have explicitly responded
to the first camp’s critique of their goals. Thus, we presume that second camp
continues to desire a stronger property than differential privacy. We will ex-
plore the relationship between the properties desired by each camp in detail
below.
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B. Calculations for Association

The following lemma aids reasoning about conditioning.

Lemma 1. Let O be the random variable for the output of A(D1, . . . , Dn),
then for all o and d1, . . . , dn, if Pr[Dj=dj ] > 0, then

Pr[O=o | Dj=dj ] =
∑
〈d1,...,dj−1,dj+1,...,dn〉∈Dn−1

Pr
[
∧i∈{1,...,dj−1,dj+1,...,n}Di=di | Dj=dj

]
∗ Pr[A(d1, . . . , dn)=o] (59)

Proof. With out loss of generality, we assume j = n. Similarly to the above
case, for d′n such that Pr[Dn=d

′
n] > 0,

Pr[O=o | Dn=d
′
n] (60)

= Pr
[∨

d1∈D,...,dn∈D O=o ∧
∧n
i=1Di=di

∣∣∣ Dn=d
′
n

]
(61)

=
∑

〈d1,...,dn〉∈Dn

Pr [O=o ∧
∧n
i=1Di=di | Dn=d

′
n] (62)

=
∑

〈d1,...,dn〉∈supp(Dn)

Pr [O=o ∧
∧n
i=1Di=di | Dn=d

′
n] (63)

=
∑

〈d1,...,dn〉∈supp(Dn)

Pr [O=o ∧Dn=d
′
n ∧

∧n
i=1Di=di] /Pr[Dn=d

′
n] (64)

=
∑

〈d1,...,dn〉∈supp(Dn,d′n)

Pr [O=o ∧Dn=d
′
n ∧

∧n
i=1Di=di] /Pr[Dn=d

′
n] (65)

=
∑

〈d1,...,dn〉∈supp(Dn,d′n)

Pr [O=o ∧
∧n
i=1Di=di | Dn=d

′
n] (66)

=
∑

〈d1,...,dn〉∈supp(Dn,d′n)

Pr [O=o |
∧n
i=1Di=di, Dn=d

′
n] ∗ Pr [

∧n
i=1Di=di | Dn=d

′
n] (67)

=
∑

〈d1,...,dn〉∈supp(Dn,d′n)

Pr
[
O=o

∣∣∣ ∧n−1
i=1 Di=di, Dn=d

′
n

]
∗ Pr

[∧n−1
i=1 Di=di

∣∣∣ Dn=d
′
n

]
(68)

=
∑

〈d1,...,dn〉∈supp(Dn,d′n)

Pr[A(D)=o] ∗ Pr
[∧n−1

i=1 Di=di

∣∣∣ Dn=d
′
n

]
(69)

=
∑

〈d1,...,dn〉∈Dn

Pr[A(D)=o] ∗ Pr
[∧n−1

i=1 Di=di

∣∣∣ Dn=d
′
n

]
(70)

where supp(Dn, d′n) is equal to {〈d1, . . . , dn〉 ∈ Dn |Pr[
∧n
i=1Di=di] > 0 ∧ dn = d′n}.

C. Proof with More Realistic Counterexample

The counterexample used by the proof of Proposition 6 showing that Defini-
tion 1 does not imply Definition 6 might appear unrealistic to some readers.
Here we redo the proof with a less extreme counterexample but more complex
calculations.
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Proof. Consider P that is uniform over binary data points but not i.i.d. In
particular, while D3, . . . , Dn are i.i.d. and independent of D1 and D2, D1 =

D2, that is, Pr[D1=0 | D2=0] = 1 and Pr[D1=1 | D2=1] = 1.

PrP,A[O=o | D1=d1] (71)

=
∑
〈d2,...,dn〉∈Dn−1

PrP [∧ni=2Di=di | D1=d1] ∗ Pr[A(d1, d2, d3, d4, . . . , dn)=o] (72)

=
∑
〈d2,...,dn〉∈Dn−1

PrP [∧ni=3Di=di | D1=d1, D2=d2] ∗ PrP [D2=d2 | D1=d1] ∗ Pr[A(d1, d2, d3, d4, . . . , dn)=o] (73)

=
∑
〈d3,...,dn〉∈Dn−1

PrP [∧ni=3Di=di | D1=d1, D2=d1] ∗ Pr[A(d1, d1, d3, d4, . . . , dn)=o] (74)

=
∑
〈d3,...,dn〉∈Dn−1

PrP [∧ni=3Di=di] ∗ Pr[A(d1, d1, d3, d4, . . . , dn)=o] (75)

=
∑
〈d3,...,dn〉∈Dn−1

1/2n−2 ∗ Pr[A(d1, d1, d3, d4, . . . , dn)=o] (76)

= 1/2n−2 ∗
∑
〈d3,...,dn〉∈Dn−1

Pr[A(d1, d1, d3, d4, . . . , dn)=o] (77)

where (75) follows fromD3, . . . , Dn being independent ofD1 andD2 and (76)
follows from P being uniform. Similarly,

PrP,A[O=o | D1=d
′
1] =

∑
〈d3,...,dn〉∈Dn−1

Pr [∧ni=3Di=di] ∗ Pr[A(d′1, d′1, d3, d4, . . . , dn)=o] (78)

= 1/2n−2 ∗
∑
〈d3,...,dn〉∈Dn−1

Pr[A(d′1, d′1, d3, d4, . . . , dn)=o] (79)

If A has ε-differential privacy (Definition 1) from using the Laplace Mecha-
nism with ε noise for the sum of inputs (count of non-zero inputs) [10], d1 = 0,
d′1 = 1, and o = 0, then

Pr[A(d1, d1, d3, d4, . . . , dn)=o] = e2ε ∗ Pr[A(d′1, d′1, d3, d4, . . . , dn)=o]
(80)

for all d1, . . . , dn and d′1.

PrP,A[O=o | D1=d1] = 1/2n−2 ∗
∑
〈d3,...,dn〉∈Dn−1

Pr[A(d1, d1, d3, d4, . . . , dn)=o] (81)

= 1/2n−2 ∗
∑
〈d3,...,dn〉∈Dn−1

e2ε ∗ Pr[A(d′1, d′1, d3, d4, . . . , dn)=o] (82)

= e2ε ∗ 1/2n−2 ∗
∑
〈d3,...,dn〉∈Dn−1

Pr[A(d′1, d′1, d3, d4, . . . , dn)=o] (83)

= e2ε ∗ PrP,A[O=o | D1=d
′
1] (84)

Since e2ε > eε, the needed bound does not hold:

PrP,A[O=o | D1=d1] = e2ε ∗ PrP,A[O=o | D1=d
′
1] (85)

> eε ∗ PrP,A[O=o | D1=d
′
1] (86)
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D. Details of Causation

To make the above intuitions about causation formal, we use a slight modifica-
tion of Pearl’s causal models.1 Pearl uses structural equation models (SEMs). 1 The models we use are suggested by Pearl

for handling “inherent” randomness [11,
p. 220] and differs from the model he typ-
ically uses (his Definition 7.1.6) by allow-
ing randomization in the structural equations
FV . We find this randomization helpful for
modeling the randomization with the algo-
rithm A.

Let a SEM M = 〈Ven,Vex, E〉 includes a set of variables partitioned into en-
dogenous (or dependent) variables Ven and background (or exogenous, or in-
dependent) variables Vex. M also includes a set E of structural equations. Each
endogenous variable X has a structural equation X := Fx(~Y ) where ~Y is a
list of other variables other than X and FX is a possibly randomized function.
We call the variables ~Y the parents of X and denote them by pa(X). We call
a variable Z an ancestor of X if its in the transitive closure of the parents
relation with X .

As an example of an SEM, consider the Mdp that models the setting of
differential privacy:

• the background variables Vdp
ex are R1, . . . , Rn;

• the endogenous variables Vdp
en are D1, . . . , Dn, D, and O;

• the structural equations Edp are Di := Ri for all i, D := 〈D1, . . . , Dn〉,
and O := A(D).

We limit ourselves to non-recursive SEMs, those in which the variables
may be ordered such that all the background variables come before all the en-
dogenous variables and no variable has a parent that comes before it in the
ordering. We may view such SEMs as similar to a program where the back-
ground variables are inputs to the program and the ordering determines the
order of assignment statements in the program. Mdp is non-recursive, which
we will show by writing out the program progMdp that it suggests:

def progMdp(R1, . . . , Rn) : (87)

D1 := R1 (88)

D2 := R2 (89)

... (90)

Dn := Rn (91)

D := 〈D1, D2, . . . , Dn〉 (92)

O := A(D) (93)

More formally, let JMK(~x).~Y be the joint distribution over values for the
variables ~Y that results from the background variables ~X taking on the values
~x (where these vectors use the same ordering). That is, JMK(~x).~Y (~y) repre-
sents the probability of ~Y = ~y given that the background variables had values
~X = ~x. Since the SEM is non-recursive this can be calculated in a bottom up
fashion. For example,
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JMdpK(r1, . . . , rn).Ri(ri) = 1 (94)

JMdpK(r1, . . . , rn).Di(ri) = PrFDi
[FDi(Ri)=ri] = PrFDi

[Ri=ri] = 1 (95)

JMdpK(r1, . . . , rn).D(〈r1, . . . , rn〉) = PrFD
[FD(D1, . . . , Dn)=〈r1, . . . , rn〉] (96)

= PrFD
[FD(FD1(R1), . . . , FDn(Rn))=〈r1, . . . , rn〉] (97)

= PrFD
[FD(R1, . . . , Rn)=〈r1, . . . , rn〉] (98)

= PrFD
[〈R1, . . . , Rn〉=〈r1, . . . , rn〉] = 1 (99)

JMdpK(r1, . . . , rn).O(o) = PrFO
[FO(D)=o] = PrA[A(〈r1, . . . , rn〉)=o] (100)

Let a probabilistic SEM 〈M,P〉 also have a probability distribution P over
the background variables. We can raise the calculations above to work over
P instead of a concrete assignment of values ~x. Intuitively, the only needed
change is that, for background variables ~X ,

Pr〈M,P〉[~Y=~y] =
∑
~x∈ ~X

PrP [ ~X=~x] ∗ JMK(~x).~Y (~y) (101)

where ~X are all the background variables.2 2 This is Pearl’s equation (7.2) raised to work
on probabilistic structural equations FV [11,
p. 205].

Let M be an SEM, Y be an endogenous variable of M , and y be a value
that Y can take on. Pearl defines the sub-model M [Z:=z] to be the SEM that
results from replacing the equation Z := FZ(~Z) in E of M with the equation
Z := z. The sub-model M [Z:=z] shows the effect of setting Z to z. Let
Pr〈M,P〉[Y=y | do(Z:=z)] be Pr〈M [Z:=z],P〉[Y=y]. Note that is this well
defined even when Pr〈M,P〉[Z=z] = 0 as long as z is within in the range of
values Z that Z can take on.

The following lemma will not only be useful, but will illustrate the above
general points on the model Mdp that concerns us.

Lemma 2. For all P , all o, and all d1, . . . , dn,

Pr〈Mdp,P〉[O=o | do(D1:=d1, . . . , Dn:=dn)] = PrA[A(d1, . . . , dn)=o]
(102)

Proof. Let Fdi() represent the constant function with no arguments that al-
ways returns di. The structural equation forDi isFdi inMdp[D1:=d1] · · · [Dn:=dn].
As before, we compute bottom up, but this time on the modified SEM:

JMdp[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).Ri(ri) = 1 (103)

JMdp[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).Di(di) = PrFdi
[Fdi()=di] = 1 (104)

JMdp[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).D(〈d1, . . . , dn〉) = PrFD
[FD(D1, . . . , Dn)=〈d1, . . . , dn〉] (105)

= PrFD
[FD(FD1

(), . . . , FDn
())=〈d1, . . . , dn〉] (106)

= PrFD
[FD(d1, . . . , dn)=〈d1, . . . , dn〉] (107)

= PrFD
[〈d1, . . . , dn〉=〈d1, . . . , dn〉] = 1 (108)

JMdp[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).O(o) = PrFO
[FO(D)=o] = PrA[A(〈d1, . . . , dn〉)=o] (109)
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Thus,

Pr〈Mdp,P〉[O=o | do(D1:=d1, . . . , Dn:=dn)] = Pr〈Mdp[D1:=d1]···[Dn:=dn],P〉[O=o] (110)

=
∑
~r∈Rn

PrP [~R=~r] ∗ JMdp[D1:=d1] · · · [Dn:=dn]K(~r).O(o) (111)

=
∑
~r∈Rn

PrP [~R=~r] ∗ PrA[A(〈d1, . . . , dn〉)=o] (112)

= PrA[A(〈d1, . . . , dn〉)=o] ∗
∑
~r∈Rn PrP [~R=~r] (113)

= PrA[A(〈d1, . . . , dn〉)=o] ∗ 1 (114)

= PrA[A(〈d1, . . . , dn〉)=o] (115)

Lemma 3. For all P , all o, all r1, . . . , rn, and all d1, . . . , dn,

Pr〈Mdp,P〉[O=o | do(Dj=dj)] (116)

=
∑
〈r1,...,rj−1,rj+1,...,rn〉∈Rn−1

PrP
[
∧i∈{1,...,j−1,j+1,...,n}Ri=ri

]
∗ PrA[A(r1, . . . , rj−1, dj , rj+1, . . . , rn)=o] (117)

=
∑
〈d1,...,dj−1,dj+1,...,dn〉∈Dn−1

Pr〈Mdp,P〉
[
∧i∈{1,...,j−1,j+1,...,n}Di=di

]
∗ PrA[A(d1, . . . , dn)=o] (118)

Proof. With out loss of generality, assume j is 1. Let Fd1() represent the con-
stant function with no arguments that always returns d1 = dj . The structural
equation for D1 is Fd1 in Mdp[D1:=d1]. As before, we compute bottom up,
but this time on the modified SEM:

JMdp[D1:=d1]K(r1, . . . , rn).Ri(ri) = 1 (119)

(120)

holds before. The behavior of Di varies based on whether i = 1:

JMdp[D1:=d1]K(r1, . . . , rn).Di(ri) = PrFDi
[FDi(Ri)=ri] = PrFDi

[Ri=ri] = 1 for all i 6= 1 (121)

JMdp[D1:=d1]K(r1, . . . , rn).D1(d1) = PrFd1
[Fd1()=d1] = 1 (122)

Thus,

JMdp[D1:=d1]K(r1, . . . , rn).D(〈d1, r2, . . . , rn〉) = PrFD
[FD(D1, D2 . . . , Dn)=〈d1, r2, . . . , rn〉] (123)

= PrFD
[FD(Fd1(), FD2

(R2), . . . , FDn
(Rn))=〈d1, r2, . . . , rn〉]

(124)

= PrFD
[FD(d1, r2, . . . , rn)=〈d1, r2, . . . , rn〉] (125)

= PrFD
[〈d1, r2, . . . , dn〉=〈d1, r2, . . . , rn〉] = 1 (126)

JMdp[D1:=d1]K(r1, . . . , rn).O(o) = PrFO
[FO(D)=o] = PrA[A(〈d1, r2, . . . , rn〉)=o] (127)

Thus,
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Pr〈Mdp,P〉[O=o | do(D1:=d1)] (128)

= Pr〈Mdp[D1:=d1],P〉[O=o] (129)

=
∑

r1,...,rn∈Rn

PrP [R1=r1, . . . , Rn=rn] ∗ JMdp[D1:=d1]K(r1, . . . , rn).O(o) (130)

=
∑

r1,...,rn∈Rn

PrP [R1=r1, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o] (131)

=
∑

r1,...,rn∈Rn

PrP [R1=r1 | R2=r2, . . . , Rn=rn] ∗ PrP [R2=r2, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o] (132)

=
∑

r2,...,rn∈Rn

∑
r1∈R

PrP [R1=r1 | R2=r2, . . . , Rn=rn] ∗ PrP [R2=r2, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o]

(133)

=
∑

r2,...,rn∈Rn

PrP [R2=r2, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o] ∗
∑
r1∈R PrP [R1=r1 | R2=r2, . . . , Rn=rn]

(134)

=
∑

r2,...,rn∈Rn

PrP [R2=r2, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o] ∗ 1 (135)

=
∑

r2,...,rn∈Rn

PrP [R2=r2, . . . , Rn=rn] ∗ PrA[A(〈d1, r2, . . . , rn〉)=o] (136)

=
∑

d2,...,dn∈Dn

PrP [D2=d2, . . . , Dn=dn] ∗ PrA[A(〈d1, d2, . . . , dn〉)=o] (137)

where the last line follows since Di = Ri for i 6= 1.

References

[1] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM, 2011, pp. 193–204.

[2] ——, “A rigorous and customizable framework for privacy,” in Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, ser. PODS ’12. ACM, 2012, pp. 77–88.

[3] X. He, A. Machanavajjhala, and B. Ding, “Blowfish privacy: Tuning privacy-utility trade-offs using policies,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2014). ACM,
2014.

[4] D. Kifer and A. Machanavajjhala, “Pufferfish: A framework for mathematical privacy definitions,” ACM Trans.
Database Syst., vol. 39, no. 1, pp. 3:1–3:36, 2014.

[5] C. Liu, S. Chakraborty, and P. Mittal, “Dependence makes you vulnerable: Differential privacy under dependent
tuples,” in Network and Distributed System Security Symposium (NDSS). The Internet Society, 2016.

[6] R. Bassily, A. Groce, J. Katz, and A. Smith, “Coupled-worlds privacy: Exploiting adversarial uncertainty in statis-
tical data privacy,” in Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
ser. FOCS ’13. IEEE Computer Society, 2013, pp. 439–448.

[7] S. P. Kasivisiwanathan and A. Smith, “On the ‘semantics’ of differential privacy: A bayesian formulation,” Journal
of Privacy and Confidentiality, vol. 6, no. 1, pp. 1–16, 2014.



DIFFERENTIAL PRIVACY AS A CAUSAL PROPERTY 28

[8] F. McSherry, “Lunchtime for data privacy,” Blog: https://github.com/frankmcsherry/blog/blob/master/posts/
2016-08-16.md, 2016.

[9] ——, “Differential privacy and correlated data,” Blog: https://github.com/frankmcsherry/blog/blob/master/posts/
2016-08-29.md, 2016.

[10] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in
Theory of Cryptography Conference. Springer, 2006, pp. 265–284.

[11] J. Pearl, Causality, 2nd ed. Cambridge University Press, 2009.

[12] C. Dwork, “Differential privacy,” in Automata, Languages and Programming, 33rd International Colloquium,
ICALP 2006, Venice, Italy, July 10–14, 2006, Proceedings, Part II, ser. Lecture Notes in Computer Science,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., vol. 4052. Springer, 2006, pp. 1–12.

[13] G. Smith, “Recent developments in quantitative information flow (invited tutorial),” in Proceedings of the 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), ser. LICS ’15. IEEE Computer Society,
2015, pp. 23–31.

[14] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, “Privacy loss in Apple’s implementation of differential
privacy on MacOS 10.12,” CoRR, vol. 1709.02753, 2017.

[15] R. A. Fisher, The Design of Experiments. Oliver & Boyd, 1935.

[16] M. C. Tschantz, A. Datta, A. Datta, and J. M. Wing, “A methodology for information flow experiments,” in Com-
puter Security Foundations Symposium. IEEE, 2015.

[17] A. Datta, M. C. Tschantz, and A. Datta, “Automated experiments on ad privacy settings: A tale of opacity, choice,
and discrimination,” in Proceedings on Privacy Enhancing Technologies (PoPETs). De Gruyter Open, 2015.

[18] F. McSherry, “Privacy integrated queries,” in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data (SIGMOD). Association for Computing Machinery, Inc., 2009.

[19] S. L. Warner, “Randomized response: A survey technique for eliminating evasive answer bias,”
Journal of the American Statistical Association, vol. 60, no. 309, pp. 63–69, 1965. [Online]. Available:
http://www.jstor.org/stable/2283137

[20] T. Dalenius, “Towards a methodology for statistical disclosure control,” Statistik Tidskrift, vol. 15, pp. 429–444,
1977.

[21] C. Dwork and M. Naor, “On the difficulties of disclosure prevention in statistical databases or the case for differ-
ential privacy,” Journal of Privacy and Confidentiality, vol. 2, no. 1, pp. 93–107, 2008.

[22] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves: Privacy via distributed
noise generation,” in Proceedings of the 24th Annual International Conference on The Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT’06. Springer-Verlag, 2006, pp. 486–503.

[23] S. P. Kasiviswanathan and A. D. Smith, “A note on differential privacy: Defining resistance to arbitrary side infor-
mation,” CoRR, vol. 0803.3946, 2008.

[24] G. Cormode, “Personal privacy vs population privacy: Learning to attack anonymization,” in Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’11. ACM,
2011, pp. 1253–1261.

[25] J. Gehrke, E. Lui, and R. Pass, “Towards privacy for social networks: A zero-knowledge based definition of pri-
vacy,” in Proceedings of the 8th Conference on Theory of Cryptography, ser. TCC’11. Springer-Verlag, 2011, pp.
432–449.

https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-29.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-29.md
http://www.jstor.org/stable/2283137


DIFFERENTIAL PRIVACY AS A CAUSAL PROPERTY 29

Colophon

The authors typeset this document using LATEX with the tufte-handout
document class. We configured the class with the nobib, nofonts, and
justified options. We also altered the appearance of section headers.

The varying line widths in the document are a purposeful attempt at bal-
ancing two competing concerns in typesetting. On the one hand, people find
reading long lines of text difficult, which argues for short line lengths. On the
other hand, series of equations are easier to follow when the individual equa-
tions are not broken up across lines, which argues for line lengths long enough
to hold the longest equation. To balance these two concerns, we use a short
line length for text, but exceed that length as needed for wide equations.

This compromise sacrifices the consistency of line lengths. We welcome
comments on whether this sacrifice is too high a price to pay for balancing the
two aforementioned concerns.
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