Distributed Segment Tree: Support of Range Query and

Cover Query

Changxi Zheng*, Guobin Shen',

over DHT

Shipeng Li*, Scott Shenker?

! Microsoft Research Asia, Beijing, 100080, P.R.China
2 International Computer Science Institude, University of California, Berkeley

ABSTRACT

Range query, which is defined as to find all the keys in a cer-
tain range over the underlying P2P network, has received af lo
research attentions recently. Howevesper query, which is to
find all the ranges currently in the system that cover a given k

is rarely touched. In this paper, we first identify that cogeery

is a highly desired functionality by some popular P2P ajgpions,
and then propose distributed segment tree (DST), a layek¢d D
structure that incorporates the conceptsejment tree. Due to

the intrinsic capability of segment tree in maintaining stercture

of ranges, DST is shown to be very efficient for supportinghbot
range query and cover query in a uniform way. It also possesse
excellent parallelizability in query operations and cahieeeO(1)
complexity for moderate query ranges. To balance the loazhgm
DHT nodes, we design a downward load stripping mechanisin tha
controls tradeoffs between load and performance. We imghéea
DST on publicly available OpenDHT service and performeamext
sive real experiments. All the results and comparisons dsirate

the effectiveness of DST for several important metrics.

1. INTRODUCTION

Distributed Hash Table (DHT) has drawn immense atten-
tions in P2P research field [1] [2] [3] [4]. This is mainly
due to its inherent characteristics such as scalabilitf; se
healing and self-organizing capabilities, which are alsio-c
vincingly demonstrated by the recent deployments of P2P
applications where DHT is employed as an underlying in-
frastructure [5] [6].

As a primary design goal, most DHT-based P2P systems
have achieved efficient key lookup, typically @{logN)
complexity. However, the inheremiact matching in DHT
lookup circumscribes its functionality from a panacea. For
instanceyange query, which is defined as to find all the keys
in a certain range over the underlying P2P network, is diffi-
cult to achieve via DHT lookup directly, because the crypto-
graphic hash function (such as SHA hash) strips the straictur
properties on keys. On the other hand, range query is highly

desired in many distributed applications such as P2P data-

base, distributed computing, and location-aware comgutin
as so on [7][8]. Realizing the challenge of range query, the

¢ InP2P file swarming applications such as BitTorrent [9]
and Avalanche [10], afile is divided into a large number
of slices. Different slices are exchanged among peers
to accelerate the downloading process. Clearly, given
a slice or a range of slices to download, a peer needs
to lookup some other peers who has that slice or range
of slices. Note that a slice is typically represented
by a range between a starting position and an ending
position.

In P2P streaming applications such as CoolStream-
ing [11] and oStream [12], peers typically cache the
recently played portion of the bitstream in a sliding-
window manner. New comers or the peers who per-
formed random seeks to new positions need to firstly
lookup some (or all) other peers that can potentially
serve them, i.e., whose sliding caching window covers
the desired playing position.

Cover query is actually théual problem of range query:

the keys inserted in range query correspond to the keys that

may be queried in cover query. And in turn, the ranges
inserted in cover query correspond to the ranges that may be
queried in range query. Recognizing the duality, we hope

to design a single structure that can support both kinds of

guery in a uniform way. Moreover, we want to leverage the
inherent advantages of DHT to consolidate the efficiency and
robustness, as many other works did.

The main contribution of this paper is the design of a
distributed structure over DHT to gracefully support both
range query and cover query in a uniform way. The basic
idea is to distribute aegment tree over DHT (hence the
name distributed segment tree, DST) so thatsiectural
information can be retained and exploited for efficient query.
More importantly, the underlying DHT lookup operations
can be invoked in parallel. Therefore, both range query and
cover query can be achieved at closecl) complexity
(in underlying DHT lookup operations) for moderate query
ranges.

2. RELATED WORK

research communities have proposed a variety of solutions Due to space limitation, we only discuss some most related
that address the problem from different angles, as will be works that support range query over DHT and refer readers

discussed in detail in Section 2.
However, to the best of our knowledge, another highly
desired functionalitycover query, which is to find all the

to the references therein for other range query soluticats th

rely on specially designed underlying structure.
Mercury [8] adopts a circular overlay (the design philos-

ranges currently in the system that cover a given key, is ophy is similar to that of DHT except not using hash) and
rarely touched. Cover query arises from a number of existing stores data continuously in order to support multi-attebu

popular P2P applications:

range query. Since it uses specially designed overlay, load



motivates the DST, its properties that enables efficiergean
representations which is crucial to both range query andrcov
query. Then we present how to distribute such a structure
over DHT.

The basic data structure of DSsEgment tree [15], comes
from the Computational Geometry and is essentially a full
binary tree with the properties listed below. Note thatpfro
practical interests, we only consider integers in segrmeat t

Level 1

Level 2

Level 3

Level 4

Segment [2, 6

Figure 1: Illustration of a segment tree with a range
[0,7] and the optimal representation of range [2,6]
via three subranges.

balancing has to be explicitly considered. Skip graphs [13]
is a distributed data structure that implements range Bearc
but it requires non-trivial extensions to DHT to maintaie th
load balance. There are significant differences between DST
and Mercury and Skip graphs because DST is built on top
of generic DHT and adopts highly regular data structure. In
this sense, Prefix Hash Tree (PHT) [7] is most similar to our
work, because both not only use DHT for traditional key-
based lookup, but also impose a new data structure (specifi-
cally, trie-based structure for PHT) onto a generic DHT for
richer functionalities while retaining other inherent béts

1. The segment tree representing the range of length
(henceforth the range is called segment tree range) has
a heightH = log L + 1.

2. Each node on a segment tree representg@@interval
[s1.5,tk], (1 € [0,1og L] andk € [0,2" — 1]). Its length
IStk =tk — sk + 1. Clearly, the root node interval
equals to the segment tree range and leaf node interval
is one.

3. Each non-leafnode has two children. The left child and
the right child represent the intervdls, ., | 242"k |)
and [| etk |4 g ,], respectively. The union of
the two children covers the same interval as the parent
does.

4. For neighboring nodes on the same layer, we have
sig = tix—1 + 1 foranyk € [1,2' — 1]. This prop-
erty ensures the continuity of the segment tree.

of DHT such as scalability and robustness etc. Therefore,
we will mainly perform comparisons against PHT in our
experiments.

However, in the trie-based structure of PHT, keys are stored
only attheleaf Nnodes that share the same prefix and the client
has no knowledge about the structure of the whole PHT. As
a result, a client has to spend additional Dgkk to reach
the leaf nodes with the longest matched prefix. Fadp-a
bit key, the complexity i$(logD) using binary search and
the search is intrinsicallyequential. On the contrary, DST THEOREM 1. Any segment with a range R, (R < L),
maintains a highly regular architecture and allow interme- can be represented by a union of some node intervals on the
diate nodes to store keys as well. The regularity allows segment tree. There exist multiple possible unions for any
each client to easily calculate a union of minimum subranges range with R > 1.
that matches the query range which is key to simultaneously
support both range query and cover query with a uniform Since the segmenttreeis a full binary tree, itis trivialtoye
structure. The client can find the responsible node of eachthe first half of the theorem. For instance, the segnent
subrange ap(1) complexity (in underlying DHTget op- can be represented by the union of interyals], [4, 5] and
eration), and the queries of subranges can be executed if6, 6], as shown in Figure 1. The second half of the theorem
parallel. is also evident from the third property of segment tree.

As mentioned before, we are not aware any other work Although there are multiple possibilities to represent a
that supports cover query over DHT. In our previous work larger range with unions of smaller subranges, the follgwin
[14], we proposed a scheme for efficient service discovery in theorem ensures the existence of the optimal represemtatio

asynchronous P2P streaming applications. It is essgndiall THEOREM 2. Any segment with a range R, (R < L),

cover query problem and is solved using a specially designed b ded b ion of than 2log I nod
architecture that combines tree and mesh. Although that (71 D¢ expanded by a unioft of o more thatl 2708 & Hode

work debuted the application of segment tree data structuremterva]s'

for efficient range representation, the design of DST, i.e., Proof: Due to the space limitation, we only give a short
distributing segment tree over DHT, enjoys all the desired intuitive proof. For a given segmest suppose the longest
features inherited from underlying DHT such as robustness, part onS represented by a single nodefisthen the left part
efficiency, scalability, etc. to P should always be represented by the right children on
segment tree, and the right part should be represented by the
left children. There are at mdsk L consecutive left children

3. DISTRIBUTED SEGMENT TREE on the tree and at mogig L consecutive right children. So a

In this section, we first describe the data structure that segment can be represented at masg L nhodes on the tree.

5. All the nodes from the same layer span the whole seg-
ment tree range. That i$)f=2""" [s,4,t14] = L for
anyl € [0,logL]. This property ensures the integrity of
the segment tree.

An exemplar segment tree representing the rémgg(i.e.,
L = 8)is depictedin Figure 1. We can easily verify all above
properties.



// Parameters: be inserted to a leaf node and all its ancestors simultaheous

// s,t. bounds of input segment and in parallel. According to Theorem 2, if up 2dog L
// lower,upper. bounds of current node interval parallel threads can be executed concurrently for the-inser
// ret. resulting union of node intervals tion, thenO(1) complexity can be achieved by exploring the
parallelism.
SplitSegment(s, t, lower, upper, ret) As we know, the node interval on segment tree increase ex-
if s<lower AND upper<t then ponentially against levels. In the extreme case, the rod¢no
ret.add(interval (lower, upper)); is responsible for the whole segment tree range. So, with
return; above key insertion scheme, the load on nodes across levels
mid—(lower + upper) / 2; are quite unbalanced. On the other hand, the keys maintained
if s<mid then by a parent node is redundant and is purely forimproving the
SplitSegment(s, t, lower, mid, ret); query efficiency. Therefore, to balance the load, we impose
if t>mid then a constraint (via a system parameter, threshptd limit the
SplitSegment(s, t, mid+l, upper, ret); number of keys that a non-leaf node needs to maintain and
design alownward load stripping mechanism to achieve this.
Table 1: Range splitting algorithm. The downward load stripping mechanism works as fol-

lows: each node maintains two countekgt counter and

right counter. The left counter is increased by one if a key
put to this node can also be covered by its left child. Oth-
erwise, the right counter is increased by one. If a counter
reaches the threshold, it triggers@uration event. If the
insertion of a key triggers either left saturation or rigat-s
uration, the key will be discarded. It is safe doing this way
because, as aforementioned, the key maintained on the par-
ent is redundant and is for improved query efficiency. The
negative effect is that a query over the parent’s intervéil wi
have to be splitinto two queries over the two children’siinte
vals, which, fortunately, can be executed in parallel. @ea

by reducing redundancy embedded in the segment tree, the
downward load stripping mechanism achieves a better trade-
off between load and performance, but does not affect the

The code snippet shown in Table 1 shows thee split-
ting algorithm that constructs the union of minimum node
intervals that expand the ranget].

In DST, the segment tree structure is distributed onto DHT
in a way similar to that adopted in PHT: the node interval
[s,t] is assigned to the DHT node (i.e., a peer) associated
with the keyHash([s, t]) using the underlying DHT logic. In
other words, information about any node of the segment tree
can be efficiently located via a DHT lookup operation. This
assignmentimplicitly reestablishes a connection between
structural information (node intervals) of the segmeng tre
and the underlying DHT, where the structural properties are
stripped from the keys due to hash operations. Consequently
both range query and cover query can be achieved efficiently
over DST as will be elaborated in subsequent sections. correctness of the query. . L .

Note that the segment tree structure and the range splitting. Removing a key from the DST is quite similar with the

algorithm described above can be extended to the multi- NS€rtion process. Thatis, the key is removed from the leaf
dimensional cases in a straightforward way. We e node and all its ancestors and can be executed in parallel.

branch segment tree to maintain thieD structural informa- The only difference is that it may draw a saturated node

tion, instead of using space-filling curve to convert ¥ back to unsaturation. In the case, the node may recruit an
space into 1-D space as in many other works. Due to Spaceadd|t|_onal_key from its children. If no additional key is
limit. we omit the details here. recrwteql, it then marl§s itself as unsaturate(_JI..The reveit
' mechanism helps to improve the query efficiency but brings

in some overhead. As a tradeoff, such recruitment can be
4. RANGE QUERY performed lazily.

Given a rangés, t], range query returns all the keys that ~ While the robustness of DST mainly depends on that of
belong to that range and are currently stored on the P2Pthe underlying DHT, the redundancy of keys on multiple
overlay. Inthis section, we first describe the key mainteean intermediate nodes of DST can further enhance the system

mechanism of DST that facilitates efficient range query, and robustness. Because the keys maintained on a node can be

then discuss the range query procedure over DST. recovered from the keys on its children, the query on a node
can be replaced by two parallel queries on its children if tha
4.1 Insert and Remove node failed and not yet recovered.

The basic operation of insertion is to insert the given key
to a specific leaf node (as determined by DHEY all the 4.2 Query
ancestors of that leaf node, because the node interval of any Gjven a rangds, /] under query, the client splits the the
ancestor covers that specific key. In otherwords, akey shoul ange into a union of minimum node intervals of segment
be inserted to all the nodes whose interval covers it. tree, using the range splitting algorithm. It then uses DHT
Since the segment tree is a full binary tree, every peer on .. i retrieve the keys maintained on the corresponding DST
the network can reconstruct the segment tve@ly aslong  poges, The final query resultis the union of the keys returned
as it knows the segment tree rangés a result, a key can  again, all the DHTget operations can be called in parallel
1t is feasible for most applications by taking the whole to shorten the latency. According to Theorem 2, itis usually
range of key space (could be very large) as the segment tree affordable since only at mostlog L threads is required for
range. parallelget invocations. So as long as the span of queried




range is moderate)(1) complexity for range query can be 100%
achieved, as demonstrated in Section 6.

Due to the downward load stripping mechanism, it may
incur additional cost if some of the intermediate nodes are
saturated, since the client has to further retrieve the keps
the children of the saturated nodes. In the worst case, it may
need up tdogL steps. Since the node at higher level of DST
is more likely to get saturated, as aresult, the longer tieeyqu
range is, the more expensive the query will be. In practical
cases, the query range is much shorter than the whole key
space (i.e., the segmenttree range). Therefore, the awialiti s W rrvvrerrrrrererr - :
cost in practical range query is low, as also demonstrated in # of inserted keys x10°
Section 6.1.

—&— Nodes on 8" level
80%r —— Nodes on 9" level
0% —+— Nodes on 10" level
—v— Ndoes on 11" level

% of full nodes on each level
2

Figure 2: Percentage of nodes get saturated on dif-

5. COVER QUERY ferent levels of DST.

In this section, we first describe the key maintenance mech-cover the given point. Therefore, invoking DH&t on these
anism of DST that facilitates cover query, and then discuss nodes (in parallel to shorten the latency) could retriewe th

the cover query over DST. expected segments. From the analysis in Section 3, if the
. maximum segment span is log L + 1 DHT get threads is
5.1 Segment Insertion/Remove needed for the cover query, which cost only a little system

Contrary to the range query, here segments need to be infe€source in most cases.
serted into or removed from the system. Simply hashing
of segments and putting to DHT would lose the structural g, EVALUATION
information about the segments, and hence embarrass the
cover query. In DST, the segment is firstly decomposed into
the union of minimum node intervals using the range split-
ting algorithm. Then the segment is inserted to or removed
from the corresponding nodes whose interval belongs to the
union. According to Theorem 2, at masbg L nodes would
get involved for any given segment. Note that, unlike the
range query case where the key needs to be propagated t
and stored at all the ancestors of the corresponding le&,nod
it is not needed at all for cover query. Instead, proper prop-
agation to children nodes may be needed for load-balancing
considerations, as will be stated below. Finally, as in the
range query case, parallel insertions/removals can béesgker

We implemented DST, in Java, upon the publicly available
OpenDHT service [16] on the PlanetLab. We report some
experimental results on range query and cover query in this
section, together with comparisons against that of PHT when
appropriate. Considering the limited space, we only report
some important metrics. And due to the vagaries of load on
lanetLab upon which OpenDHT is built, the performance
f a single experiment may be elusive. So we repeated each
experiment more than 300 times and calculated the average
results. And for fair comparison against PHT, we run the
same queries using DST and PHT simultaneously from two
co-located computers with the same configurations. More-
over, since both PHT and DST can utilize parallel DHT

toAs\hgirrtwevr\]/ethfs?iﬁre]cgbwnward load strioping mechanism to operations to shorten the latency, we limit the number of
9 ppIng concurrent DHT operations to 50 (i.e. at most 50 concur-

balance the load between the nodes. A system parameter . ;
thresholdy, is set to constrain the maximum number of seg- rent threads) for both of DST and DHT implementations to

ments that a node can take. Different from the range queryprevent the system resource from exhausting.
case, now a node maintains a single counter. Whenever ag 1 Range Query Performance

segment is stored onto it, the counter will increase by one. T h f f dt
Once the counter reaches the threshold, it triggers a saturaparg rirt]ewaifrl:rgH'l? 28?;;{;;32:?; Zerwaenrg?e?julfgsagre c;)rceczm-
tion event. The saturation event will cause the segment to beloaded onto both DST and PHT. They are uniformly distrib-

relayed to its children. ted 20 |
The process of removing a segment from DST is basically uted over 2™ key space.

the same as that of insertion. However, due to the downward g 1 1 gructural properties
load stripping mechanism, it may need to delete the segment " .
in a recursive way until it succeeds. This can be performed Recall that we use a threshojdo constrain the number

rather lazily since it has no impact on the search result. of keys maintained on each node. In the first experiment, we
sety = 30 and measure the number of nodes that become
5.2 Query saturated as the keys are inserted.

Figure 2 shows a plot of the percentage of saturated nodes
on each level of segmenttree during the key insertion peoces
'All the nodes on thes" level, where the length of node
terval is2'®, become saturated aftesk keys are inserted.
owever, no nodes or!" level are saturated even af®

2DST also supports cover query for any given segment /range keys are inse_rted. That implies that as long as the span of the
as well. We omit it in this paper due to space limit. guery range is moderate, only a few saturated nodes would

Due to the duality, the query process is very similar to the
insertion process in range query case. From root to a leaf
there is a path on which all the nodes cover the given point.
That means the segments maintained on these nodes coul{j}




=
o
S

|| -*- DST Implementation
—e— PHT Implementation

©

=}
T
N
a

N @
S o
T T
N
=]
T

@
S
T
.
@
T

N
S
T
N
1)
T

w
S
T

N}
5]
T

—— DST Implementation
- - - PHT Implementation

Average Query Latency (sec.)

CDF of Percentage of Inserts

=
o
T

; ; ; ; I I I I I I I I I I
30 35 20 128 256 512 1024 2048 4096 8192 16384 32768 65536

Inésert Latzéncy (ésec.) Span of Query Range

o
~
o

o

(a) Average Query Latency
Figure 3: Cumulative distribution function (CDF)
of latency for insertion of 1000 items.

o
=)

L| -+~ DST Implementation
—e— PHT Implementation

=
1)

be encountered while querying.

[
I
T

6.1.2 Insertion performance

Figure 3 shows the cumulative distribution function (CDF)
of latency of key insertion. The initial leaf node lookup
(which has to be sequential) in PHT prolongs the insertion
latency, which makes PHT spend longer time than DST,
which can lookup in parallel.

= B
® ) N
T T T

Average # of DHT Get

»
T

B e g T : o

N
T

SRR

6.1.3 Query performance - L

In this experiment, we generated 500 range queries whose B 35";‘;] sz‘guer“)‘;gfqa;gg ts6e 32768 6550
length is randomly distributed betweehand2'®, and cal- b A ¢ DHT
culate the average query span. We still set 30 and the (b) Average # o get
block size of PHT is set to 60, where the block size of PHT
limits the maximum number of keys that can be maintained Figure 4: Comparison of DST against PHT on query
by a single PHT node. Clearly, a node can maintain at most latency on different spans of query ranges: (a) The
60 keys for both DST and PHT. average query latency. (b) The average number of
Figure 4 shows the comparison results between DST andDHT get.
PHT, using latency and number of DHgEt as metrics, re-

spectively. We can see that, when the query range is Sma"'distributed in a4 key space. The span of these segments

Epﬁre_ arbe aImostﬂ?o satur actjed r(;odes for”quer:(hes ?verl DSIT'are distributed uniformly from 100 to 5000. Figure 5 shows
f I';S'ﬁ_ eﬁ_au;]s_e h edqtjenet n(: est a:jresa (f)n DgTOWI evetsthe average number of nodes maintained onthe DST nodes on
0 » WhICh IS hard 1o get salurated. 0, Tor » &MOSL oach level. Italso demonstrates the effectiveness of tva-do

all the DHT get are pa]le_d in parallel and result in almost ward load stripping mechanism on load balancing: without
constant latency. Thisis indeed the case, as can be seen from} "y, average number of segments on iHelevel of seg-
Figure 4(a). In the figure, the query latency of DST is very ment tree is much higher than that on the other levels. With

close to a constant when the query range is between [128, Lo e i
1024]. On the contrary, PHT needs several sequential step%\%vrn;:';?gigiseﬁgffps'gg’n?;it'(t)rae%'S significantly smoothed

to lookup the leaf key. As a result, PHT spends more time
for the small-span range query. 6.2.2 Latency
As the query span becomes larger, there are more and Fi
. igure 6 shows the CDF of latency (averaged over 1000
mOére-essatgftbecihnggfgnfgg%légtgigi'Zggt:oﬂgggdagq aPIHTsegments) for segment insertions and cover queries. The
queries. ; SP g average latency are 6.169 seconds and 3.232 seconds, re-
to propagate the queries to the children of saturated nodesy o iua we notice that query latency is shorter than in-
This can be seen cIe_arIy from Figure 4(a) for the query range sertion latency. This is because the query process is almost
from 1024 up. The d|yergence between DST and PHT CurVesconstantly querying all th&Z DST nodes along a path from
in Figure 4(a) also implies that more saturated nodes are

: ; . root to a leaf. But the insertion process is elusive. Some
encountered inPHT than in DST which caused PHT to Spendadditional cost may be imported by saturated nodes.
even longer time in large-span range query.

6.2 Cover Query Performance 7. CONCLUSION
In this paper, we proposed distributed segment tree (DST),
6.21 LoadonDST node a layered DHT structure that incorporates the segment tree

In this experiment, we generaték segments randomly  concept, for the purpose of efficient support of range query



A
@
S

) G T T
,\\ -w- Average load without downward stripping
. .| = Average load with downward stripping

\

[

IS

S
T

Py

N

5}
T

s on Each Level
8
;

@
S
T

@
S
T

N
S
T

o
-
-

Average Load of Node

o

12 15

6 9
Level on DST

Figure 5: The average number of segments main-
tained on the nodes on each level of DST.

_________

and Queries
% 5 B
‘

a o N
S & o
T T T

i
S
T

--- Insert 4
— Query

N
S
T

o
S5}
T

o

o

30

CDF of Percentage of Inserts

5 1‘0 1‘5 z‘p 2‘5
Latency of Inserts and Queries (sec.)

Figure 6: A cumulative distribution function (CDF)
of segment insertions and cover queries for 1000
items.

and cover query. We introduced the segment tree concept
and its properties as the basis of DST's excellent rangeyquer
and cover query capabilities. DST essentially toleratesemo

redundancies to achieve efficiency. We designed a down-
ward load stripping mechanism for load balancing purpose.

It possesses excellent parallelizability in query opereti

and can achieve(1) complexity for moderate query ranges.
Since DST is built on top of DHT, it enjoys all the inherent

advantages of DHT such as scalability, robustness etc.

distributed object location and routing for large-scale
peer-to-peer systems,” iProc. of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms(Middleware 2001), Nov. 2001.

[4] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing,” University of California at Berkeley,
Computer Science Department, Tech. Rep.
UCB/CSD-01-1141, 2001.

[5] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and
S. Surana, “Internet indirection infrastructure,” in
Proceedings of the ACM SIGCOMM, Pittsburgh, PA,
Aug. 2002, pp. 73-86.

[6] J. Stribling, I. Councill, J. Li, M. F. Kaashoek, D. R.
Karger, R. Morris, and S. Shenker, “Overcite: A
cooperative digital research library,” Workshop on
Peer-to-Peer System(IPTPS 05), lthaca, New York,
Feb. 2005.

[7] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,

A. LaMarca, J. Hellerstein, and S. Shenker, “A case
study in building layered dht applications,” in
Proceedings of the ACM SIGCOMM, 2005.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan,
“Mercury: Supporting scalable multi-attribute range
queries,” inProceedings of the ACM SIGCOMM,
Portland, USA, Sept. 2004.

[9] B. Cohen, “Incentives build robustness in bittorrent,”
May 2003.

[10] C. Gkantsidis and P. R. Rodriguez, “Network coding
for large scale cotent distribution,” in
IEEE Proceedings of the INFOCOM, Miami, FL,

USA, Mar. 2005.

[11] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,

“Donet/coolstreaming: A data-driven overlay network

for live media streaming,” Miami, FL, USA, Mar.

2005.

[12] Y. Cui, B. Li, and K. Nahrstedt, “ostream:
Asynchronous streaming multicast in application-layer
overlay networks,TEEE Journal on Selected Areas in
Communications, vol. 22(1), Jan. 2004.

[13] J. Aspnes and G. Shah, “Skip graphs,Afoc. of
ACM-SIAM Symposium on Discrete
Algorithms(SODA ), 2003.

We implemented DST on publicly available OpenDHT ser- [14] C. Zheng, G. Shen, and S. Li, “Segment tree based

vice and performed extensive real experiments. All the re-
sults and comparisons demonstrate the effectiveness of DST

for several important metrics.

REFERENCES
[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker, “A scalable content-addressable network,”

iN Proceedings of the ACM SIGCOMM, San Diego,
CA, Aug. 2001, pp. 161-172.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable Peer-To-Peer
lookup service for internet applications,” in
Proceedings of the ACM SIGCOMM, 2001, pp.
149-160.

[3] P. Druschel and A. Rowstron, “Pastry: Scalable,

control plane protocol for peer-to-peer on-demand

streaming service discovery,” ifroc. of Visual

Communication and Image Processing(VCIP), July

2005.

[15] M. de Berg, M. van Kreveld, M. Overmars, and
O. SchwarzkopfComputational Geometry:
Algorithms and Applications. Springer-Verlag,
Berlin, 1997.

[16] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu,
“Opendht: A public dht service and its uses,” in
Proceedings of the ACM SIGCOMM, 2005.



