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Abstract

The last decade has seen a deluge of proposals for supporting multicast in the Internet. These

proposals can be categorized as either infrastructure-based, with the multicast functionality provided

by specialized network nodes, or host-based, with the multicast functionality provided by the members

of the multicast group itself. In this paper, we present the design and evaluation of a hybrid multicast

architecture wherein the infrastructure provides packet forwarding, and the end-hosts implement the

control plane. End-hosts build multicast trees by setting up forwarding state in the infrastructure.

This division of functionality enables our architecture to combine the efficiency of infrastructure-based

solutions and the flexibility and deployability of host-based solutions. We present scalable and efficient

algorithms for distributed tree construction and maintenance, and for reliable packet delivery. We have

implemented the algorithms using i3 as the forwarding infrastructure. We evaluate our techniques using

a combination of event-driven packet-level simulations, and our implementation over the PlanetLab

testbed.
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1 Introduction

The original Internet architecture was designed to provide best-effort unicast point-to-point communica-

tion. This simple abstraction was one of the main reasons behind the success of the Internet as it allowed a

scalable and robust implementation. However, efficiently reaching many users simultaneously with high-

bandwidth streams (as required for popular video and audio streams) requires multicast functionality. The

last decade has seen numerous multicast proposals, both in academia and industry, none of which are in

widespread use today.1 These proposed multicast designs can be roughly classified into infrastructure-

based and host-based solutions.

Infrastructure-based solutions implement multicast functionality in a set of designated network nodes

that are responsible for both constructing the multicast tree and replicating multicast packets at the branch

points in that tree. Examples include IP multicast [11,12] which implements the multicast functionality at

the IP layer (and so the specialized multicast nodes are network routers themselves), and application-level

solutions such as Overcast [22] and Fastforward [2], which use a set of servers as specialized multicast

nodes.

In contrast, host-based multicast designs, such as ESM [10] and NICE [5], require no support from any

designated network nodes. Instead, the multicast functionality is implemented entirely by the collection

of end-hosts participating in the multicast group.

These approaches have different benefits and performance characteristics. The infrastructure-based

approaches can build more efficient and scalable multicast trees as their nodes are typically well-connected

and placed at well-designated locations in the network. However, end-host based solutions are limited

by the upstream bandwidth constraints of the users of P2P systems [27, 39] and the constant churn that

is exhibited by such systems. On the other hand, host-based solutions do not involve any additional

infrastructure support and are hence easy to deploy and modify—one can add new functionality (such as

construct trees adapted to a different metric) easily. Host-based solutions enjoy these benefits not only
1IP multicast is supported by several commercial routers, but inter-domain multicast service is not made available

to users by most ISPs.
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Figure 1: Architectural choices for multicast (left to right): (a) infrastructure implements control plane as well as
data forwarding, (b) end-hosts implement both control plane as well as data forwarding, (c) our architecture, where
infrastructure nodes implement data forwarding, and end-hosts implement the control plane.

when compared to IP multicast but also when compared to infrastructure-based solutions that implement

multicast functionality at the application layer. Since such infrastructures are typically managed by third

party entities (e.g., Akamai, RealNetworks), it is difficult for end-hosts to change or adapt the multicast

protocol to best meet their needs.

We address the question of whether one can design an architecture which would realize the best of

both approaches: the efficiency of infrastructure approach, and the flexibility (the ability to change the

tree construction algorithms as per user needs) of the end-host approach. To this end, we propose a

hybrid multicast architecture wherein the nodes in the infrastructure export simple primitives, mainly

packet forwarding and replication, and the end-hosts use these primitives to construct multicast trees in a

distributed fashion. Figure 1 compares our approach with the infrastructure- and host-based alternatives

with respect to the entities that implement the control plane protocol and data forwarding. In the rest of

the paper, we address the following two issues.

1. Tree construction and maintenance. We propose a fully distributed tree construction algorithm,

based on a best-first search approach, that can be implemented at the end-hosts using only the

primitives that the infrastructure exports. We also present a randomized back-off technique for

efficiently maintaining the forwarding state associated with the multicast tree in the infrastructure.

2. Reliable packet delivery. We propose a technique that exploits the tree structure and performs local

loss recovery efficiently, both in terms of number of messages generated and the recovery time.
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Since the control plane is outside the infrastructure in our architecture, a centralized entity could po-

tentially construct and maintain the tree for the entire group as a service. While a centralized approach has

the advantages of building more optimal trees, enhanced security and access control, it requires the de-

ployment of a resource-rich centralized service provider. In this paper, we look at the distributed approach

only; a description of a centralized routing service can be found in [28].

The remainder of the paper is organized as follows. The next section of the paper introduces the prim-

itives that we consider in the paper, and the following sections address the two aforementioned issues in

order. Section 6 presents simulation results that demonstrate the feasibility of our schemes for medium to

large scale networks. Section 7 gives implementation details and implementation results. After surveying

related work in Section 8, we present a brief critique of some of the design choices that underlie this work

in Section 9. We finally conclude the paper in Section 10.

2 Infrastructure Support

The general design philosophy that we advocate in this paper is that the infrastructure should not provide

a specific instance of a multicast service, but should only provide support for hosts to build multicast trees

tuned to their specific needs—thus, multicast trees based on different metrics can not only co-exist but

also evolve over time.

The first issue that we need to address is to design the primitives that the infrastructure should ex-

port. It is essential that these primitives, while allowing flexibility, do not compromise the security of the

infrastructure. To this end, we leverage Internet Indirection Infrastructure, i3 [40], a rendezvous-based

infrastructure that supports diverse functionality. We use a subset of i3 functionality in this paper: packet

forwarding and replication for building the multicast tree, and anycast for packet loss recovery.

While we implement our solutions on top of i3, in principle, we can also implement them using a

simple label-switching primitive2 like that used in MPLS. The diverse benefits that i3 offers (such as
2The anycast primitive used for loss recovery scheme can be implemented by a simple extension to a label-

switching protocol. The security extensions to i3 directly apply to a label-switching protocol also.
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Figure 2: (a) The receiver R inserts trigger (id,R). (b) The sender sends packet (id, data).

mobility, service composition, etc.) make it an attractive option as the multicast algorithms we propose

here can be used in conjunction with, say, service composition to yield more useful services. While the

i3 paper [40] mentions these advantages, it does not explore scalable multicast in detail; in this paper, we

restrict the focus to multicast and explore the issues that arise in detail. We describe only the necessary

aspects of i3 in the remainder of the section; a fuller exposition can be found in [3, 26, 40].

In this paper, we have assumed that the infrastructure is embedded with minimal functionality. Another

possibility would be to extend the infrastructure to implement part of the control plane by aiding the end-

hosts in measuring various performance metrics or perform error recovery. We discuss the implications

briefly in Section 9.

2.1 Overview

For the purpose of this paper, i3 can be considered as a overlay label-switched network in which the pack-

ets are forwarded over IP paths rather than physical links. In particular, i3 [40] implements a rendezvous

communication abstraction. Sources send packets to a logical identifier (ID) and receivers express interest

in packets by inserting a routing entry (also called a trigger) into the network corresponding to the ID

associated with the packet (Figure 2(a)). Packets are of the form (id , data) and triggers are of the form

(id , addr), where addr is either an ID or an IP address. Given a packet (id , data), i3 finds the trigger

(id , addr) and then forwards data to addr . Packets are merely forwarded, not stored, at the infrastructure
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Figure 3: Basic primitives. (a) Packet replication: Every packet (id, data) is forwarded to each receiver R i that
inserts trigger (id,Ri). (b) Anycast: The packet matches the trigger of receiver R2. idp|ids denotes an ID of size
m, where idp represents the prefix of the k most significant bits, and ids the suffix of the m−k least significant bits.
(c) Trigger chains: Replace the receiver address in the second field of a trigger with another trigger ID.

nodes. Receivers refresh the triggers that they insert as long as they desire to receive packets sent to the

ID that the trigger corresponds to.

Identifiers in i3 are 256 bits long. IDs in packets are matched with those in the routing entries (or trig-

gers) using longest prefix matching (under the constraint that 192-bits exactly match). i3 is implemented

as an overlay network of nodes that store triggers and forward packets. Identifiers are mapped to i3 nodes

using a distributed lookup service such as Chord [41]. However, in practice, caching ensures that in most

cases packets from one i3 node to another traverse just the IP path.

Figure 2(b) illustrates the communication between two nodes, where receiver R wants to receive pack-

ets sent to id. The receiver inserts the trigger (id, R) into the network. When a packet is sent to ID id, the

trigger causes it to be forwarded via IP to R.

Next, we give the basic i3 communication primitives that we use for multicast.

Packet Forwarding and Replication: If multiple receivers register triggers with the same ID id, packets

sent to id would get replicated and a copy sent to each receiver (see Figure 3(a)). As noted in [40],

this basic packet replication cannot be used directly for large multicast groups—all triggers of the group

would have the same ID and hence be stored at the same i3 server, and consequently that server would be

responsible for forwarding each packet to all the members of the multicast group. Each i3 server places a
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limit D on the number of triggers with the same ID it stores. In other words, D represents the maximum

number of receivers in a multicast group that are allowed by the basic i3 packet replication primitive.

Trigger Chains: i3 allows end-hosts to chain multiple triggers by using triggers of the form (id, id′).

Figure 3(c) shows an example of a chain of triggers of length three. Replacing a trigger (id1, R) with a

chain of triggers (id1, id2), (id2, id3), and (id3, R) is transparent to the end-hosts. Note that routing along

a chain in i3 is similar to label switching in the case of MPLS.

Anycast: Anycast ensures that a packet is delivered to at most one receiver in a group. i3 supports anycast

since longest prefix matching is performed only on the last 64 bits of the ID. All hosts in an anycast group

maintain triggers which are identical in the k = 192 most significant bits. These k bits play the role of the

anycast group ID. To send a packet to an anycast group, a sender uses an ID whose k-bit prefix matches the

anycast group ID. The packet is then delivered to the member of the group whose trigger ID best matches

the packet ID according to the longest prefix matching rule (see Figure 3(b)).

In addition to these primitives, we have also implemented the cryptographic security constructs pro-

posed in [3, 26]. These constructs ensure that adversaries cannot use the flexibility of the route setup

mechanisms to launch attacks on the infrastructure or the end-hosts — for instance, one cannot construct

cycles in a topology constructed using these primitives.

3 Scalable Tree Construction and Maintenance

In this section, we show how a simple distributed tree construction algorithm can be adapted for building

and maintaining a multicast tree using the primitives provided by the infrastructure. Our contribution

does not lie in the novelty of the tree join algorithm, but in the techniques we propose to implement the

algorithm using only the infrastructure primitives.

We use a two-step methodology for explaining our multicast tree construction protocol. In the first

step, we present a pure end-host based multicast algorithm. In the second step, we realize the multicast

algorithm using the infrastructure primitives alone. We do this partly for ease of exposition, and partly

because the techniques we use in going from the first to the second step are illustrative of what is possible
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// node nnew joins the multicast tree with sender S
join(S, nnew)

best dist = ∞

ncurr = S

do
// return the closest node to nnew from jset(ncurr)

n = select node(nnew, jset(ncurr))

if (best dist > dist(S, n, nnew))

best dist = dist(S, n, nnew)

njoin = n

if (fset(ncurr) = ∅)

break
ncurr = select node(nnew, fset(ncurr))

while (dist(S, ncurr, nnew) < best dist)

join at(nnew, njoin) // nnew joins at njoin

Figure 4: Joining algorithm.

with such an architecture. The algorithm we use in the first step can be further optimized based on specific

application requirements, possibly leveraging prior research on end-host based approaches.

In our discussion, we consider an algorithm based on the delay metric. In Section 3.2.2, we also

discuss how one can build a multicast tree based on other metrics (such as bandwidth) using the same

infrastructure primitives. For simplicity, we assume a single source tree; Section 3.2.2 extends this model

to multiple sources.

3.1 Basic Tree Building Algorithm

In this section, we present a basic tree building algorithm that abstracts away the interactions between

end-hosts and i3. The algorithm builds a multicast tree of bounded degree D which exhibits low latency

from source to each receiver. Figure 5(a) shows a multicast tree with D = 3 consisting of six receivers

and one source S, and one new receiver, R7, that wants to join the multicast group.

We say that a node in the multicast tree is joinable if its out-degree is less than D. Otherwise, if the

node’s out-degree is D, we say that the node is full. Let S denote the source of the multicast tree, let n
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Figure 5: (a) R7 wants to join an existing multicast tree. Joinable nodes are represented by empty circles; full nodes
are represented by black circles. (b) The resulting tree obtained by running the algorithm in Figure 4.

denote a joinable node already in the tree, and let nnew denote a new node that wants to join the multicast

tree. Assume nnew joins the multicast tree at n. Then, let dist(S, n, nnew) be the latency experienced by

a multicast packet from source S to nnew via n. In particular, dist(S, n, nnew) represents the latency from

source S to n (via the multicast tree) plus the IP latency from n to nnew.

The goal of the joining procedure is to find a joinable node n that provides a short distance path from S

to nnew. Let dist(S, n, nnew) denote this distance. To achieve this we use a “branch-and-bound” algorithm

that starts from source and goes down the tree until it can no longer improve the distance from S to nnew

or until it reaches the leaves of the tree. Figure 4 shows the pseudocode of the joining procedure, where

jset(n) denote the set of joinable children of n, and fset(n) denote the set of full children of n.

Figure 5 shows a simple example in which a new receiver, R7, joins an existing multicast tree with

D = 3 consisting of six receivers. The number along each edge represents the latency associated to that

edge. At the first level, there are two joinable nodes jset(S) = {R1, R2}, and one full node fset(S) =

{R3}. Among the joinable nodes, the algorithm selects R1 since dist(S, R1, R7) = 5 is smaller than

dist(S, R2, R7) = 6. Next, the algorithm selects the full node R3 and iterates. Among the children of

R3, the algorithm selects node R4, as dist(S, R4, R7) < dist(S, R5, R7) = dist(S, R6, R7). Finally, since

dist(S, R1, R7) < dist(S, R4, R7) the algorithm terminates and R7 joins at R1.
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// join the multicast tree idg

join(idg)

best dist = ∞

idcurr = idg

do
// return reply form selected node in jset(idcurr)

(id, dist) = select node(jHash(idcurr))

if (best dist > dist)

best dist = dist

idjoin = id

(id, dist) = select node(fHash(idcurr))

if (id = NULL) break
idcurr = id

while (dist < best dist)

join at(idjoin) // node joins at idjoin

join at(id join)

close id = pick close id()

insert trigger(close id,my address)

insert trigger(id join, close id)

select node(set id)
dist = ∞

p set = query distance(set id)

foreach (p ∈ p set)

d = curr time − p.time stamp + p.src dist

if (d < dist)

dist = d

id = p.id

return (id, dist)

on receiving query distance(p)

r.id = my trigger id

r.time stamp = curr time

r.src dist = src dist

send pkt(p.requester, r)

on receiving pkt from src(p)

src dist = curr time − p.time stamp

Figure 6: Joining multicast protocol.
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Figure 7: The tree of triggers corresponding to the join operation shown in Figure 5.

3.2 Infrastructure-based Realization of the Tree Construction Algorithm

In this section, we show how the end-host multicast protocol described in the previous section is imple-

mented using the infrastructure primitives alone. Packets will then be replicated in the infrastructure,

rather than end-hosts, which will considerably improve the performance and the resilience of the tree.

The main primitive used by the tree construction algorithm is packet replication. To get around the

fact that an infrastructure node can generate only a small number of replicas, we build a tree of triggers

as proposed in [40]. Figure 7(a) shows a possible tree of triggers that corresponds to the multicast tree

in Figure 5(a). Indeed, if we collapse all triggers with the same identifiers, and each receiver Ri with its

trigger (idi, Ri), then the tree in Figure 7(a) reduces to the end-host multicast tree in Figure 5(a).

Each trigger (idi, Ri) is assumed to be located on a server close to receiver Ri. A new node Rk joins the

multicast group at an ID id by inserting two triggers (id, idk) and (idk, Rk), where idk is an ID located at

an i3 server close to Rk. For example, in Figure 7(b), R7 joins at ID id1 by inserting triggers (id1, id7) and

(id7, R7), respectively. To maintain the one-to-one mapping between the multicast trees in Figures 5(a)

and 7(a), we slightly change the definition of joinable and full nodes to take into account the fact that a

receiver that joins at an internal node in the multicast tree requires an additional trigger. In particular, we
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say that receiver R is joinable if there are less than D + 1 triggers with ID id, and full if there are exactly

D + 1 triggers with ID id in the system. Node R3 in Figure 7(a) is a full node since there are four triggers

with ID id3 in the system. In contrast, all other receivers are joinable.

The main challenge in realizing the pseudocode shown in Figure 4 in i3 is to efficiently implement

dist() and select node() functions. To address these challenges, we use two techniques, (a) i3 packet

replication to implement select node(), and (b) a simple scheme based on local time-stamps to compute

the relative value of dist(), which we describe in Section 3.2.1.

Figure 6 shows the pseudocode of the joining procedure in i3. To implement select node(), all re-

ceivers in a set (jset or fset) will subscribe to a unique multicast group. Consider a receiver R that is

connected through triggers (id′, id) and (id, R) to the multicast tree. Let jHash and fHash be two well-

known hash functions. If R is joinable, R will insert the trigger (jHash(id′), R) in i3. Thus, jHash(id′)

identifies the jset to which R belongs. Otherwise, if R is full, it will join the corresponding fset by inserting

the trigger (fHash(id′), R). For example, receivers R1 and R2 will join the jset identified by jHash(idg),

while R3, which is a full node, will join the fset identified by fHash(idg). Since each node goes through

each level of the tree at most twice (once each for jset and fset), it receives at most O(D) messages at

each level, and hence the complexity of the join algorithm in the number of messages is O(lD) where l is

the number of levels of the tree. Assuming that l = O(logN), the join complexity is O(D log N).

When node Rnew wants to find the end-host R in a set (identified by, say, id) that minimizes the

distance from S to Rnew, it simply sends a request message with identifier id. In turn, each receiver R that

receives this message (i.e., each receiver in the set id) will send a reply to Rnew along with its estimated

distance from sender. Next, we discuss how this distance is estimated and used.

3.2.1 Distance Computation

When computing dist(), it is important to note that the pseudocode in Figure 4 uses the results returned by

dist() only for comparison proposes. In this section, we show that it is possible to compare the distances

from S to Rnew via different intermediate nodes using local time-stamps alone, and without assuming

global clock synchronization. In particular, we compute such distance as a function of local time-stamps
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Figure 8: Timing of messages for distance computation.

and the clock skews, and then show that the clock skews cancel out when performing distance compar-

isons. Figure 8 shows the messages to Rnew through two receivers R1 and R2.

For this description, we assume that, since (idi, Ri) is located at a server close to receiver Ri, the last

hop latency from idi to Ri can be neglected. For example, in Figure 5(a) we assume that the latency

from S to R7 approximates the latency from S to R1 plus the latency from R1 to R7, and hence we use

dist(S, R1, R7) to approximate dist(S, id1, R7). Note that this assumption might not hold in practice.3 In

such cases, the simplified scheme in the worst case would not consider some low delay paths. However,

as long as there is a significant fraction of end-hosts for which the above assumption holds, even the

simplified join protocol should still perform well. In practice, to remove this assumption, we can use

explicit last hop measurements using mechanisms described in Section 3.2.2.

Let d(A, B) denote the latency between nodes A and B. Then, we have:

dist(S, R, Rnew) = d(S, R) + d(R, Rnew). (1)

Let p.depart(A) denote the local time at A when packet p departs from A, and let p.arrive(B) denote

the local time at B when packet p arrives at B. Then, we have

d(S, R) = p.arrive(R) − p.depart(S) + skew(S, R), (2)

where p is a packet that travels from S to R and skew(S, R) denotes the clock skew between S and R.

Similarly,
3For example, in the case of cable modems the last hop latency can be significant.
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d(R, Rnew) = p′.arrive(Rnew) − p′.depart(R) + skew(R, Rnew),

where p′ is a packet traveling from R to Rnew. By combining Eqs. (1)-(3), we obtain

dist(S, R, Rnew) = (p.arrive(R) − p.depart(S)) + (3)

(p′.arrive(Rnew) − p′.depart(R)) + skew(S, Rnew),

where we replaced skew(S, R) + skew(R, Rnew) by skew(S, Rnew). Note that the value (p.arrive(R) −

p.depart(S)) is computed by R upon the arrival of packet p from S, and sent to Rnew in the reply message

as r.src dist (see on receiving packet from src() and on receiving query dist()).

The important point to note in Eq. (3) is that skew(S, Rnew) does not depend on R. This allows us

to use the sum (p.arrive(R) − p.depart(S)) + (p′.arrive(Rnew) − p′.depart(R)) instead of the absolute

value of dist(S, R, Rnew) to compare the distances between S and Rnew via any intermediate node R.

In this mechanism, all joins start at the root of the tree. To reduce the processing overhead at the root

of the tree, we can use well-known techniques such as replication at the root level (as used in [7, 22]). In

addition, we can use the anycast primitive to spread the load across multiple root servers.

3.2.2 Discussion

We have considered a multicast tree that aims to optimize for end-to-end latency, so far. In order to

adapt the same protocol for other metrics such as bandwidth and loss rate, the end-hosts have to report

the bandwidth or the loss rate instead of the latency (in the join reply message). The fact that we cannot

neglect the last hop bandwidth or loss-rate implies that reports received by end-hosts (while joining) can

be used only as hints rather than accurate values.

To address this issue, one could either enhance the infrastructure nodes to perform measurements on

behalf of end-hosts or have the joining end-host perform additional measurements. In the latter approach,

instead of relying on performance information contained in join replies, a joining node Rnew can insert a

trigger (id, Rnew) and directly measure the performance metric it is interested in. This approach is similar
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to the joining algorithm employed by Overcast [22]. By such an approach we can get more efficient trees

at the expense of additional overhead.

We have discussed the case of a single source sending data to the multicast tree. However, this is not a

fundamental restriction. As long as a member of the multicast group knows the group identifier idg, it can

send data to the group. The only cost incurred by this simple scheme is that packets originated at sources

farther away from the location of idg, will experience higher latencies.

The join procedure assumes that at each level there is at least a non-empty jset or fset. However, in time

all receivers at a level may leave which will cause these sets to become empty. To alleviate this problem,

each receiver periodically probes the parent level and checks if it can join the parent level. We can limit

the control traffic by regulating the periodicity of probes.

Finally, each receiver needs to decide whether it is joinable or full and join the corresponding group.

We now describe a simple scheme to address this problem. Consider a receiver R connected to the tree

through trigger (id, R). R can periodically try to insert a dummy trigger (id, x). A successful insertion

means that id is joinable and R joins jset. R then immediately removes the trigger (id, x). If unsuccessful,

then there are already D triggers with the ID id in the system, and as a result R joins fset.

4 Scalable Tree Maintenance

Recall that i3 uses a soft-state approach to maintain triggers in the system. If a trigger is not refreshed

for a pre-defined period of time T (which in our implementation is 30 sec), the trigger is removed from

the system. The issue we address in this section is that of scalably maintaining the triggers in the tree. A

naive solution would have each receiver independently refresh all triggers on the path from the source to

itself. For example, in Figure 7, R6 would be responsible for refreshing triggers (idg, id3), (id3, id6), and

(id6, R6). The problem with this approach is that the number of refreshes received for a trigger increases

exponentially as we move up the tree.

To address this problem, we introduce a control message, denoted by REFRESH ACK, to suppress

redundant refresh messages. When receiver R refreshes trigger (idi, idj), it also sends a REFRESH ACK
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Figure 9: Timing of refresh messages and refresh acks.

message to idj and hence this message will be multicast to the entire sub-tree rooted at idj. Upon receiving

a REFRESH ACK message for a given trigger, a receiver simply resets the timer to refresh that trigger.

However, if all receivers refresh a trigger at the same time, REFRESH ACK will do nothing to suppress

any of these refreshes. The classic solution to address this problem is to randomize refresh timers. Let

a receiver choose a random timer that is uniformly distributed in the interval [αT, βT ) and let n be the

number of receivers in the sub-tree rooted at trigger t. If all the receivers set the timer at the same instant,

then the expected time for the first refresh timer to expire can be computed to be αT + (β − α)T/(n +

1). By assuming that the delay in receiving the REFRESH ACK message is zero, i.e., all receivers are

instantaneously notified of the trigger refresh, the expected number of refreshes for a trigger in a trigger

refresh period T is 1/(α + (β − α)/(n + 1)).

In order to ensure that the expected number of refreshes per refresh period is constant, we pick α as

0.5. Hence, assuming that receivers are informed of the trigger refreshes instantaneously, the expected

number of refreshes for a trigger in a refresh period is at most 2. However, in practice, REFRESH ACK

messages have to be multicast to all the receivers in the sub-tree, and hence more refresh timers might get

triggered during that period of propagation.

Let us assume now, for simplicity, that all the receivers get the REFRESH ACK message for the first

refresh after a time v from the time the timer is triggered; v is the vulnerability period during which

false timer expirations can happen. Figure 9 shows an example where R1 sends a refresh first, and in the

vulnerability period, two other receivers R2 and R3 also send refresh messages. However, all the timers
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are reset when the REFRESH ACK for R3 arrives. In a vulnerability period, the number of new refreshes

that are triggered is roughly nv/T (β − α). Since v � T in practice, the number of refreshes that are

generated in a refresh period is bounded by 1/(α + (β − α)/(n + 1)) + nv/T (β − α).

To reduce the number of refreshes due to false timer expirations, the receivers at levels one and two

choose the refresh timer uniformly at random from the interval (αT, βT ), and all other receivers that are

further away choose the timer from the interval (βT, T ). Thus, a trigger will be almost always refreshed by

the receivers at the first and second levels, and the timers at lower levels will be suppressed. In particular,

for a trigger with a complete subtree at levels one and two, the number of refreshes is roughly 1/(α+(β−

α)/(D2 + D + 1)) + (D2 + D)v/T (β − α). Note that since D is a system-wide constant, the number of

refreshes does not depend on the size of the tree. To accommodate message losses we decrease the timer

intervals by a factor k. In practice, we choose k = 3. We compare some of these different strategies by

simulation in Section 6.

5 Reliable Packet Delivery

Developing reliable multicast solutions has proven to be a difficult and challenging problem. Even when

the assumptions allow changes in the infrastructure, the resulting solutions are complex and exhibit unde-

sirable tradeoffs. For instance, with SRM [16], there is a clear tradeoff between the number of duplicates

and the time to recover from failure. This section demonstrates the flexibility of our architecture by pre-

senting a solution for reliable multicast that is both simple and scalable. To reduce the number of duplicate

packets, our solution leverages the ability to multicast a packet to a sub-tree in the multicast tree. For in-

stance, in the topology in Figure 7(a) one can multicast a packet only to receivers R4, R5, and R6 by

sending the packet to identifier id3. In addition, to avoid the NACK implosion problem, our solution

leverages the anycast capability offered by i3.

Figure 10 shows the pseudocode of the recovery procedure. The main idea is to associate a recovery

anycast group with each internal node in the tree. Each receiver subscribes to exactly one anycast group,

that is, the anycast group associated with its parent. In the example in Figure 5(a) there will be two
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recovery anycast groups: one associated with the source S consisting of receivers R1, R2, and R3, and

another one associated with receiver R3 consisting of receivers R4, R5, and R6, respectively.

We assume that all data packets have a unique sequence number and that losses are detected when

packets arrive out of sequence.4 When a receiver R detects a packet loss, it sends a repair request for

the lost packet to its anycast group. Upon receiving a repair request, a receiver Ra checks whether if it

has the requested packet, and if it does sends the packet directly to the requester (R) via IP unicast. If

not, Ra assumes that everyone in its anycast group has lost the packet, and it takes the responsibility for

recovering the lost packet by sending a repair request to its parent’s anycast group. If the recipient of the

repair request at the higher level has the packet, it sends the packet to everybody in the subtree rooted at

the node corresponding to the requester’s anycast group. If the packet is absent at the higher level, the

recovery procedure proceeds recursively.

To illustrate the repair procedure consider the multicast tree in Figure 7(a). Assume receiver R4 loses

a packet. As a result it sends a repair request to the anycast group consisting of nodes R4, R5, and R6,

respectively. Assume this repair request is delivered to R6. If R6 has the packet, it sends it directly to

node R4, and we are done. If not, R6 forwards the repair request to its parent anycast group, that is, to

the anycast group consisting of R1, R2, and R3. Assume the repair request is delivered to R2 and that R2

has the requested packet. Then R2 will send a repair to id3. As a result, the repair will be multicast to all

receivers in the sub-tree routed at id3 including R4 and R6.

We now address the question of how to construct the anycast identifiers. Consider a receiver R which

is connected to the multicast tree by triggers (idi−1, idi) and (idi, R), respectively. Then Ri will insert

a trigger (ida, R) where ida = Hr(idi−1)|loss rate(R). The sign “|” represents the concatenation sym-

bol. Hr() is a well-known hash function that returns 192 bit values, and loss rate(R) represents R’s

loss rate as measured by R. When a receiver R loses a packet, it sends a repair request with identifier

idreq = Hr(idi−1)|0. Since i3 uses the longest prefix matching scheme to match the packet and the trigger

identifiers (see Section 2), the repair request will be delivered to the sibling of R which experiences the
4In practice, one may allow a certain number of out-of-sequence packets before concluding that a packet was

lost. This would allow us to tolerate packet reordering.
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// function called on packet loss
on packet loss(seq num)

// send packet to anycast group at my level to respond
// to loss of seq num, reply to be sent to my addr
request repair(repair group[my level], seq num,my addr, TO)

request repair(anycast id, seq num, req id, to)

send repair req(anycast id, seq num, req id)

set timer(curr time + to, request repair, anycast id, seq num, req id, to)

on receiving repair req(q)

// repair request already received ?
if (pending repair req[q.seq num] = FALSE)

// get repair packet
if (r = get packet(q.seq num, packet queue))

send repair(r, q.req id)

else
// doesn’t have the repair packet; send request up the tree
request repair(repair group[my level − 1], q.seq num, parent id, TO)

pending repair req[q.seq num] = TRUE

on receiving repair(r)
pending repair req[r.seq num] = FALSE
remove timer(request repair, seq num)

Figure 10: Pseudocode of the recovery procedure.

lowest loss rate.

A potential problem with this scheme is that when the packet is lost at a higher level of the tree, all

receivers belonging to the same recovery anycast group at a lower level will send repair request messages.

Let Ra be the receiver in the anycast group that experiences the lowest loss rate. Then, in the worst case,

Ra receives up to 2 × D repair request messages, where D is the maximum out-degree of the multicast

tree: D repair requests from all member of Ra’s anycast group (including Ra itself), and D repair requests

from the level immediately below. We present two techniques to alleviate this problem.

In the first technique, a receiver that detects a packet loss waits for a random period of time, uniformly

distributed in the interval [0, T ), before sending a repair request for the missing packet. Assume a packet

is lost at a higher level. Let t0 denote the time when the first repair request for that packet is sent, and let
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t0 + ∆ be the time when the repair arrives at end-hosts which lost the packet. Then all repair requests that

were scheduled to be sent after time t0 + ∆ will be suppressed. As a result, the number of repair requests

delivered to the receiver with the lowest loss rate from a recovery anycast group decreases from 2 × D to

roughly 2×D×∆/T . This is because the probability that a receiver (which has lost the packet) to send a

repair request during a time interval of length ∆ is ∆/T . On the downside, this solution increases the time

to receive the repair. If k receivers lose a packet, it will take the receiver an additional T/(k + 1) time to

receive the repair on average.5

So far we have assumed that the repair requests are always delivered to the member of the anycast group

which experiences the lowest loss rate. The idea of the second technique is to spread the responsibility to

answer the repair requests among the members of the repair anycast group. To achieve this we redefine

the anycast identifier of receiver R as ida = Hr(idi−1)|Hr(IPR), where IPR represents the IP address of

receiver R. When a receiver R loses the packet with the sequence number seq no, it sends a repair request

with identifier idreq = Hr(idi−1)|Hr(seq no). Hence, all repair requests for the same packet are delivered

to the same receiver, while repair requests for different packets are delivered to different receivers, thus

achieving load balancing. The downside of this approach is that the receiver to which the repair requests

are delivered may have poor reception characteristics. Section 6.3 uses simulation experiments to compare

these two solutions.

6 Simulations

In this section, we evaluate our algorithm using simulations. Our results focus on (1) the efficiency of tree

construction, (2) scalability of the trigger refresh mechanism, and (3) the efficiency and scalability of the

reliability mechanism. Since the main contribution of this paper is architectural, our experiments are meant

to show that our algorithms provide reasonable performance. We do not perform a detailed comparison of

the performance of our implementation with different earlier multicast proposals since most of them can

be adapted to our architecture.
5The additional T/(k + 1) represents the expected delay of sending the repair request.
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Our simulator is based on the i3 protocol described in [40]. In our simulations, we consider a 10,000-

node transit stub topology generated using the GT-ITM topology generator [18].6 Link latencies are chosen

uniformly at random between 1 and 3 ms for intra-transit domain links, between 5 and 10 ms for transit-

stub links, and between 20 and 50 ms for inter-transit links. i3 servers and multicast members are attached

to stub nodes chosen uniformly at random. In all experiments, we assume 8, 192 i3 servers7, and that each

multicast member knows a set of identifiers that maps on to the closest i3 server. These identifiers can be

discovered by using offline sampling [40] or through service discovery mechanisms. We run simulations

with a group size (the number of receivers in the multicast tree) of up to 65536. To support a group sizes

larger than that of the topology, we assume that each stub in the topology is actually a LAN with one i3

server on it. We neglect the delay on the LAN while computing path latency.

6.1 Tree construction

To test the scalability and the efficiency of the tree construction algorithm described in Section 3, we ran

a number of simulations varying the multicast group size from 16 to 65536. In our evaluation, we use four

metrics, which were previously introduced in [8, 10]:

• Latency Stretch, the ratio of the latency from the source to receiver in i3 to the latency along the

shortest path (IP latency).

• Ratio of the Maximum Delay (RMD), the ratio between the maximum delay using i3 multicast and

the maximum delay using IP routing.

• Ratio of the Average Delay (RAD), the ratio between the average delay using i3 multicast and the

average delay using IP routing.

• Link stress, the number of copies of each multicast packet that travels through a given link.

6We have also ran simulations using power-law network topologies and obtained similar results.
7The increase in the number of links and the time taken to compute shortest paths made it difficult to scale the

simulation to a larger topology.
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Figure 11: (a) The latency stretch of the multicast tree, (b) The maximum stress caused by the overlay multicast
tree on the links of the underlying network.

Figure 11(a) plots the 90th percentile latency stretch, the RAD, and the RMD between the source and

the receivers. As expected, the stretch increases only logarithmically with the size of the network. In

addition, these results indicate that the resulting multicast trees could meet the latency requirements of a

large number of applications. Indeed, even for a group of size 65536, the RMD and RAD do not exceed

1.5, and the 90th percentile of the latency stretch does not exceed 3.5. Also, the stretch stabilizes for

the very large group sizes. This is because beyond a certain group size almost every i3 server is already

receiving the multicast packets, and there is very little overhead in adding additional receivers.

Implementing multicast at the application layer results in multiple copies of a packet being sent on the

same physical link. Figure 11(b) plots the maximum stress observed on any link. While the maximum

stress increases with the group size, we note that this increase is sub-linear and that even for a group of

size 65536, it does not exceed 50. The reason that this is larger than the out-degree of the multicast tree is

partly because of using an overlay network for multicast, and partly due to the greedy heuristic we use in

our join algorithm. We also found that only a very few links have a high stress, for example, even in the

largest group size the 99th percentile stress was only 18.6.
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Figure 12: Maximum and average number of refreshes per refresh period

6.2 Scalable trigger refreshing

In this section, we evaluate the refresh schemes described in Section 4. With the first scheme, called

refresh-unif, each receiver refreshes each trigger in its chain by using timers uniformly distributed in the

interval [T/2, T ), where T is the refresh period for triggers in i3. In contrast, with the second scheme,

called refresh-level, a receiver uses timers uniformly distributed in the interval [T/2, 3T/4) to refresh

the triggers one and two levels above it in the hierarchy, and timers uniformly distributed in the interval

[3T/4, T ) to refresh all the other triggers in its chain.

Figure 12 plots the maximum and the average number of refreshes per trigger during a time interval

of length T , as a function of the multicast group size. As expected, the refresh-level scheme reduces

the maximum number of refreshes per trigger significantly and the difference increases as the size of the

group increases. This is because with refresh-level the refreshes of the receivers placed at more than two

levels down the hierarchy are suppressed with a very high probability. In contrast, the average number

of refreshes are roughly the same for both schemes (i.e., about 1.5), with refresh-unif performing slightly

better. This is because receivers near a trigger are more aggressive in the case of refresh-level (their timers

are three times smaller on average), which results in a slightly larger number of refreshes.
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6.3 Reliability

We evaluate the recovery procedure described in Section 5. We assign loss rates uniformly at random

between 0-4% to i3 hops, and between 0-8% to the hops from i3 servers to end-hosts. Both data and

control packets are dropped with the same probability. On detecting a loss, a receiver sends a repair

request after a time randomly chosen between 0 and 300 ms. This optimization decreases the chance of

a receiver sending a repair request before the repair data triggered by another request is received. The

timeout for re-sending a repair request is 800 ms.

We evaluate the two schemes presented in Section 5: rel-loss, where the repair request is delivered to

the receiver which experiences the lowest loss rate, and rel-random, where the repair request is delivered

to a random receiver within the same recovery anycast group. In our evaluation, we consider three metrics:

(1) the number of packet duplicates per packet loss, (2) the time it takes to receive the repair, and (3) the

number of repair requests received by an end-host.

Figure 13(a) plots the number of packet duplicates per packet loss. Ideally, this value should be zero.

However, due to the fact that repairs might be multicast, receivers who haven’t lost the packet would

receive duplicates. As shown in Figure 13(a) both schemes perform well; in either case the number of

duplicates per packet loss is less than 1.5 and practically remains constant at large group sizes8. However,

as expected, the rel-loss perform slightly better. This is because, the receiver that gets the repair requests

is the one that experiences lowest loss rate and is hence more likely to have the packet.

Figure 13(b) plots the CDF of the recovery time, that is, the time it takes to receive a repair from the

moment the loss was detected. Two points merit mention. First, in 85% of the cases, the repair arrives

within 600 ms, thus obviating the need to send a second repair request. Second, in our experiments, all

repairs arrive before 2400 ms, so a third repair request is almost never needed.

Finally, Table 1 gives the average number of repair requests per packet loss, and the maximum number

of repair requests per sequence number received by an end-host for both schemes. In terms of the average

number of repair requests, both schemes perform similarly, with each of them generating about 1.2 repair
8For comparison, in SRM [16], if only one receiver loses a packet, all receivers would receive a duplicate packet.
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Figure 13: (a) Total number of duplicates as a fraction of total number of drops, (b) Cumulative distribution of time
to recover for 1024 receivers.

Group # repairs # repairs max repairs max repairs
size per drop per drop per seq # per seq #

(rel-loss) (rel-random) (rel-loss) (rel-random)
16 1.12 (0.12) 1.15 (0.16) 1.00 (0.07) 0.18 (0.03)
64 1.07 (0.16) 1.11 (0.12) 1.92 (0.28) 0.31 (0.04)
256 1.16 (0.05) 1.18 (0.12) 2.87 (0.25) 0.44 (0.06)
1024 1.18 (0.08) 1.19 (0.07) 3.89 (0.24) 0.64 (0.05)
4096 1.13 (0.04) 1.16 (0.070) 5.09 (0.54) 0.84 (0.08)

Table 1: Number of repairs as a fraction of drop rate, and maximum number of anycast requests per sequence
number for rel-random and rel-loss (standard deviation in parentheses).

requests per packet loss. rel-loss performs better because the end-hosts receiving the repair requests are

more likely to have the lost packet, which reduces the chance of forwarding the request at the higher level.

However, in terms of maximum number of repair requests per packet loss, rel-random performs better. In

particular the maximum number of repair requests per packet loss is about five times larger in the case

of rel-loss for 4096 receivers. This is because, with rel-loss, the repair requests are delivered to the same

receiver, while with rel-random repair requests are spread among different receivers.

In summary, while rel-loss reduces the number of duplicate packets and the total number of repair

requests, rel-random is more effective in avoiding hot-spots due to repair requests being delivered to the

same receiver.
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7 Implementation

We have implemented a prototype of the reliable multicast protocol described in this paper on top of

i3 [40] in about 2000 lines of C/C++ code. To test our protocol, we conduct experiments on two platforms:

Millennium, a large cluster of PCs at UC Berkeley [1], and the PlanetLab test-bed [34]. The experiments

on Millennium are aimed at testing the implementation for medium size groups in a repeatable manner,

and the second set of experiments demonstrate the performance of our protocol in a more realistic scenario.

7.1 Millennium Experiments

Our experiments on the Millennium test-bed involve 32 i3 servers and 64 multicast clients. To test our

implementation for trees with multiple levels, we use D = 4 instead of D = 8 (as used in simulations).

Table 2 (a) shows the depth of the resulting multicast tree as function of the group size. As expected,

the depth of the tree is roughly logarithmic in the group size. In particular, the depth of the tree for 64

clients is 4.5 which is only 1.5 times as large as the depth of a perfectly balanced tree with 64 nodes.

To evaluate the overhead of the joining procedure, in Table 2 (b), we give the number of control

messages (i.e., query distance messages in Figure 6) processed by a receiver as a function of its level in

the tree. The number of messages increases exponentially with the height of the receiver in the tree. This is

because the joining procedure starts always from the root, and, as a result, receivers at the first level will be

contacted by every new receiver joining the tree. Since our current implementation takes about 200 µs to

process a query distance message, we can support a few thousands of new clients joining every second.

While this number is large enough for most practical applications, for very large groups the processing of

query distance messages can still be a bottleneck. This can be alleviated using standard techniques such

as replicated root servers (as used in [7,22]). Alternatively, we can use the anycast primitive to spread the

load across multiple root servers.
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Group Depth of
size the tree
8 2 (0)
16 2.8 (0.13)
32 3.4 (0.22)
48 3.9 (0.21)
64 4.5 (0.22)

(a)

Level # of messages
1 55.9 (2.19)
2 10.1 (0.62)
3 2.36 (0.68)
4 0.88 (0.40)
5 0.066 (0.03)

(b)

Table 2: Results from experiments on Millennium showing the depth of the tree and the number of query distance

messages processed (standard deviations in parentheses).
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Figure 14: (a) CDF of the stretch, and (b) scatterplot of multicast latency vs. IP latency for PlanetLab experiments.

7.2 PlanetLab Experiments

To evaluate our protocol in a realistic scenario, we performed experiments over the PlanetLab testbed [34].

In our experiments, we use 50 nodes at different locations in USA, Asia and Europe.9 Each node runs an i3

server and two multicast clients. Since i3 performs caching, the latency along each hop in the constructed

tree is merely the IP latency. Furthermore, since each end-host runs an i3 server, each receiver will pick

a trigger located on the same end-host. In each experiment, we have the multicast tree rooted at Berkeley

and we report results after the multicast tree is fully constructed.

Figure 14(a) plots the cumulative distribution function (CDF) of the latency stretch. We observe that
9The reason for using only 50 nodes despite the apparently larger size of PlanetLab is because most of the

PlanetLab machines were unusable for experiments for a variety of reasons at the time of experimentation.
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Figure 15: CDF of ratio of number of duplicates to number of losses at a node.

in 85% of cases the stretch is less than two, i.e., the multicast tree latency is less than twice the IP latency.

To provide more insight into the relationship between the multicast latencies and IP latencies, Fig-

ure 14(b) plots the latencies in the multicast tree versus the IP latencies for each (sender, receiver) pair.

The points above the line correspond to a stretch larger than one, while the points below the line corre-

spond to a stretch smaller than one. We observe several points corresponding to a stretch lower than one

mostly due to IP routing inefficiencies, and partly due to the variability of our measurements to estimate

network distances taken a few minutes apart.

To evaluate the reliability algorithm we instrumented the i3 servers to artificially drop packets since

the actual loss we observed was very low. We assigned loss rates exactly from the same distribution as in

the simulation section—uniformly at random between 0−4% for i3 hops and 0−8% for last hop between

i3 servers and end-hosts. Figure 15 shows the CDF of the ratio of number of duplicate messages to the

number of lost packets at the multicast clients when rel-loss algorithm is used. The observed mean, around

1.6, is consistent with our simulation results.

8 Related Work

Architecturally, separating routing control from forwarding has been proposed in a variety of contexts

ranging from resolving the problems of BGP (RCP [15]) to ATM/MPLS networks [24]. Particularly, in

the context of multicast, Keshav and Paul [23] have proposed providing multicast routing in a centralized
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manner. While we share the same philosophy as these works, we differ in two important ways. First,

instead of centralizing route computation, we explore how the end-hosts can construct the trees over the

infrastructure in a distributed manner. Second, our infrastructure runs as an overlay and exports simple

primitives that end-hosts can use. While our solution does not require a centralized entity to perform route

computation, our trees are in general less efficient than those computed by a centralized entity since we

don’t have the view of the entire network.

Jannotti [21] has argued for enhancing the network to provide more support for construction of effi-

cient multicast trees. The two primitives that are proposed are path reflection, which allows end-hosts to

request redirection and replication at nearby routers, and path painting, which allows end-hosts to find

the intersection point of their paths to a common destination. In contrast, our infrastructure is simpler but

exports primitives that provide hosts greater flexibility in picking replication points in the network.

Broadly, most current multicast proposals fall into one of two categories: infrastructure-based or host-

based. Among the infrastructure-based solutions are IP-level multicast solutions such as IP Multicast [12],

CBT [4], PIM [14] and EXPRESS [20] and application-level (or overlay-network) solutions such as Over-

cast [22], Scattercast [9] Yoid [17], and ALMI [33]. Since the multicast tree construction algorithm is

typically implemented at the nodes these solutions have a low degree of flexibility. Some of the host-

based multicast protocols include ESM [10], Peercast [13] and NICE [5]. While these solutions are highly

flexible since they don’t have a deployed infrastructure, they often suffer from scalability and robustness

concerns.

In the multicast literature, many different approaches have been adopted for tree construction. Some

proposals (such as ESM [10] and [45]) construct trees over an overlay mesh. Approaches such as Over-

cast [22] and NICE [5] use searching techniques over a hierarchical structure; our tree construction al-

gorithms in this paper are very similar in spirit. More recently, peer-to-peer lookup and routing proto-

cols [19, 35, 37, 41] have also led to the development of efficient multicast solutions [8, 29, 36, 38, 46].

Finally, cooperative strategies to improve the throughput of multicast trees have been employed in Coop-

Net [31] and SplitStream [7]. The techniques used in such approaches are orthogonal and can be leveraged

in our architecture.
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There have been many attempts to provide reliable multicast functionality. SRM [16] adds support for

reliability by multicasting the repair requests and retransmitting the data. While this solution (and others

such as TMTP [44]) address the problem of NACK implosion, the number of duplicates can be very

high. This is because repairs are multicast to all members of the group. LMS [32] presents a finer grained

recovery service by creating a dynamic hierarchy of servers. Similarly, STORM [43] uses a self organizing

overlay network to provide recovery. However, these solutions are quite complex since they require the

application to build and maintain an overlay network for recovery purposes only. In addition, they are

based on IP multicast which limits their deployability. Digital Fountain [6], WEBRC, and RLM [30]

provide reliability and/or congestion control through erasure coding. Since these schemes would work on

any multicast protocol that does best effort delivery of data, they can be deployed on top of our multicast

protocol also. ROMA [25] uses erasure coding with loosely coupled TCP connections to achieve reliable

multicast; in contrast, we explore how end-hosts can achieve reliability without infrastructure support.

9 Discussion

In this section, we discuss potential alternatives to our design choices.

Infrastructure support. We have used a minimalist approach in choosing what functionality to embed

in the infrastructure. Another possibility would be to extend the infrastructure to implement part of the

control plane by aiding the end-hosts in measuring various performance metrics or in performing error

recovery. While this is a valid approach, in this paper we demonstrate that it is indeed possible to remove

end-hosts completely from the data path by using a few basic primitives.

There are two advantages of assuming a simple infrastructure with a well-defined interface. First, it is

easier to implement the functionality of such infrastructure at high speeds. For example, the main operation

performed by an i3 node on the data path is longest prefix matching, for which there are well-known fast

algorithms (e.g. [42]). Compare this with implementing packet recovery, which requires maintaining

and managing a buffer for each group, and processing the ACK/NACK packets. Second, a well-defined

interface allows the infrastructure and the tree construction algorithms to evolve independently.
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Centralized vs. Distributed tree construction. We have assumed that the entire control plane, in-

cluding tree construction and message recovery, is implemented by end-hosts. An alternative, would be

to provide the multicast functionality as a third-party service. A single entity would keep track of all the

members of the group as well as construct and maintain the tree on their behalf in a centralized manner.

Besides relieving the end-hosts of the tree-management burden, this model could also provide better se-

curity. For example, since only the third-party needs to be aware of the IDs used internally in tree, we can

enforce fine-grained access control over who can send packets to each sub-tree [3]. We discuss a complete

solution based on this approach in [28].

Deployment. In this paper, we implicitly assume that there is a deployed infrastructure that allows

end hosts to set up forwarding state and perform packet replication. While it is unclear how or by whom

such an infrastructure will be commercially deployed, and what is the business model behind such an

infrastructure, we note that our approach is already useful today in the context of the PlanetLab testbed. In

particular, our approach allows application developers that do not have PlanetLab accounts to build their

own multicast trees to use PlanetLab for forwarding packets. In contrast, with traditional application-level

multicast solutions such as SplitStream and Scribe, application developers need to have direct access to

PlanetLab nodes to upload their multicast algorithms.

10 Conclusion

In this paper, we propose a new architecture for overlay multicast where the functionality is carefully split

between the infrastructure and end-hosts; the infrastructure implements the data plane, while the end hosts

implement the control plane. We can thus leverage the cost and performance benefits of a large-scale

shared infrastructure, but at the same time allow applications with diverse needs to evolve independently.

We illustrate this principle by using a very simple label-switching like primitive in the infrastructure, and

propose distributed algorithms for tree construction, maintenance as well as for loss recovery. We believe

that the overall design, and to a lesser extent, the details, presented in the paper is an important step in an

attempt to building a flexible, yet efficient multicast architecture in the Internet.

31



References

[1] http://www.millennium.berkeley.edu.

[2] Fastforward networks. http://www.ffnet.com.

[3] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. Towards a More Functional and Secure Network

Infrastructure. Technical Report UCB/CSD-03-1242, UCB, 2003.

[4] A. J. Ballardie, P. F. Francis, and J. Crowcroft. Core Based Trees. In Proc. of ACM SIGCOMM, 1993.

[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application level Multicast. In Proc. of ACM

SIGCOMM, 2002.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain Approach to Reliable Distribution

of Bulk Data. In Proc. of ACM SIGCOMM, 1998.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream: High-bandwidth

Multicast in a Cooperative Environment. In Proc. of SOSP, 2003.

[8] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wolman. An Evaluation

of Scalable Application-Level Multicast Built Using Peer-to-Peer Overlay Networks. In IEEE Infocom, 2003.

[9] Y. Chawathe, S. McCanne, and E. Brewer. An Architecture for Internet Content Distribution as an Infrastruc-

ture Service, 2000.

[10] Y. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In Proc of ACM SIGMETRICS, 2000.

[11] L. H. M. K. Costa, S. Fdida, and O. C. M. B. Duarte. Hop By Hop Multicast Routing Protocol. In Proc. of

ACM SIGCOMM, 2001.

[12] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and Extended LANs. ACM TOCS,

May 1990.

[13] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media over Peers. Technical Report 2002-21,

Stanford University, 2002.

[14] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma, and

L. Wei. Protocol independent multicast – sparse mode (pim-sm) : Protocol specification, Jun. 1997. RFC-2117.

[15] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der Merwe. The Case for Separating Routing

from Routers. In Proc. FDNA, 2004.

[16] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for light-weight

sessions and application level framing. IEEE/ACM Transactions on Networking, 5(6):784–803, 1997.

32



[17] P. Francis. Yoid: Extending the Internet Multicast Architecture, 2000.

[18] Georgia Tech Internet Topology Model. http://www.cc.gatech.edu/fac/Ellen.Zegura/

graphs.html.

[19] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed Object Location in a Dynamic Network.

In Proc. of ACM SPAA, 2002.

[20] H. Holbrook and D. Cheriton. IP Multicast Channels: EXPRESS Support for Large-scale Single-source

Applications. In Proc. of ACM SIGCOMM, 1999.

[21] J. Jannotti. Network Layer Support for Overlay Networks. PhD thesis, MIT, August 2002.

[22] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. J. W. O’Toole. Overcast: Reliable Multicas-

ting with an Overlay Network. In Proceedings of OSDI, 2000.

[23] S. Keshav and S. Paul. Centralized Multicast. In Proc. of ICNP, pages 59–68, 1999.

[24] H. Khosravi and T. Anderson. Requirements for Separation of IP Control and Forwarding. RFC 3654, Nov.

2003.

[25] G.-I. Kwon and J. W. Byers. ROMA: Reliable Overlay Multicast with Loosely Coupled TCP Connections. In

Proc. of IEEE Infocom, 2004.

[26] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. Towards a Secure Indirection Infrastructure. In

Proc. ACM PODC (Brief Announcement), 2004.

[27] K. Lakshminarayanan and V. N. Padmanabhan. Some Findings on the Network Performance of Broadband

Hosts. In Proc. of IMC, 2003.

[28] K. Lakshminarayanan, I. Stoica, and S. Shenker. Routing as a Service. Technical Report UCB-CS-04-1327,

UC Berkeley, 2004.

[29] J. Liebeherr and M. Nahas. Application-layer Multicast with Delaunay Triangulations. In IEEE Globecom,

2001.

[30] S. McCanne. Scalable Compression and Transmission of Internet Multicast Video. PhD thesis, UC Berkeley,

Dec. 1996. UCB/CSD-96-928.

[31] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing Streaming Media Content

Using Cooperative Networking. In Proc. of ACM NOSSDAV, 2002.

[32] C. Papadopoulos, G. M. Parulkar, and G. Varghese. An Error Control Scheme for Large-Scale Multicast

Applications. In Symposium on Principles of Distributed Computing, page 310, 1998.

33



[33] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An Application Level Multicast Infrastructure,

2001.

[34] Planet Lab. http://www.planet-lab.org.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable Network. In

Proc. ACM SIGCOMM, San Diego, 2001.

[36] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker. Application-Level Multicast Using Content-

Addressable Networks. In Networked Group Communication, pages 14–29, 2001.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing for Large-scale

Peer-to-peer Systems. In Proc. of Middleware, 2001.

[38] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The Design of a Large-Scale Event

Notification Infrastructure. In Networked Group Communication, pages 30–43, 2001.

[39] S. Saroiu, K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems. In

Proc. of MMCN, 2002.

[40] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection Infrastructure. In Proc. of

ACM SIGCOMM, 2002.

[41] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications. In Proc. ACM SIGCOMM, 2001.

[42] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High-speed Prefix Matching. ACM Transac-

tions on Computer Systems, 19(4):440–482, Nov. 2001.

[43] X. Xu, A. Myers, H. Zhang, and R. Yavatkar. Resilient Multicast Support for Continuous-media Applications.

In Proc. of NOSSDAV, 1997.

[44] R. Yavatkar, J. Griffoen, and M. Sudan. A Reliable Dissemination Protocol for Interactive Collaborative

Applications. In ACM Multimedia, pages 333–344, 1995.

[45] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. Peterson, and R. Wang. Overlay Mesh Construction Using

Interleaved Spanning Trees. In Proc. of IEEE Infocom, 2004.

[46] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: An Architecture for

Scalable and Fault-tolerant Wide-area Data Dissemination. In Proc. of ACM NOSSDAV, 2001.

34


