
Experienceswith NIMI
VernPaxson,Andrew K. AdamsandMatt Mathis

Abstract—
NIMI (National Internet MeasurementInfrastructur e) is a softwaresys-

tem for building network measurement infrastructur es. Its designempha-
sizes(i) large-scaleinfrastructur escomposedfr om diversely-administered
hosts,rather than infrastructur escontrolled by a singleentity, and (ii) facil-
itating diversetypesof measurementsby diverseparties, someof whom are
allowed richer accessto certain portions of the infrastructur e than others.
We discussour experienceswith developing and operating the infrastruc-
tur e to date: problemswe have encountered, both foreseenand unantici-
pated, mistakeswe made,and how we have adaptedthe designto address
these.Wealsoexplore two keyissuesfor developinga large-scale,extensible
infrastructur e: the problem of securely updating software on the measure-
ment platforms, and the problem of constraining the resourcesconsumed
by different measurements. We argue that both of thesecan be unified in
terms of controlling the behavior of the measurementsoftware,and that the
mostpromisingapproachfor doing soappearsto require writing measure-
ment software in a “safe” languagesuchasJava or Python.

I . INTRODUCTION

NIMI (National Internet MeasurementInfrastructure)is a
softwaresystemfor building network measurementinfrastruc-
tures. A NIMI infrastructureconsistsof a setof measurement
servers (termedNIMI “probes” or “platforms”) running on a
numberof hostsin a network, andmeasurementconfiguration
and control software, which runs on separatehosts. A key
NIMI designgoalis scalabilityto potentiallythousandsof NIMI
probeswithin a single infrastructure. Suchscalinghasutility
both for providing pervasive coveragefor fault-diagnosis,and
for facilitating researchon large-scalecross-sectionsof the In-
ternet,which, given the network’s greatdiversity, is vital for
soundscience[PF97].

A number of other measurementinfrastructures have
beendeveloped,such as Surveyor [Al97], Felix [HGDL97],
IPMA [La97], andAMP [WB98]. Theprincipledifferencesbe-
tweentheseandNIMI is that the designof NIMI emphasizes
(i) infrastructurescomposedfrom diversely-administeredhosts,
ratherthanan infrastructurecontrolledby a single entity, and
(ii) facilitating diversetypesof measurementsby diversepar-
ties,someof whomareallowedricheraccessto certainportions
of theinfrastructurethanothers.

Regardingthe first point above, a fundamentalaspectof the
NIMI architectureis thateachNIMI probereportsto a configu-
rationpoint of contact(CPOC)designatedby the ownerof the
probesystem.Thereis no requirementthatdifferentprobesre-
port to thesameCPOC,and,indeed,therewill generallybeone
(or more)CPOCperadministrative domainparticipatingin the
infrastructure.But the NIMI architecturealsoallows for easy
delegationof part of a probe’s measurementservices,offering,
whennecessary, tight controloverexactlywhatservicesaredel-
egated.

V. Paxsonis with the AT&T Centerfor Internet Researchat ICSI, at the
InternationalComputerScienceInstitute in Berkeley, CA; and the Lawrence
Berkeley National Laboratory in Berkeley, CA. Email: vern@aciri.org.
A. AdamsandM. Mathis arewith the National Laboratoryfor Applied Net-
work Research,Pittsburgh SupercomputingCenter, Pittsburgh, PA. Email:
akadams@wraith.psc.edu,mathis@psc.edu.

Regardingthe secondpoint, the NIMI designhasbeende-
coupledfrom any particulartypesof measurements.Themea-
surementtoolsavailableto aplatformarewhateverbinariesand
scriptsthattheadministratorof theplatformhasdeemed(via the
platform’sCPOC)appropriate.In addition,accessto particular
tools is controlledvia cryptographicallysecurecredentials:an
administrator’sdecisionregardingto whomthey will allow what
particulartypeof accessis pinpointedto which credentialsthey
decideto give to which parties,andthenwhich per-credential
accesscapabilitiesthey chooseto downloadinto eachplatform
via the CPOC.In summary, NIMI is not a measurementtool,
but a commandandcontrol systemfor managingmeasurement
tools.

The NIMI architectureand structureof NIMI internalsare
discussedin [PMAM98], [AMMP98]; wegivea brief overview
in
�

II beforedetailingin
�

III the sortsof difficultieswe have
encounteredin developingandoperatingNIMI. Our goal is to
scaleNIMI by anorderof magnitudein thecoming1–2years,
andto achievethis requiressurmountingtwo significanthurdles
in termsof securelyuploadingsoftware to NIMI probesin a
trustworthy fashion,and resolvingresourceconflicts between
concurrentmeasurements.We discussthesechallengesin

�
IV.

I I . NIMI OVERVIEW

We canconceptuallydivide the NIMI architectureinto two
components,thestructureof theindividualNIMI platforms,and
the different external componentsthat control the platforms.
Eachplatform is viewed ashaving a narrowly scopedtask: to
performmeasurementsandrecordthe results. It is not a plat-
form’sroleto thenanalyzethemeasurements,muchlessdisplay
themin any fashion.Doingsois insteadin therealmof external
hosts.

NIMI measurementis built aroundthenotionof schedulinga
measurementfor somefuture time. Measurementsarenot sim-
ply madeimmediatelyon a demandbasis,becausedoingsoin-
troducesbiasesinto large scalemeasurementstudies,in terms
of failuresto measureseriousconnectivity problemsdueto the
connectivity problempreventingaccessto themeasurementde-
vicein thefirst place[Pa99]. Instead,eachmeasurementrequest
includesa time at which the measurementshouldbegin. The
timecanbe“immediately,” of course,but by building into NIMI
a notion of scheduling,we ensurethat we have the necessary
mechanismsto orchestratelarge-scalemeasurements.

Accordingly, eachNIMI platformrunsa measurementserver
whosejob is to: authenticatemeasurementrequestsasthey ar-
rive; checkrequestsagainstthe platform’s policy table; queue
themfor futureexecution;executethemat theappropriatetime;
bundleandship the resultsof therequeststo whatever destina-
tion the requestspecified(a “DAC”–seebelow); anddeletethe
resultswheninstructedto. Internally, theNIMI probeis divided
into two distinctdaemons,nimid, which is responsiblefor com-
municationwith the outsideworld andperformingaccesscon-



trol checks,andscheduled, which doestheactualmeasurement
scheduling,� execution,andresultpackaging.

As indicatedabove, securityis a basicpart of the NIMI ar-
chitecture.Authenticationandencryptionof all communication
betweenNIMI componentsis doneusingpublickey credentials.
Furthermore,eachNIMI probeis configuredby its CPOC(or a
delegateeof theCPOC)to authorizeparticularsetsof operations
per credential.This allows the ownerof the NIMI probecom-
pletecontroloverwhatactionsthepossessorof a credentialcan
request.

Moving now from themeasurementprobesthemselvesto the
externalelementsof theNIMI architecture,thenext majorcom-
ponentis theCPOC,whichservesto configureandadministera
setof NIMI probeswithin theCPOC’s sphere.TheCPOCpro-
videstheinitial policiesfor eachdistinctNIMI probe,and,over
time, providesupdatesto thesepolicies. (At somepoint in the
future, theCPOCwill alsoactasa repositoryfor NIMI public
keysandmeasurementmodules.)

End userswho wish to usethe infrastructuredo so via the
MeasurementClient (MC) (this is the only NIMI component
thatanenduseractuallyoperates).TheMC is aUnix utility that
canrun on whateverworkstationis convenientfor theenduser,
providing that the workstationhasaccessto the user’s NIMI
credentials. It communicatesdirectly with the NIMI probe(s)
involved in the measurement;the CPOCis not involved in the
processingof individualmeasurementrequests.

The final component,the DataAnalysisClient (DAC), acts
asa repositoryandpost-processorof the datareturnedby the
NIMI probe(s)uponcompletionof a measurement.Whenan
MC sendsa measurementrequestto a NIMI probe,it includes
in therequestanURL designatingtheDAC to which theprobe
shouldsendthe measurementresults. The DAC canbe run as
part of the MC, in order to collect immediateresults,or as a
daemon,to collecton-goingmeasurementresults.

A. Measurementmodules

As mentionedearlier, an importantfacetof the NIMI archi-
tectureis thatNIMI itself hasno knowledgeof particularmea-
surementtools. The view insteadis that the tools usedto per-
form the measurementsareeffectively stand-alone,third party
softwaremodulesthat“plug in” to NIMI.

Thestrengthof modulardesignlies in correctlydesigningthe
interfacesbetweenthe differentcomponents.While we do not
claim perfectionin this regard,we believe NIMI is off to the
right start in that the expectationis all measurementtools are
“wrapped”with a scriptdesignedto fit with a uniformAPI, and
it is thisscriptthatNIMI invokeswhenexecutingameasurement
request,ratherthanthetool directly.

The wrapperserves to interpret certain standardizedargu-
mentsin a uniform way (althoughwe have not yet developed
this featurein earnest);to bundleup measurementresultsinto
a standardizedform for easierprocessingby the DAC; and to
provide a non-privilegedstartingpoint for measurementtools
thatmight themselvesrequireprivileges.We returnto this latter
point in

�
IV.

Currently, we have deployed the following measurement
modules: traceroute (end-to-endInternet route measure-
ment [Ja89]); mtrace (end-to-endmulticast route measure-

ment);treno (bulk transfercapacitymeasurement[MM96]);
cap/capd (bulk transfercapacitymeasurement[Al99]); zing
(generic packet source/sinkfor one-way and round-trip loss
and delay measurement);mflect (multicast inference of
pathproperties[To98], [Fr99]); traffic/discardd (TCP
throughputmeasurement[Al99]); andftp (a wrapperaround
theFile TransferProtocol).

Addinga new measurementtool asa modulesimply requires
generatinga wrapperfor thetool andpropagatingboththetool
andthewrapperto all NIMI probes.Currentlythis is donevia
SSH,asareupdatesto existing measurementmodules. How-
ever, performingthis sort of uploadingin a way that is both
scalableandtrustworthy is oneof the hardproblemsthat must
be addressedbeforeNIMI scalesto a significantly larger size,
andwe furtherdiscussthis problemin depthin

�
IV.

B. Policy control

NIMI supportsdiversepolicies through the use of Access
Control Lists (ACLs) residingon eachNIMI probe. An ACL
tableiscomprisedof columnsrepresentingactionsandrowslist-
ing credentials.Theintersectionof anactionandcredentialis a
booleanvalue,or, eventually, a script thatcanbeappliedto the
argumentsof therequestto yield abooleanvalue.If thevalueis
true, thena requestby thegivencredentialfor theNIMI probe
to performthegivenactionis authorized;otherwise,therequest
is discardedasunauthorized.

A NIMI probereceivesits initial ACL tableonstartupfrom its
CPOC.TheCPOC,however, candelegatesomeACL manage-
mentto otherCPOCs.Weview suchdelegationasavital partof
theNIMI architecture,asit makesit easyfor asiteto participate
in a public measurementproject: ratherthanhaving to manage
the accesscontroldetailsparticularto thatproject,the site can
delegatethemanagementto someoneelsemorecloselyinvolved
in theproject,safelygiving themtheright to setupACL entries,
but only for thoseactionsassociatedwith theproject.

C. Localmanagementandcontrol

Along with the policy control discussedin the previoussec-
tion, NIMI is designedto supporteasylocal managementand
control of a probe’s actions; that is, it is simple for the local
systemadministratorto ascertainwhat the probeis doing, and
to ascertainandoverridethe allowed measurementpoliciesby
directly inspectingandeditingfiles in thefile system.

First, theACL tableexistson a NIMI probeasa flat text file
within theacl/ subdirectory. If a systemadministratorwishes
to removea particularpolicy (ACL entry),they cansimply edit
thefile anddeletethecorrespondingACL row. In addition,upon
receiptof a measurementrequestscheduledmovesthe request
into atext file locatedin thepending/ subdirectory. Whenthe
timeto runthemeasurementarrives,themeasurementrequestis
movedto theactive/ subdirectory. Uponcompletionof the
measurement,themeasurementrequestandresults(asa tar file)
aremoved to thedock/ subdirectoryto await shippingto the
DAC by the nimid. The nimid, upondelivering the tar file to
the appropriateDAC, movesthe measurementrequestand tar
file to thecompleted/ directory, whereit residesuntil explic-
itly deletedby a user. Hence,thestatusof any measurementis



immediatelydeterminableby NIMI or a humansystemadmin-
istratorby

�
examiningthefile system.

D. Communicationandsecurity

NIMI messagesare encryptedvia RSA private/publickey
pairs, and passedbetweenNIMI componentsvia TCP/IP. A
messageconsistsof a headerlisting the informationnecessary
to decryptthemessagebody(key name),andanencryptedmes-
sagebody. Themessagebody, in its unencryptedform, consists
of oneor moremessage“blocks.” Eachblock type mapsto a
requestthata NIMI componentcanservice,aswell asany data
necessaryto completetherequest.

Block type Request

BOOT ME nimid asksCPOCfor ACL config.
ACL ADD install anew ACL entry
ACL DEL removeanACL entry
TEST ADD schedulea measurement
ACK TEST ADD acknowledgereceiptof TEST ADD
TEST DEL removea measurement
RESULT XFER receivea measurementresulttar file
ACK RESULT XFER ackreceiptof RESULT XFER
RESULT FAIL inform thata measurementfailed
FLUSH DOCK processall resultsawaitingdelivery
DOCK RMDIR releasespecificresultfile directory
QUERY getlisting of measurements
QUERY RESULT receive listing of measurements
ERROR reportremoteerror
RESULT FETCH retrievea particularresult
RESULT DEL removea particularresult
KEY XFER receivea publickey
TOOL XFER receivea measurementtool

TABLE I

DI FFERENT BLOCK TYPES IN NIMI MESSAGES.

TableII-D summarizesthe differentNIMI block types. The
bottom four arependingimplementation,the top fourteenare
implemented.

I I I . EXPERIENCES

In this sectionwe discussour experienceswith implement-
ing a measurementinfrastructure.We begin in

�
III-A with an

overview of thecurrentstatusof the infrastructure,andthenin
the remainingsectionsdiscussdifferentcategoriesof problems
we have encountered:thosedue to architecturaldecisionswe
made,or inherentto theproblemof building a measurementin-
frastructure;thosedueto administrativeandsystemheterogene-
ity; andthoserelatingto NIMI beinga good-sized,distributed
system.Our goalis to provideamapof someof thepitfallsand
context for someof thefuturechangesto NIMI.

A. Status

TheNIMI alphadistributionis currentlydeployedon35hosts
at the following institutesand networks: ACIRI (Berkeley),
APAN (Seoul), AT&T Research,BostonU., CAIRN, CERN
(Geneva),ColumbiaU., GeorgiaTechU., ISI East,MIT, NASA

GlennResearchCenter, SandiaNationalLaboratory, Stanford
LinearAcceleratorCenter, SwedishInstituteof ComputerSci-
ence,U. of California (Berkeley, Los Angeles,andSantaBar-
bara),U. College(London),U. of Lulea,U. of Mannheim,U. of
Massachusetts,U. of Michigan,U. of Oregon,U. of Pisa,U. of
SouthernCalifornia,U. of Virginia,U. of Washington.

Thesesiteshavebeenprovidedby volunteerswhohavegiven
us SSH accessto the platformsand sometimesadministrative
(root) access.All run versionsof theFreeBSDor NetBSDop-
eratingsystems(see

�
III-C below).

NIMI hasbeenandcontinuesto beusedfor anumberof mea-
surementstudies:
� MINC (multicast inferenceof network characteristics)is a
DARPA-sponsoredproject to estimatenetwork-internalprop-
erties,suchas loss ratesanddelayson individual links, using
multicast-basedtomography[To98], [ABCD+00].
� Web100 (funded by the National Science Foundation)
measuresandanalyzesthe end-to-endperformanceof popular
user-level applicationssuchasFTP andHTTP, with an aim to
understandinghow to improvetheir performance.
� A large-scalestudy to characterizethe stationarityof Inter-
netpathproperties(routing, loss,application-level throughput)
[ZPSB00].
� A study comparingdifferent implementationsof the IPPM
[PAMM98] draft metricfor bulk transfercapacity[MA99] with
throughputattainedby nativeTCP[Al99].
� Ongoingtraceroute, treno and zing measurements
acrossthemesh,thelatterto trackmulticastconnectivity.

In addition,NIMI is usedto monitorthePSCcommodityand
vBNS networks.

B. Architectural problems

Thefirst classof problemswe discussarethosegeneratedby
architecturaldecisionsmadewhendesigningNIMI. In general,
we can addresstheseproblemsby modifying the architecture
accordingly;they arenot showstoppers,but illustratesomeof
thedifficultiesin realizingacoherentinfrastructuredesign.

Someof problemsaredueto architecturalomissions:
Remoteerror handling. A particularly large nuisancewas

neglecting to include in the architecturerich mechanismsfor
propagatingerror information. This madetracing failuresdue
to relatively simpleerrors(e.g.,out of disk space)quite diffi-
cult basedon reportsreceived by an MC runningon a remote
machine.We arenow in theprocessof retrofitting robusterror
propagationinto the NIMI design. We anticipatedoing so to
provetediousbut certainlytractable.

Grouping of associatedmeasurements. NIMI was origi-
nally architecturedsuchthat eachmeasurementsubmittedto a
NIMI probewasa distinctentity. However, it soonbecameap-
parentthat, for managerialpurposes,it washighly convenient
to be able to tag individual measurementsto indicatethey are
elementsof a larger experimentor “measurementgroup.” We
addressedthisneedby addinganopaque,textual“handle”asso-
ciatedwith eachmeasurement,which canthenbestructuredin
whatever fashionthe userdesires.The handleis visible in the
sensethataNIMI platformcanbeaskedto searchfor any pend-
ing, active, or completedmeasurementswith handlesmatching
a givenpattern,but it is otherwiseuninterpretedby NIMI.



A relatedproblemconcernsmeasurementpost-processingby
theDAC.

�
It is simplefor theDACto runaparticularscriptwhen-

ever it receivessomemeasurementresults,but for somemea-
surementgroupswhat is really desiredis for theDAC to know
whenall resultsfor thegrouphave arrived,andthento run the
post-processingscriptoverthecollection.However, thisdoesn’t
quitework, becauseasmeasurementsgrow in size,thepossibil-
ity of somecomponentof the measurementfailing rises,so in
fact the DAC shouldnot wait for all resultsto arrive (because
they mightnot),but merelymostof theresults,where“most” is
a slipperynotion meaning“all the onesthatareactuallygoing
to besuccessful.” We arecurrentlyworking on accommodating
thesedistinctionsby incorporatinginto the DAC mechanisms
for specifyinghow long to wait for which successfulsubsetof
measurementsin a groupbeforerunninga group-specificscript
over thesubset.

Public key distrib ution. Fromthestart,NIMI wasdesigned
knowing that to scaleto large sizes,a public key server would
be essential.However, we delayedaddressingthis needin the
hopethata freewarepublic key server would becomeavailable
that we could thenintegrateinto NIMI. To our knowledge,no
suchsystemhasmaterialized,so we arenow in the processof
integratingkey distribution into NIMI, with eachinfrastructure
having at leastonewell-known CPOCwhereinfrastructureele-
mentscanregistertheir publickeys.

Measurement across NIMI failur es. If the scheduled
crashesfor somereason,it is possiblethatmeasurementsit initi-
atedwill continueto run. Thecurrentarchitecturehasnoprovi-
sionsfor eithercheck-pointingrunningjobs,or recognizingthat
a job hassurviveda scheduledrestartandis still running. Yet
it is importantto detectthesemeasurements,asthey consume
resourcesandcanpotentiallypreventothermeasurementsfrom
running,or perturbtheirresults,by doingso.It seemslikely that
the cleanestway to addressthis problemwill be aspart of the
resourcecontrolmechanismdiscussedin

�
IV.

End-to-endmeasurementintegrity . NIMI measurementre-
sultsaretransmittedusingTCP, andencryptedwith strongcryp-
tography, andit seemednaturalto trustthatthissufficesin terms
of ensuringmeasurementintegrity. However, astheEnd-to-End
principlepointsout[SRC84],trueintegrity canonly beachieved
end-to-end,whereend-to-endmeansbetweenthe original pro-
ducerof the dataandits ultimateconsumer. Indeed,we found
that tar operationsfor packingup NIMI datacould fail dueto
disk spacelimitations or a missinggzip utility for performing
compression,andthat dueto what appearto be NFS bugs,tar
files could be mysteriouslytruncatedat sporadictimes. These
failures, like many otherswe discusshere,are really scaling
problems,in that they aregenerallyvery rarewhenan infras-
tructureis small,andcanbespottedandresolvedeasily, while
for a large infrastructure,they becomecommonplaceandhard
to notice. Accordingly, we needto addanapplication-level in-
tegrity checkonNIMI measurementsto ensurethesoundnessof
theresultsultimatelyunpackedby theDAC.

Other architecturalproblemsconcernelementsincluded in
theoriginaldesignthathaveprovedinconvenientor detrimental:

Use of URLs. Influenced(or perhapsover-influenced)by
the rise andthenubiquity of the World Wide Web (NIMI was
conceivedin 1996),URLs(or, worse,abominationsthereof)are

usedto directall NIMI messages.AlthoughusingURLs is in-
deedprobablythecorrectdesignchoice,giventheir continuing
widespreaduse, they are tediousfor humansto deal with di-
rectly. Accordingly, wehaveretrofittedshortcutsandnicknames
basedonpredetermineddefaultvaluesfor unspecifiedURL ele-
ments(suchasportnumbers);but, in retrospect,wewouldhave
amorecoherentuserinterfaceto theinfrastructurehadwebegun
with notionssuchasNIMI namesseparatefrom NIMI URLs in
the first place. Much of the difficulty will disappearwith the
developmentof a GUI for userinteractionwith NIMI, but this
will besometime in comingdueto otherdevelopmentshaving
higherpriority.

Blocking I/O. NIMI usesTCP connectionsfor transferring
NIMI messagesbetweenremote NIMI components,and for
transferringblocksbetweenthenimid andscheduled. Theorig-
inal design used thesein the default configuration,namely,
blocking I/O, in which a processblocks if it tries to readin-
put not yet available,or write outputthat cannotyet go out. It
is muchsimplerto structureprogramsin termsof blockingI/O
ratherthannon-blocking,but we foundthataswe scaledup the
infrastructure,thepossibilityof blockingdueto failuresor over-
loadof a NIMI componentbecamesufficiently high thatuseof
blocking I/O would impedethe schedulingof large-scalemea-
surements.We thereforeconvertedthe messaginglibrary used
by all NIMI componentsover to non-blockingI/O, which re-
quired altering a numberof event loops andmaintainingdata
structuresreflectingpartially-completecommunication.

Multiple TCP connections.WhenanMC sendsa measure-
mentrequesttoaNIMI probe’snimid, thenimid in turnforwards
it to the scheduled. After the scheduledprocessesthe request,
it sendsback an ACK, which the nimid forwardsto the MC.
The decisionto relay throughnimid comesfrom an attemptto
reducethescheduled’sloadfor tasksnotdirectlyrelatedto mea-
surement,sinceits measurementfunctionsaretiming-sensitive.
While we believe this structureremainssound(dueto the im-
portanceof assuringthatthescheduled’soperationsarenotper-
turbedby delayssuchasperformingpublic-key authentication
checks),it meansthat a singlemeasurementrequestcanresult
in 7 differentTCPconnections:
1. A TEST ADD messagefrom theMC to thenimid;
2. ThesameTEST ADD messagefrom nimid to thescheduled,
onceit haspasttheauthenticationandpolicy checks;
3. An ACK TEST ADD messagefrom thescheduledbackto the
nimid;
4. Thesamemessagedeliveredbackto theMC from thenimid,
which handlesapplication-layerreliability (queueingmessages
for laterdeliverywhenTCPconnectionsfail);
5. A RESULT XFER messagefrom thescheduledto thenimid
whenthemeasurementcompletes;
6. Thesamemessagefrom thenimid to theDAC;
7. An ACK RESULT XFER messagefrom the DAC to the
nimid.
Clearly, this is considerableoverheadin terms of both TCP
connectionestablishmentand consumptionof socket descrip-
tors. This latter could leadto failuresfor large-scalemeasure-
ments,andrequiredmodifying themessaginglibrary to include
a notionof rationingthe allowednumberof openconnections,
queueingmessagesfor laterdeliveryasexistingconnectionsfin-



ish. Theoriginaldesignwasbasedonshort-lived,unidirectional
messages,to minimizecommunicationstateandthereforebetter
toleratefailures. While this remainsthe right structuringfrom
theapplicationperspective,clearlythetransportlayerneedsop-
timizing in termsof themessaginglibrary keepingTCPconnec-
tions openbetweenthe nimid andthe MC or DAC, andusing
thembidirectionally, aslong astherearesufficient resourcesto
do so(andto closeandlaterreopenthemasresourcesaretem-
porarily exhaustedandthenrecovered).

Retry congestion.As notedabove, the messagelibrary has
a notionof a message“retry” queue,to beusedif a component
to which it needsto senda messagebecomesunavailable. At
first, theretryqueuetreatedall entriesasequal,andthatworked
finefor small-scalemeasurements.But for large-scalemeasure-
ments,we foundthata componentfailurecould leadto a large
numberof messagespiling up in the queue. The nimid could
wind up spendingmuchof its time attemptingto deliver mes-
sagesthatin factstill couldnotbedelivered;or, oncethecompo-
nentrecovered,thenimid would sobombardit with queuedup
messagesthat it overwhelmedthereceiving DAC, suchthat the
deliveryof many of themessageswouldfail, causingthemto be
queuedagainfor retry. Worse,for measurementsmadeacrossa
largenumberof platforms,whenthecomponentrecoveredthey
couldall wind upattemptingto deliverpreviously-undeliverable
messagesat thesametime,resultingin “implosion” at theDAC,
andanotherroundof failures.

Both of theseare in essenceforms of congestioncollapse,
which we addressedby adding exponential backoff to the
amount of time betweenretries for messagesin the queue.
While this helps,messagescouldstill amassto thepoint where
thediskwouldclogwith thousandsof undeliveredmeasurement
results,greatlyslowing down NIMI operationsthat scandirec-
torieslooking for work. Finally, we implementeda “stale” di-
rectoryinto whichweputmeasurementresultsthatcouldnotbe
deliveredaftera setnumberof attempts.

We finish with an exampleof a designelementthat we re-
movedandthenlater returned.TheNIMI probewasoriginally
designedas threedistinct elements,a watchdog,a messenger,
anda scheduler. This structurecomplicateddebuggingbecause
it meantthatwecouldnoteasilyrun themessengeror scheduler
directlyunderadebugger, but hadto attachto arunningprocess;
andit alsohadleadto ill-advisedsharingof globalstatebetween
the messengerandthe scheduler, asfacilitatedby the fork op-
erationthe watchdogusedto createboth. We thenalteredthe
structuresothat themessenger(which evolvedinto nimid) and
the scheduler(scheduled) communicateddirectly, andwith no
sharedstate.At this point, the infrastructurewassmallenough
thattheredid notappearto beaneedfor anadditionalwatchdog
process.Thatchanged,however, astheinfrastructuregrew and
failuresbecamemore common. The watchdogis now imple-
mentedasa separatePerlscript.

C. Administrativeandsystemheterogeneities

In this sectionwe discussdifficulties that arisefrom hetero-
geneitiesin the infrastructure.Oneform concernsadministra-
tiveheterogeneities:theNIMI platformsarehostedby different
organizationswith varyingpoliciesconcerningmanagementof
theplatforms.While NIMI wasdesignedfrom thebeginningto

accommodatedifferentmeasurementpolicies,theproblemswe
describehereinsteadconcernpolicies regardingsystemman-
agementof theplatforms.Theotherform of heterogeneitycon-
cernsoperatingsystemvariations.Thesewe attemptedto min-
imize by usingonly the closely-relatedFreeBSDandNetBSD
Unix variantsfor our initial deployment,but evengiventhatde-
greeof homogeneity, we encounterednumerousproblems.

While it hasbeena recognizedrequirementfrom the begin-
ning that NIMI must copewith administratively diverseenvi-
ronments,a numberof thesedifficultiescaughtus by surprise,
andbodeill for larger scale,morediversedeployment,unless
we candevisegeneralsolutionsfor amelioratingthem.

NIMI installation. First,oneareathatwasactuallynotmuch
of aproblemwasinstallationof theNIMI softwareitself. Doing
soentails:
1. fetchingandunpackingeitherabinaryor sourcedistribution;
2. separatelyfetching the RSAREFor RSAEURO public-key
cryptographylibraries (this had to be doneseparatelydue to
UnitedStateslawsconcerningexport of cryptography);
3. if using source code, building the ensembleby issuing
“make”;
4. issuing“make install” to install thesoftware;
5. generatinga private/publickey pair;
6. informing the CPOCadministratorof the new NIMI’ s exis-
tenceandits publickey;
7. modifying the machine’s startupfile to executeNIMI upon
reboot;and,
8. startingNIMI running.

Theonesignificanttrick with theabovesequenceis thethird
andfourth steps:they only work if thesoftwarecorrectlycom-
piles, or the binariescorrectlyexecute,for the givenoperating
system. Preliminaryexperienceswith porting NIMI to Linux,
Solaris,andTru64 Unix hasled to converting the software to
useautoconf for its configuration.This processis nearlycom-
plete, and will thenentail an extra step,./configure, but
with thebenefitof muchsimplerportability.

Tools requiring pri vileged access. The first problem we
foundmuchmoreof a headachethananticipatedwasthe need
to install measurementtools requiringprivilegedaccess.Early
during the design,we decidedthat NIMI shouldbe capableof
runningasany user, ratherthanrequiringsuper-useraccess,as
thelattercouldpresentaformidablebarriertowidespreadpublic
deployment.However, many measurementtools requireaccess
to raw socketsor thepacket filter, bothof which areprivileged
operations.1 Consequently, thesystemadministratorof thatplat-
form mustexplicitly configurethetool’sinstallationto allow the
privilegedaccess,andthis is requiredany time we install a new
versionof thetool.

Weknew all this,but whatwedidnotanticipatewas:(i) large-
scalemeasurementcan involve frequentchangesto existing
toolsandinstallationof new tools,and(ii) oncethe infrastruc-
ture is large, it cantake a very long time beforeall of thesites
have correctlyconfiguredthe installationof a tool, dueto quite

�
Accessto theFreeBSD/NetBSDpacket filter (BPF)is controlledby file sys-

tem permissionson /dev/bpf*, soa systemcanbe configuredto allow par-
ticularusersaccesswithout requiringprivileges.However, attainingthischange
is itself anadministrative burden,anddoesnot solve theproblemfor accessto
raw IP sockets.



largeturn-aroundlagswhendealingwith siteadministratorsvia
email.

This problem,while mundane,imposesvery realconstraints
on scalability. We discussapproachesto addressit in

�
IV.

Modifications to system configurations. Even with as
homogeneousan environment as using only FreeBSD and
NetBSD,we found that many systemswereconfigureddiffer-
ently from oneanotherandfrom our testingsystems.Two par-
ticular problemswere:

Configuring the Berkeley Packet Filter (BPF). A number
of measurementtools useBPF (moregenerally, the user-level
libpcap library, which on FreeBSDandNetBSDusesBPF) to
captureprecisemeasurementsof network traffic. Onemundane
problemwith usingBPF is that the numberof BPF readersis
constrainedby the numberof /dev/bpf* devices available.
Wefoundthatmany machineshaveonly onesuchdevice,which
prohibitedany concurrentaccessto the packet filter. This, for
example,couldpreventnotonly simultaneousmeasurementsby
different people(which we might want to avoid anyway; see�

IV for further discussion),but even somemeasurementsthat
were, conceptually, single-user. In particular, oneexperiment
wantedto usetwo zing invocationsat the sametime, onefor
sendingoutboundtraffic, andanotherfor receiving inboundtraf-
fic. Bothwouldattemptto accessthepacketfilter, leadingto one
alwaysfailing.

Building more/dev/bpf* devicesrequiresadministrative
accessto themachine.A moreseriousversionof thesameprob-
lemconcernsthemachine’skernelconfiguration,whichcontrols
themaximumsuchdevicesthatcanbecreated.Again,anumber
of systemshave this valueconfiguredto just onedevice. Un-
fortunately, changingit requiresconfiguringandbootinga new
kernel,a stepsomeadministratorsareunderstandablyreluctant
to undertake.

ConfiguringtheTCPstack. Somemeasurementsusethena-
tive TCP stack to perform transport-level or application-level
measurements.Thesestacksbehave differently dependingon
kernelparameterssuchassupportfor “largewindows” [BBJ92]
andT/TCP[Br94]. Altering theseparametersagainentailsad-
ministrative access(and, of course,altering the TCP in more
fundamentalwaysrequiresbuilding new kernels).

Clearly, the above problemscan be diminished by a site
giving NIMI administratorsprivilegedaccess,for examplevia
sudo, andthat is how we have dealtwith thesedifficulties in a
numberof cases.But, alsoclearly, suchadministrative delega-
tion will notwork for large-scaleNIMI deployment,becausethe
correspondingtrustmodelis not scalable.(Indeed,many of the
currentsitesalreadydonotdelegateadministrativeaccessto us.)

Secureadministrati veaccess.While it is ahardrequirement
thatin thelongrunNIMI mustnotrequireany interactiveaccess
by NIMI developersto NIMI platforms,clearlyfor agoodwhile
to comesuchaccessis requiredfor development,maintenance
anddebuggingpurposes.All suchaccessmustbedonein a se-
curefashion,with SSHbeingthe clearchoice. Unfortunately,
SSHhasa coupleof pitfallswhenusedin anheterogeneousen-
vironment. First, SSH version2 is not compatiblewith SSH
version1. The latter of theseis freeware,andthusmany sites
aredisinclinedto upgradeto version2, but othersitesdo run it.
In addition,SSHis not trivial to install,andsubtleconfiguration

differencesor errorscanrenderabox inaccessible.
Crypto libraries. NIMI usesRSAREF for its public key

cryptography(encryptionandauthentication).RSAREF, how-
ever, was not exportableunderUnited Stateslaw, and hence
NIMI Europeanand Asian sites instead used RSAEURO.
This differencecomplicatesinstallation (especiallysince the
RSAEURO Makefile integratesassemblycodeinto the distri-
butionby default!). In addition,thelengthof thekeysproduced
by RSAEURO arestoredin a field two bytesshorterthenthose
producedby RSAREF, makingit easyto miscommunicatethe
key—a simple enoughproblem, conceptually, but debugging
cryptographicsoftwarecanbe quite challenging,if the failure
modeis simply thata cryptographicsignatureis rejected.

Inconsistent measurement tool source code. For sound
measurement,we sometimesneedto know exactly which ver-
sion of which measurementtool we use, and in generalwe
would like to minimizesurprisesby usingthe sameversionas
widely aswe can.This is not alwayseasy, however. For exam-
ple,theversionof mtrace thatcomeswith NetBSDis different
from the versionof the sourcewe have acquiredthat compiles
underNetBSD;theversionrunningunderFreeBSDis different
again. Sometools only work undercertainoperatingsystem
versions;othersareonly distributedasbinaries.

A relatedproblemis the difficulty of keepingthe infrastruc-
tureup to date,evenwhenconsistent,run-everywheresourceis
available.Theproblemarisesbecauseoncetheinfrastructureis
fairly large,thenincreasinglyduringsoftwareupgradessomeof
theplatformsareoffline andfail to beupgraded.

Theseproblemsareagainmundanebut serious,andmustbe
addressedbeforeaninfrastructurecancoherentlyscaleto alarge
size.We would like to addressbothby makingNIMI platforms
able to download new measurementtools (and new versions
of existing tools) aspart of the configurationdialog with their
CPOC.But to do so,we mustfirst addresssignificantsecurity
issues,which wediscussfurtherin

�
IV.

Kernel flakiness. Oddly, kernel tweaksinstalledon some
of the NIMI systemsactuallyproved harmful to measurement
toolsrunningon otherNIMI systems.treno measurementsto
onesitein particular(runninga modifiedkernel)would period-
ically hangthetreno tool runningat theremotesiteperform-
ing themeasurement,eventuallyleadingto “wedged”treno’s
consumingall availableresources.

Notethatwhatmakesthis problemseriousis not theindivid-
ualtreno measurementfailure,but thatover time thefailures
would accumulateandrendertheNIMI platforminoperablefor
want of resources(e.g.,processtableslots). This difficulty is
really an instanceof the more generalproblemof controlling
measurementresourceconsumption,which we discussfurther
in
�

IV.
Multicast woes.Finally, someof theproblemscamewith the

measurementdomainitself. One of the large NIMI measure-
ment projectsinvolves using multicast traffic to estimatenet-
work link properties.As discussedin [ABCD+00], many sites
lack solid multicastsupport,andthosethatdo still suffer from
sporadicmulticastconnectivity acrossthe Internetcore. This
situationhasimprovedconsiderablyin thepastfew months,but
is clearlyout of thehandsof theNIMI systemitself (otherthan
thedegreeto whichNIMI measurementscanhelpwith diagnos-



ing multicastconnectivity problems).

D. Programmingdistributedsystems

The last class of problems are related to software
engineering—NIMIis a good-sized(40,000LOC) distributed
system—and,in particular, thesortof problemsthatarisewhen
usingthesystemona large-scale.We naturallydid muchof our
NIMI developmentusing testsinvolving at most a handful of
measurements,andwhenoneof theNIMI measurementprojects
beganschedulingmeasurementson the orderof thousandsper
day, a hostof latentdifficultiescroppedup.

Exhaustingsystemresources.Themostcommonsuchprob-
lemrelatesto exhaustingsystemresources.Whenprogramming
largesystemsin C or C++, it is difficult to avoid memoryleaks
unlessonehasa tool for automaticallyfinding them. Another
form of resourceleak waswith file descriptors;in certainrare
circumstances,thecodewouldfail to closeadescriptorafteren-
counteringanerrorconditionon it, andeventuallythesewould
consumeall of thedescriptorsavailableto theprogram.

Other problemswith resourceexhaustionwere due to sim-
plifying assumptionsmadeas we developedthe code. Over-
generousdefaultbuffer sizescoupledwith overly rich datastruc-
turesled to muchmorememoryconsumptionpermeasurement
scheduledthan actually necessary. A different problemcon-
cernedmanipulatingmeasurementresults:thenimidwouldread
in a tar archive holding a newly completedmeasurement’s re-
sults,andthenkeepit in memoryuntil it coulddeliver it to the
measurement’sDAC. Thisworkedfineuntil aNIMI usersched-
uled a measurementthat yieldeda resultfile of scoresof MB,
at whichpointnimid couldnot readit all into memory, andthus
couldneverdeliver it, thoughit repeatedlytried. Thesolutionto
this particularproblemis to keeptheresultson disk andstream
themdirectlyontothesocketconnectionto theDAC onceestab-
lished;and,on theotherend,for theDAC to streamtheresults
from its endof thesocketagaindirectly ontodisk.

Clocks. Unstablesystemclockshave beenanongoingprob-
lem. We did not want to requirethat NIMI platformsinclude
highly accuratetime sourcessuchasGPS,given expense,an-
tennalocation, and systeminstallationdifficulties. (We note
that morehomogeneousinfrastructuressuchasSurveyor have
beenable to surmountthesedifficulties [Al97].) From previ-
ousexperience[Pa98] we realizedthis would complicateone-
way measurement,but expectedthat the clock synchronization
would be goodenoughfor purposesof coordinatingmeasure-
ment. In fact, this is far from the case. While somesitesuse
NTP synchronization,othersdo not, or only synchronizeupon
reboot,andwe havehadto dealwith clocksoff by hours.

Wedealwith thisproblemin severalways.First,for measure-
mentsinvolving coordination,we schedulethe traffic receivers
to start running five minutes(nominally) before the senders,
so the coordinationwill still work in the presenceof up to
five minutesdisagreementbetweenthe clocks. Second,when
an MC sendsa measurementrequestto a NIMI, it compares
a timestampsentback by the NIMI with its own clock, and
flagsdiscrepanciesif they aretoo large so the useris awareof
the problem. Third, we areimplementinga notion of “relative
time,” sothatanMC canspecifyameasurementastakingplace���

secondsin thefutureratherthanatanabsolutetime
�

. The

maindifficulty with implementingrelative time is to ensurethat
the time offset is asaccurateaspossiblewhenreceivedby the
NIMI, whichcanbeconsiderablylaterthanwhentheMC begins
sendingthemeasurementrequestto theNIMI, dueto delaysin
TCPconnectionestablishment,packet retransmissions,andthe
like. Therewill alwaysbesomeuncertaintywith relative times
due to variation in packet propagationtimes betweenthe MC
andtheNIMI, but thesewill usuallybeontheorderof hundreds
of msecor less,or perhapssecondsif TCPretransmissionsare
involved.

DNSflakiness.We havefoundthatduringanextensivemea-
surementrun we will experienceoccasionalDNS errors,such
ashostsbeingunableto resolve the nameof otherNIMI plat-
forms, or, in more thanonecase(differentNIMIs), unableto
resolve their own name!It wasnaturalwhenwewroteourcode
to assumethatsuchlookupswould alwayssucceed,andto fail
in ahardfashionwhenthey didn’t (becausethat“couldn’t” hap-
pen).In retrospect,weshouldhavebeenmoreparanoid,andare
now migratingNIMI over to: (i) carefullycheckall DNS return
statuscodes,(ii) never trusta DNS call not to block (scheduled
alreadyavoidsdoingso),(iii) useIP addressesratherthanhost-
nameswhenpossible,and(iv) perhapsmaintaina privateDNS
translationcachefor backupuseduringDNS serviceoutages.

Subtle interfaces. Perhapsthemostfrustratingproblemwas
in convertingtheNIMI messaginglibrary to non-blockingI/O.
Following all of thedocumentationfor settingup non-blocking
connect() andaccept() callsresultedin codethatworked
sporadically. After muchconsultationandmailing list brows-
ing, we found a notefrom someoneelsewho hadrun into the
sameproblem. They reportedthat getsockopt() must be
calledwith SO ERROR to determinethe stateof the socket file
descriptorprior to accessing.

IV. SECURE UPDATE AND RESOURCE CONTROL

As we have developedabove, two significantchallengesfor
scalingNIMI—or any measurementinfrastructurethat strives
for extensibility and multiple use—concernsecurelyupdating
themeasurementtoolsavailableon a platform,andcontrolling
theresourceconsumptionof individualmeasurements.

The needfor updatearisesfrom the requirementof exten-
sibility, thoughwe have found that it also arisesjust for soft-
waremaintenanceof existing measurementtools. Theneedfor
updatesto be secure arisesimmediatelybecausemeasurement
tools often requireprivilegedaccessthat an attacker could ex-
ploit. This needis especiallypronouncedfor a sharedinfras-
tructure,in which theadministrativehostof a platformmaynot
wantto trustparticularusersof theplatform.

The needfor resourcecontrol rapidly becameapparentto
us as soon as NIMI was used for concurrentmeasurement
projects. Indeed,we found it also comesup for solo mea-
surementprojects: if the project is sufficiently large, then its
own subelements(individual measurements,for example)can
conflict andderail the measurement.For example,oneproject
scheduledsuccessive measurementsthat entailedaccessto the
packet filter. When the first of thesewedged,the remainder
would fail becausethefirst hadnot releasedthe(scarce)packet
filter resource,sothey couldnotaccessit.

In summary, the combinationof an infrastructuresupport-



ing extensiblemeasurementandstriving to protectits integrity
bringswith it two intrinsic dangers:measurementcodemight
eithercompromisethesecuritymodel,or consumeexcessivere-
sourcesand compromiseother measurements.We treat these
two together, becausethey arereallytwo sidesof thesameprob-
lem: controllingwhatthemeasurementsoftwarecando.

A. Trust models

We begin by discussingdifferent trust models,as thesede-
limit how strenuouslywe mustwork to ensuresafeoperation.
Currently thereare two forms of trust in NIMI: first, the vol-
unteershostingplatformstrust the NIMI developersenoughto
eithergrantusadministrative access,or to themselvesperform
administrativeactionssuchasgrantingprivilegesto a measure-
ment tool upon request. This form of trust is basedon the
fact that thevolunteersknow thepeopleinvolvedin theproject
and trust us to take appropriatecareto protect their systems.
This modeloftenmakessensefor a researchsystemin its early
stages,but clearly will not scalein the future when thereare
many more administrative domainsand peoplewho want to
modify elementsof aNIMI configuration.

A relatedform of trust regards“trustworthinessby eminent
authority,” by whichwemeanthefactthatif askedto install “the
new versionof traceroute availablefrom its usuallocation,”
mostadministratorsarewilling to do so becausethey trust the
developersof thetool (who do not necessarilyhave anything to
do with NIMI) to ensurethat the softwarethey releaseis safe.
This soundsrisky, andlikely with time will grow moreso,2 but
it is in fact practicedby everyonewho usespublicly available
software except thosewho rigorously inspectthe sourcecode
prior to installation.

In summary, NIMI requiresa moreflexible trust modelthan
the above to make its extensibility practical. Otherwise,re-
searcherswho have goodideasfor experimentswill not beable
to getthenecessarytoolsdeployedwithout eithertiesto a large
numberof NIMI operators,or to thedevelopersof themeasure-
menttoolsor NIMI.

B. Threatmodels

We now turn to thesortsof threatsagainstwhich we wish to
protecttheinfrastructure.

Subverting the platform. First,uploadedmeasurementcode
might exploit a weaknessin NIMI to obtain unauthorizedac-
cessto the platform. Sincewith time NIMI platformsmay be
deployedonmany networksacrosstheInternet,asystematicat-
tackontheNIMI systemcouldpotentiallycreateamajorthreat.
If NIMI platformscouldbeexploitedto obtainrootor othernon-
authorizedgeneralaccessto the hostsystem,an attacker could
thenusethecompromisedplatformsto mountadditionalattacks
onothersystems.Giventhattheplatformsthemselvesarelikely
to be well connectedto the network, they would be especially
attractive for mountingdenialof service(DoS)flooding.

Any non-authorizedgeneralaccesscanalsobeusedasastep-
ping stoneto hide attackson othersystems.While not unique
to NIMI, this sortof illicit activity couldvery seriouslydamage
	
In a recentincident,a public distribution of thepopular“TCP wrappers”se-

curity softwarewasmodifiedby attackersto includeabackdoor, avulnerability
subsequentlyexploitedto gainillicit accessto numerousmachines.

NIMI’ sreputationandrenderNIMI deploymentunacceptableto
many.

Also giventhattheplatformsarelikely to bewell connected,
they maybecloseto network infrastructurecarryingaggregated
traffic from many users.If a NIMI platformis directly attached
to a broadcastnetwork, it could be usedto sniff transit traffic.
This sort of attackis so attractive that even with the security
measuresdescribedin this paper, it is expresslyrecommended
thatNIMI platformsbeattachedto mediathatdoesnot lendit-
self to sniffing.3

An attacker gaininggeneralaccessto NIMI platformscould
also alter systemor measurementsoftware in unknown ways,
castingdoubt on, or even surreptitiouslyaltering, subsequent
measurements.In addition, if a NIMI platform hasbeentam-
peredwith it maybedifficult to reinstallthesystemfrom trusted
media,dueto a potentiallyremotelocation.

Attacks launchedfr om within NIMI. Evenwithoutsubvert-
ing the NIMI platform, the potentialexists for maliciousmea-
surementsoftware to useNIMI platformsto attackother sys-
tems.An uploadedtool might constructattackpackets(e.g.,for
DoSor scanning)undertheguiseof a measurement.This form
of attackis particularlyproblematicgiven the desireto ensure
that NIMI platformscan perform a wide variety of measure-
ment.Eventhevery naturalrequirementthatall traffic sourced
by a measurementutility musthave the NIMI platform as the
sourceaddressis in tensionwith the needto provide accessto
“raw IP” for somemeasurementprograms.But, moregenerally,
NIMI needsmechanismsto controltheform of any packetssent
by a tool.

In addition,asdiscussedabove,measurementmachinerycan
alsobe exploiteddirectly to collect privateinformation. Many
of the currentNIMI tools rely on BPF to preciselytimestamp
measurementtraffic off of the network. But usingBPF intro-
ducesthepossibilityof obtainingcopiesof messagesotherthan
thoserelatedto themeasurement.This canbemitigatedby re-
quiring useof a filter restrictedto only capturetraffic sentto
or from the local host,but this doesnot protectagainstreading
packetsmeantfor someothermeasurement.

Perturbing other activity. Malicious or defective measure-
mentsoftwarecanalso interferewith othermeasurements,by
consumingexcessive NIMI resourcesor generatingbogustraf-
fic thattheothermeasurementwill mistake for its own. For ex-
ample,ameasurementthatkeepslargebuffersin memorymight
causeother measurementsto experiencepage-fault thrashing.
Variousresourcemanagementissuesarediscussedin

�
IV-D.

Thereis also a potential for interactionbetweenNIMI and
otheractivitieson theplatform.TheNIMI architecturedoesnot
requirethatplatformsbededicatedto NIMI alone,andanumber
of siteshavedeployedNIMI on general-usemachines.

C. Updatemodels

We canpictureimplementingsoftwareupdatesto NIMI plat-
formsin a numberof differentways.A simpleapproachwould
beto bundlethetoolsinto theNIMI codedistributionitself, such


Note that the NIMI architecture can be used for legitimate passive

measurements—thereis nothingin thearchitecturethatrestrictsits useto active
measurements.But weomit passivemeasurementsfrom ourgeneraldiscussions
becausethey aremuchmoreproblematicfor apublic infrastructure.



that the tools areupdatedwhenNIMI is updated(andperhaps
thesametrustmodelis appliedto thetoolsasto theNIMI code).
Doing sowould almosttotally undermineNIMI’ s extensibility,
however. In fact,from our experienceto dateit is alreadyclear
that methodsthat rely on “out of band” mechanismsto update
measurementtools (suchas email to an administratorasking
themto install thenew software)scalevery poorly, sincesome
administratorsmay take an exceedinglylong time to attendto
suchrequests.

We insteadwould like to usethe already-existing NIMI ma-
chinery for moving datato and from the platforms. Further-
more,theexistingmeasurementschedulingmachineryprovides
anopportunityto verify that thepropertoolsarepresenton the
platform. If an MC requestsa tool that is eithernot presentor
out of date(wrongversion),thentheplatformcouldrequestthe
tool from eitherits CPOC(whichcouldredirectit to adelegated
repository)or, perhaps,theMC itself. (Thefirst of theseclearly
representsastrongertrustmodelthanthesecond.)Furthermore,
if theCPOCdoesnot alreadyhavethetool, it couldin principle
requestit from theMC.

Eachof thesetool delivery routeshasadvantagesanddisad-
vantages. If platformsobtain software via their CPOC,then
the distribution machinerywill scalebetter, becauseall of the
CPOCscan concurrentlydistribute tools to their associated
NIMI platforms.TheCPOCalsohastheopportunityto perform
an extra inspection(or compilation)stepthatmight be usedto
provideadditionalvalidationof thecode.If, ontheotherhand,a
smallpoolof NIMI platformsobtainsthesoftwaredirectly from
the MC, then new tools can be deployed more quickly. This
approachwould betterfacilitatetool testing.

We believe thatbothof thesemechanismsareneeded.If an
MC requestsa measurementthat requiresa missingtool, then
the platform’s nimid shouldfirst determineif the MC hasper-
missionto offer that tool directly. If so, it contactstheMC for
thetool. If not, or if theMC replies“usetheCPOC,” thenimid
would thendetermineif theMC haspermissionto requestthat
theNIMI platformuploadsoftwarefrom theplatform’sCPOC.

If a NIMI platform requestsa tool that the CPOCdoesnot
have, the CPOCcould usea similar mechanismto obtain it.
However, with the CPOCthereis an additionalopportunityto
checkthe appropriatenessof the request.This checkcould be
fully automatic(e.g., a codescanner;seebelow) or partially
manual,requiringexplicit administrativeapproval.

The designshouldpermit the administratorresponsiblefor
the CPOCto selectsemi-automaticupdating,wherenew tools
are automaticallytransportedto the CPOCand inspected,but
heldfor theadministrator’sapproval beforedisseminatingthem
to theNIMI platforms.This approachprovidesa safetynet for
siteswishingto bemoreconservativeaboutinstallingtools.The
goalsof theothersecuritymechanismswediscussbelow should
then be to make the entire systemsufficiently robust and se-
curethatnearlyall domainswill electto rely on fully automatic
mechanisms,andthat theonesthatdon’t will besufficiently at-
tentivesuchthattherearenot long deploymentdelays.

D. Resourcemanagement

Theavailability andaccuracy of NIMI measurementmaybe
adverselyaffectedby resourcecontentionor starvation on the

platforms.As mentionedabove,in many waysresourceprotec-
tion parallelssecurityissues,in thatbothconcerncontrollingthe
possiblebehavior of measurementprograms.

Many of the resourceswe needto manageare commonto
other multi-usesystems:CPU, memory, disk space,and I/O
activity, especiallynetwork activity. Otherresources—suchas
accessto thepacketfilter, specificTCP/UDPports,or receiving
particularforms of ICMP responses—arescarce,andtypically
boundto specificmeasurements.Uncontrolledaccessto these
resourceswill likely causemeasurementsto fail.

We thereforeneedmechanismsto ensurethatmeasurements
do not suffer for resourcestarvation, or, conversely, that mea-
surementsdo not consumemoreresourcesthanpolicy allows.

Finally, asnotedabove,someNIMI platformsareshared-use.
The other legitimateusersof the systemsmay needto receive
priority accessto the resources,perhapsvarying with time-of-
day, or on an ad hoc basis. Thesesituationsagainrequirean
ability to limit NIMI resourceconsumptionaspolicy dictates.

E. Codevalidationvs.sandboxing

Therearetwo basicapproacheswe coulduseto facilitatese-
curesoftwareupdateandresourcecontrol: validatingthatcode
behavescorrectly, or sandboxingcodesothatit’s impossiblefor
it to behave incorrectlyin a significantway.

Code validation. The first of thesecan be donestatically,
by scanningimportedcodeto analyzeits behavior, or dynami-
cally, by monitoringa runningprogram.For generalprogram-
minglanguages,theHaltingProblemdictatesthatwecannotre-
alizecompletelyaccuratestaticanalysis,but insteadmustlimit
the semanticmodelavailableto the programs,possiblyreject-
ing somesafeprogramsbecausewe cannotsoundlyprove their
safety. Somelanguagesaremuchmoreamenableto staticanal-
ysis thanothers;C is particularlybad in this regard,given its
highly flexible pointersemantics.Unfortunately, mostmeasure-
mentsoftwareis written in C, andit is not clearthat rewriting
them(eitherin C or somethingelse)to conformwith arestricted
semanticmodelis any easierthanrewriting themin a“safe” lan-
guage(seebelow).

We can also considervalidating codedynamically, but this
immediatelyraisesthequestionof whatto do whenat run-time
we find a programviolatesits restrictions. If we at that point
enforcethe restrictions,what we have really doneis sandbox
theprogram,to which we now turn.

Sandboxing. In general,using a sandboxmeansthat pro-
gramsrun in a restrictedenvironmentwith accessto only lim-
ited,tightly controlledresources.In addition,uponprogramter-
mination the systemmay discardthe environment. This goal
is to preventtheprogramfrom contaminatingotherpartsof the
system.

NIMI hasthreenaturalboundarieswecouldusefor sandbox-
ing. First, NIMI platformskeepvirtually no permanentstate
(just thenameof theirCPOCandanascentACL tableallowing
theCPOC’s credentialto modify theACL table). Therefore,in
theextremecase,wecanin principlereinstallall of thesoftware
on theplatformwith only a shortoutage.Second,theplatform
couldlimit NIMI accessto filesby chroot’ing prior to execution
of nimid. Third, wecouldalsochrooteachmeasurementinto its
own subtreewithin therestrictedNIMI tree.



Eachof thesehasits own meritsandwould be an effective
tool againstsomeclassesof attacks,althoughin practicewe
have foundthatbuilding a working chroot environmenttakesa
surprisingamountof work, andfrequentlyreinstallingtheNIMI
softwareappearsmuchtoo expensive.

The morefundamentalproblem,however, is that Unix does
not provide the necessarytools for constructingnetworksand-
boxes. The mechanismsit providesfor controlling what ports
processescanbind to, whatsortof accessa programhasto the
packet filter, andwhat sort of packetsa programcansendand
receive,all suffer from providing thewronggranularityof parti-
tioning. Unlike thefile system,for which thepermissionmodel
is well developedandfine-grained,for network accesstheper-
missionmodelis coarse-grained:aprogrameithercanor cannot
accessthepacket filter, with no controlover thetypeof filter it
uses;it eithercanor cannotbind to a userport or a privileged
port, with no control over which it picks from the range;it ei-
thercanor cannotuseraw IP to craft arbitrarypackets,with no
controloverwhatcanbeplacedin theindividualheaderfields.

Thereare several classesof mechanismswe could employ
to attemptto constructnetwork sandboxes: introducingkernel
modificationsto restricta program’s possiblebehavior; linking
measurementprogramsagainsta run-timelibrary thatmonitors
and enforcesthe program’s activity; using a separatetrusted
daemonto monitor the program’s activity andproxy sensitive
activities suchas packet sourcingand recording;or requiring
programsto bewritten in a “safe” languageamenableto secure
run-timecontrol(seebelow).

Requiring custom kernelsseriously conflicts with easeof
NIMI deploymentandmaintainability, andwe mustdismissit
out of hand. Adding instrumentationand controlsvia a run-
time library seemsat first like an attractive approach. But a
determinedattacker whoseprogramexecutesdynamicallycon-
structedcodecan likely evadeany run-time library; and even
if we disableexecutionof codefragmentsin the stackandthe
heap,amaliciousprogramcouldstill rummagethroughmemory
until it findsthedatastructuresusedby therun-timelibrary, and
modify themto its advantage.It is difficult to seehow run-time
monitoringcanwork without resortingto techniqueslike those
discussedin [WLAG93],whichappeardauntingfor non-experts
to implement(at all, muchlesscorrectly).

A monitordaemoncould tracksystem,network anddisk ac-
cesses.In principle this would be morerobust thana run-time
wrapper, becausethedaemonis isolatedfrom themeasurement
software.However, monitoringdaemonsarefundamentallylim-
ited becausethey only seeeventsafter the fact—apoor fit for
preventingmaliciousactivity, thoughthesecouldwork well for
someforms of benignactivity, suchassuspendinga program
thatconsumestoomuchCPU.

The daemongainsmuch more control if it also proxies for
themeasurementsoftware. For example,thesoftwarecouldbe
requiredto only sendandreceive packetsby makingrequests
throughthe proxy. This approachappearspromisingfor one
form of activity, namelyusing a packet filter to recordhigh-
precisiontimestampsof traffic for later analysis,andwe plan
to developa packet-filterserver to addressthepragmaticpacket
filter problemswe discussedabove in

�
III-C.

But in moregeneralterms,aproxydaemonhighlightsabasic

tensionbetweensecurityandmeasurement:we needto ensure
that securitymechanismsdo not distort our measurementsto
suchanextentasto renderthemeasurementsinsufficiently pre-
cise. For example,sendingpacketsonly via a proxy will incur
10’s or 100’sof mseclatency (dueto context switchdelaysand
the like) betweenthe measurementsoftwareand the network,
makingit impossibleto preciselycontrolwhenpacketsareac-
tually transmitted.This latency is sometimeslessof a problem
for receivedpackets,becausethey aretimestampedin thedriver
beforebeingprocessedby theproxy; but canalsopresentdiffi-
cultiesif themeasurementsoftwareneedsto promptly respond
to incomingpackets,suchasto generateechoesfor measuring
round-triptimes.

Furthermore,sincethe Unix kernelhasfew mechanismsfor
network accesscontrol (otherthanper-processyes/noaccessto
thepacketfilter), theuseof proxiessuffersfrom thesameweak-
nessesas the run-time library approach. We cannot,in fact,
forceaprogramto usetheproxyfor its network activity; if there
is any way for a programto containsurreptitiouscode,it can
avoid theproxy. (This samelack of accesscontrolmechanisms
also underminesanotherapproachsimilar to proxies,namely
usinga wrapperthatpre-opensallowednetwork socketsfor the
programto inherit.)

Giventheabovedifficulties,it appearsthattheapproachwith
themostpromiseis to migrateNIMI to usingmeasurementtools
written in a safelanguage.Hereby “safe” we meana language
that both doesnot allow datastructuresto becomecorrupted
(written by modulesother than thoseexplicitly allowed to do
so), andthat includesmechanismsfor confiningaccessto par-
ticular interfaces(suchasnetwork I/O) in waysthat cannotbe
circumvented.Suchlanguageshavebeenusedto implementse-
cure,extensiblesystemsby limiting the semanticsavailableto
the programmer, suchthat unsafeactionseither cannotbe re-
quested,or canbesecurelydeniedby therun-timesystem.

Givensucha language,we would thenproceedasfollows:
� We usethelanguageto implementNIMI measurementtools.
We will constrictthe functionalityprovidedby the languageto
only thoseoperationsrequiredfor measurement.
� Thelanguageneedsto supportrestrictedsemanticsfor creat-
ing andcollectingpackets.Thesesemanticsmustbeextensible,
but througha separatemechanismthan that usedfor software
updates.
� The languageenvironment must include monitoring of re-
sourceconsumptionandmechanismsto enforceresourcepolicy
limits.
� A C languageAPI for boththeresourcecontrolandthepacket
processingroutinesshouldbe available so that we can easily
updateexisting tools to usethesameresourceandpacket man-
agementresourcesastoolswritten in thesafelanguage.These
hybrid toolsstill require“trustworthinessby eminentauthority,”
but will fit betterinto overallNIMI resourcemanagement.

Therearea numberof languagesdesignedto be safe,such
asJava, Perl’s “taint” mode,andPython[Py00]. A numberof
issuesarisewhenassessingwhichof thesemightwork best:ac-
cessto the necessarynetworking and timing primitives; ease
of expressingfine-grainedcontrol; sufficient efficiency to not
impedemeasurementprecision;likelihoodof administratorsac-
ceptingtheir installation;debuggingandmaintenanceproperties



of theresultingprograms;andeaseof portingexisting tools.

V. SUMMARY

There is great utility in being able to construct large-
scale measurementinfrastructurescomposedfrom diversely-
administeredhosts, supportinga wide and extensible range
of measurementsand accesscontrol policies. Doing so
alsopresentsmajor challengesandopportunitiesfor mistakes,
thoughwe believe theNIMI designhasprovedflexible enough
(with sufficienteffort!) to overcomethese.

Two key issuesthatmuststill beaddressedfor NIMI (or any
large-scaleinfrastructure,for that matter)to prove sufficiently
scalablefor widespreadpublic deploymentarethe problemof
securelyupdatingsoftwareon themeasurementplatforms,and
the problemof constrainingthe resourcesconsumedby differ-
ent measurements.We arguethat both of thesecanbe unified
in termsof controlling the behavior of the measurementsoft-
ware,and that the mostpromisingtechniquefor doing so ap-
pearsto be requiringmeasurementsoftwareto be written in a
“safe” languagesuchasJava or Python.We arenow beginning
to investigatesuchlanguagesto determinehow bestto address
theseproblemsin NIMI.

VI . ACKNOWLEDGMENTS

JamshidMahdavi contributeda greatdealto theinitial NIMI
design. We arealso very grateful to the numerousvolunteers
hostingNIMI at their sitesandto our MINC collaboratorsfor
theiron-goingfeedback;andwould like to thankJeremyHylton
and Steve Bellovin for thought-provoking discussionson the
problemsof secureuploadandresourcecontrol.

Thiswork hasbeensupportedthroughfundingby theDefense
AdvancedResearchProjectsAgency award #AOG205andby
theNationalScienceFoundationunderCooperativeAgreement
No. ANI-9720674.

REFERENCES

[AMMP98] A. Adams,J. Mahdavi, M. Mathis, and V. Paxson,“Creating a
ScalableArchitecturefor InternetMeasurement,” Proc. INET ’98, Geneva,
July1998.

[ABCD+00] A. Adamsetal, “The Useof End-to-endMulticastMeasurements
for CharacterizingInternal Network Behavior,” IEEE Communications, to
appear.

[Al99] M. Allman, privatecommunication,1999.
[Al97] G. Almes et al, “Surveyor Home Page, Tools, and Infrastructure,”

http://io.advanced.org/surveyor/, 1997.
[BBJ92] D. Borman,R. BradenandV. Jacobson,“TCP Extensionsfor High

Performance,” RFC 1323,Network InformationCenter, SRI International,
MenloPark,CA, May 1992.

[Br94] R. Braden,“T/TCP — TCP Extensionsfor Transactions:Functional
Specification,” RFC1644,DDN Network InformationCenter, July 1994.

[Fr99] T. Friedman,privatecommunication,1999.
[HGDL97] C. Huitema, M. Garrett, J. DesMarais, and W. Leland,

”Project Felix: IndependentMonitoring for Network Survivability,”
ftp://ftp.telcordia.com/pub/mwg/felix/index.html, 1997.

[Ja89] V. Jacobson,traceroute, ftp://ftp.ee.lbl.gov/traceroute.tar.Z, 1989.
[La97] C. Labovitz et al, “The InternetPerformanceand Analysis Project,”

http://www.merit.edu/ipma, 1997.
[MA99] M. MathisandM. Allman, “Empirical Bulk TransferCapacity,” Inter-

netDraft, draft-ietf-ippm-btc-framework-02.txt, Oct.1999.
[MM96] M. Mathis andJ. Mahdavi, “DiagnosingInternetCongestionwith a

TransportLayerPerformanceTool,” Proc.INET ’96, Montreal,June1996.
[Pa98] V. Paxson,“On CalibratingMeasurementsof Packet Transit Times,”

Proc.SIGMETRICS’98, June1998.
[Pa99] V. Paxson,“End-to-EndInternetPacket Dynamics,” IEEE/ACM Trans-

actionsonNetworking, 7(3),pp.277–292,June1999.

[PAMM98] V. Paxson,G. Almes,J.Mahdavi andM. Mathis,“Framework for
IP PerformanceMetrics,” RFC2330,InternetSociety, May 1998.

[PF97] V. PaxsonandS. Floyd, “Why We Don’t Know How To SimulateThe
Internet,” Proc.1997Winter SimulationConference, December1997.

[PMAM98] V. Paxson,J. Mahdavi, A. Adams,andM. Mathis, “An Architec-
ture for Large-ScaleInternetMeasurement,” IEEE Communications, 36(8),
pp.48–54,August1998.

[Py00] “PythonLanguageWebsite,” http://www.python.org/, 2000.
[SRC84] J. Saltzer, D. ReedandD. Clark, “End-To-EndArgumentsin Sys-

tem Design,” ACM Transactionson ComputerSystems, 2(4), pp. 277–288,
November1984.

[To98] D. Towsley et al, “MINC: Multicast-basedInferenceof Network-
internalCharacteristics,” http://gaia.cs.umass.edu/minc,1998.

[WLAG93] R. Wahbe, S. Lucco, T. Andersonand S. Graham, “Efficient
Software-BasedFault Isolation,” Proc. FourteenthACM Symposiumon Op-
eratingSystemPrinciples, Dec.1993.

[WB98] H. Werner-Braunet al, “Active Measurements,Tools,andInfrastruc-
ture,” http://amp.nlanr.net/, 1998.

[ZPSB00] Y. Zhang,V. Paxson,S. Shenker, andL. Breslau,TheStationarity
of InternetPath Properties:Routing, Loss,andThroughput, in submission,
Feb. 2000.




